
1

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 4: Memory-Mapped I/O, Bus Architectures
January 20, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

Today…

Memory-Mapped I/O

Example Bus with Memory-Mapped I/O

Bus Architectures

AMBA APB

2

Course Roadmap

3

Timers

Central

Processing
Unit

Software

Hardware

Internal

External

System Buses
AHB/APB

ldr (read)!
str (write)!

ISA

EECS 370

USART

DAC/ADC

Internal &
External
Memory

GPIO/INT

C
Assembly

Machine Code

Interrupts

bl (interrupt)!

Memory-mapped I/O

•  Microcontrollers have many interesting
peripherals
–  But how do you interact with them?

•  Need to:
–  Send commands
–  Configure device
–  Receive data

•  But we don’t want new processor instructions for
everything
–  Actually, it would be great if the processor didn’t know

anything weird was going on at all

4

Memory-mapped I/O

•  Instead of real memory, some addresses map to
I/O devices instead

Example:
•  Address 0x80000004 is a General Purpose I/O (GPIO) Pin

–  Writing a 1 to that address would turn it on
–  Writing a 0 to that address would turn it off
–  Reading at that address would return the value (1 or 0)

5

Smartfusion
Memory Map

6

Memory-mapped I/O

•  Instead of real memory, some addresses map to
I/O devices instead

•  But how do you make this happen?
–  MAGIC isn�t a bad guess, but not very helpful

Let�s start by looking at how a memory bus works

7

Today…

Memory-Mapped I/O

Example Bus with Memory-Mapped I/O

Bus Architectures

AMBA APB

8

Bus terminology

•  Any given transaction have an �initiator� and
�target�

•  Any device capable of being an initiator is said to
be a �bus master�
–  In many cases there is only one bus master (single

master vs. multi-master).

•  A device that can only be a target is said to be a
slave device.

9

Basic example

Let�s demonstrate a hypothetical example bus

• Characteristics
–  Asynchronous (no clock)
–  One Initiator and One Target

• Signals
–  Addr[7:0], Data[7:0], CMD, REQ#, ACK#

•  CMD=0 is read, CMD=1 is write.
•  REQ# low means initiator is requesting something.
•  ACK# low means target has done its job.

Read transaction

Addr[7:0]

CMD

Data[7:0]

REQ#

ACK#

?? ?? 0x24

?? ?? 0x55

 A B C D E F G H I
Initiator wants to read location 0x24

A: Initiator sets Addr = 0x24, CMD = 0 B: Initiator sets REQ# to low C: Target sees read request D: Target drives data E: Target sets ACK# to low F: Initiator sees data and latches it G: Initiator sets REQ# high, Stops driving Addr and CMD H: Target sets ACK# to high, Stops driving data I: Transaction is complete, Bus is idle A B C D E F G H I

A read transaction

•  Say initiator wants to read location 0x24
A.  Initiator sets Addr=0x24, CMD=0
B.  Initiator then sets REQ# to low
C.  Target sees read request
D.  Target drives data onto data bus
E.  Target then sets ACK# to low
F.  Initiator grabs the data from the data bus
G.  Initiator sets REQ# to high, stops driving Addr and

CMD
H.  Target stops driving data, sets ACK# to high

terminating the transaction
I.  Bus is seen to be idle

A write transaction

•  Say initiator wants to write 0xF4 location 0x31
A.  Initiator sets Addr=0x24, CMD=1, Data=0xF4
B.  Initiator then sets REQ# to low
C.  Target sees write request
D.  Target reads data from data bus

(only needs to store in register, not write all the way to
memory)

E.  Target then sets ACK# to low.
F.  Initiator sets REQ# to high, stops driving other lines
G.  Target sets ACK# to high, terminating the transaction
H.  Bus is seen to be idle.

Returning to memory-mapped I/O

Now that we have an example bus, how would
memory-mapped I/O work on it?

Example peripherals
0x00000004: Push Button - Read-Only
 Pushed -> 1
 Not Pushed -> 0
0x00000005: LED Driver - Write-Only
 On -> 1
 Off -> 0

14

The push-button
(if Addr=0x04 write 0 or 1 depending on
button)

Button (0 or 1)

ACK#

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ#
CMD Data[7]

Data[6]
Data[5]
Data[4]
Data[3]
Data[2]
Data[1]
Data[0]

The push-button
(if Addr=0x04 write 0 or 1 depending on
button)

Button (0 or 1)

0

Data[7]

Data[0]

Data[6]
Data[5]
Data[4]
Data[3]
Data[2]
Data[1]

Delay ACK#

What about
CMD?

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ#
CMD

The LED

(1 bit reg written by LSB of address
0x05)

Addr[5]

Addr[7]
Addr[6]

Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ#

DATA[5]

DATA[7]
DATA[6]

DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

ACK#

CMD LED

The LED

(1 bit reg written by LSB of address
0x05)

Addr[5]

Addr[7]
Addr[6]

Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ# LED

clock

D

DATA[5]

DATA[7]
DATA[6]

DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

Delay ACK#

CMD

Let’s write a simple assembly program
 Light on if button is pressed.

Peripheral Details
0x00000004: Push Button - Read-Only
 Pushed -> 1
 Not Pushed -> 0
0x00000005: LED Driver - Write-Only
 On -> 1
 Off -> 0

19

Today…

Memory-Mapped I/O

Example Bus with Memory-Mapped I/O

Bus Architectures

AMBA APB

20

Driving shared wires

•  It is commonly the case that some shared wires
might have more than one potential device that
needs to drive them.
–  For example there might be a shared data bus that is

used by the targets and the initiator. We saw this in
the simple bus.

–  In that case, we need a way to allow one device to
control the wires while the others “stay out of the
way”

• Most common solutions are:
–  using tri-state drivers (so only one device is

driving the bus at a time)
–  using open-collector connections (so if any

device drives a 0 there is a 0 on the bus
otherwise there is a 1)

21

Or just say no to shared wires.

•  Another option is to not share wires that could
be driven by more than one device...
–  This can be really expensive.

• Each target device would need its own
data bus.

• That’s a LOT of wires!
–  Not doable when connecting chips on a PCB as you are

paying for each pin.
–  Quite doable (though not pretty) inside of a chip.

22

Wire count

•  Say you have a single-master bus with 5 other
devices connected and a 32-bit data bus.
–  If we share the data bus using tri-state connections,

each device has “only” 32-pins.
–  If each device that could drive data has it’s own bus…

• Each slave would need _____ pins for data
• The master would need ______ pins for

data

•  Again, recall pins==$$$$$$.

23

24

#include)<stdio.h>)

#include)<inttypes.h>)

)

#define)REG_FOO)0x40000140)

)

main)()){)

))uint32_t)*reg)=)(uint32_t)*)(REG_FOO);)

))*reg)+=)3;)

)

))printf(“0x%x\n”,)*reg);)//)Prints)out)new)value)

})

What happens when this “instruction” executes?

25

“*reg += 3” is turned into a ld, add, str sequence

•  Load instruction
–  A bus read operation commences
–  The CPU drives the address “reg” onto the address bus
–  The CPU indicated a read operation is in process (e.g. R/W#)
–  Some “handshaking” occurs
–  The target drives the contents of “reg” onto the data lines
–  The contents of “reg” is loaded into a CPU register (e.g. r0)

•  Add instruction
–  An immediate add (e.g. add r0, #3) adds three to this value

•  Store instruction
–  A bus write operation commences
–  The CPU drives the address “reg” onto the address bus
–  The CPU indicated a write operation is in process (e.g. R/W#)
–  Some “handshaking” occurs
–  The CPU drives the contents of “r0” onto the data lines
–  The target stores the data value into address “reg”

26

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

•  SoC memory/peripherals
–  AMBA AHB/APB

•  NAND Flash
–  Open NAND Flash Interface (ONFI)

•  DDR SDRAM
–  JEDEC JESD79, JESD79-2F, etc.

Why use a standardized bus?

•  Downsides
–  Have to follow the specification
–  Probably has actions that are unnecessary

•  Upside
–  Generic systems
–  Allows modules to be reused on different systems

27

Today…

Memory-Mapped I/O

Example Bus with Memory-Mapped I/O

Bus Architectures

AMBA APB

28

Modern embedded systems have multiple busses

29

Atmel SAM3U

Historical
373 focus

Expanded
373 focus

30

Actel SmartFusion system/bus architecture

31

Questions?

Comments?

Discussion?

