EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 4. Memory-Mapped I/0, Bus Architectures
January 20, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

Today...

Memory-Mapped 1/0
Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

Course Roadmap

- - - ---"----- - - - - - - =-"=-=-"=-"=-"=-°- N { 1—C
EECS 370 1 p=Assembly
Software Central I | Machine Code
ISA Processing Fre===== y,
Hardware _ L _ _ — — — — ~ Unit I
{ bl (interrupt) LI > -
- . . - 1 ————— —A— - e eafl NN S S S S S - -_— ‘

| 'I ldr (read) Gystem Buses |
str (write) "AHB/APB I

:"f Interrupts - +_ e
e o e A = e

/
l i \] |
I | I Internal & ||
I GPIO/INT I Timers USART I DAC/ADC | External I
I ! i ! Memory I
| |] |
—— I ‘:L I Q.] I |
EnternalI T T : i T :
Xemal s g @ e n « 1 < ¢ |
NS
I\QQO’& & ||((\Q,GQ I g c’o§~ TR !
v oS y A y /

Memory-mapped I/0

e Microcontrollers have many interesting
peripherals

- But how do you interact with them?

e Need to:
- Send commands
- Configure device
- Receive data

e But we don’t want new processor instructions for
everything

- Actually, it would be great if the processor didn’t know
anything weird was going on at all

Memory-mapped I/0

e Instead of real memory, some addresses map to
|/O devices instead

Example:
e Address 0x80000004 is a General Purpose 1/0 (GPIO) Pin
- Writing a 1 to that address would turn it on
- Writing a 0 to that address would turn it off
- Reading at that address would return the value (1 or 0)

Smartfusion
Memory Map

Peripheral Brt-Band Allas {
Region of Cortex-m3 L

SRAM Bit-Band Allas
Reglon of Cortex-M3

Cortex-M3
System Reglon

Cortex-M3
Code Reglon

: Memory Map of
M M £ i FPGA Fabric Master,
eg‘“'yl x-l\: o : Ethemet MAC,
: Peripheral DMA
System Registers

External Memory Type 1

External Memory Type 1

External Memory Type 0

External Memory Type 0

eNVM Controller

eNVM Controller

eNVM Aux Block (spare pages)

eNVM Aux Block (spare pages)

eNVM Aux Block (array)

eNVM Aux Block (array)

eNVM Spare Pages

eNVM Spare Pages

eNVM Array eNVM Array
Peripherals (BB view)
FPGA Fabric FPGA Fabric

FPGA Fabric eSRAM Backdoor

FPGA Fabric eSRAM Backdoor

APB Extenslon Ragister

Analog Compute Engine

Analog Compute Englne

IAP Controller IAP Controller
eFROM eFROM
RTC RTC
MSS GPIO MSS GPIO
12C_1 12C_1
SPI_1 SPI_1
UART 1 UART 1

Fabric Interface intarrupt Controller

Fabric Interface intarrupt Controller

Watchdog Watchdog
Timer Timer
Peripheral DMA Peripheral DMA
Ethernet MAC Ethernet MAC
12C 0 12C 0
SPLO SPI O
UART_0 UART 0
eSRAM_0/eSRAM 1 (BB view)
8SRAM 1 eSRAM 1
eSRAM_0 eSRAM_0
eNVM (Cortex-M3) eNVM (fabrid
Virtual View Virtual View

OxEQD43000 — OxFFFF2FFF
OxEQD42000 — OXEQO42FFF
0x78000000 — OXE0O41FFF
0x74000000 — OX7TFFFFFF
0x70000000 — Ox7IFFFFFF
0x601D0000 — OxE6FFFFFFF
0x60180000 — 0x601CFFFF
0x60100100 — 0x6017FFFF
0x60100000 - 0x601000FF
0x50088200 — OxG00FFFFF
Ox60088000 - 0x60088 1FF
0x60084000 — Ox60087FFF
0x60080000 — Ox60083FFF
0x50000000 — OxB007TFFFF
0x44000000 — OXSFFFFFFF
0x42000000 — Ox43IFFFFFF
0x40100000 - Ox41FFFFFF
0x40050000 — Ox400FFFFF
0x40040000 — 0x4004FFFF
0x40020004 - 0x4002FFFF

0X40020000 — OX8002FFFF
0X40017000 — 0400 1FFFF
0X40016000 — 0x80016FFF
0X40015000 — 0400 15FFF
0X40014000 — 0x40014FFF
0X40013000 — 0400 13FFF
0X40012000 — 0x80012FFF
0x40011000 — 0x40011FFF
0X40010000 — 0400 10FFF
0X40008000 — Ox4000FFFF
0X40007000 — 0X40007FFF
0X40006000 — OX80006FFF
0X40005000 — 0X4000SFFF
0X40004000 — OX40004FFF
0X40003000 — 0X40003FFF
0X40002000 — OX80002FFF
0X40001000 — 040001 FFF
0X40000000 — 0XS0000FFF
0X24000000 — Ox3FFFFFFF
0X22000000 — Ox23FFFFFF
0X20010000 — 0x21FFFFFF
0X20008000 — 0Xx2000FFFF
0X20000000 — 0x20007FFF
0X00088200 — Ox 1FFFFFFF
OX0008B1FE

\ Visible only to

{ FPGA Fabric Master

0x00000000)

Figure 2-4 «

System Memory Map with 64 Kbytes of SRAM

wisible only
0x40030000 — 0x40030002 — 15 FPGA
Fabric Master)

Memory-mapped I/0

e Instead of real memory, some addresses map to
|/O devices instead

e But how do you make this happen?
- MAGIC isn’ t a bad guess, but not very helpful

Let’ s start by looking at how a memory bus works

Today...

Example Bus with Memory-Mapped |/0

Bus terminology

« Any given transaction have an “initiator” and
“target”

e Any device capable of being an initiator is said to
be a “bus master”

- In many cases there is only one bus master (single
master vs. multi-master).

o A device that can only be a target is said to be a
slave device.

Basic example

Let’ s demonstrate a hypothetical example bus

«Characteristics
- Asynchronous (no clock)
- One Initiator and One Target

«Signals
- Addr[7:0], Data[7:0], CMD, REQ#, ACK#
« CMD=0 is read, CMD=1 is write.
« REQ# low means initiator is requesting something.
o ACK# low means target has done its job.

Read transaction

Initiator wants to read location 0x24

Addr[7:0] 22X 0x24 X7

CMD

Data[7:0] 9? 0x55 29
REQ#

ACK# \ -

ABCD E

H I

A read transaction

e Say initiator wants to read location 0x24

A. Initiator sets Addr=0x24, CMD=0

B. Initiator then sets REQ# to low

C. Target sees read request

D. Target drives data onto data bus

E. Target then sets ACK# to low

F. Initiator grabs the data from the data bus
G

. Initiator sets REQ# to high, stops driving Addr and
CMD

H. Target stops driving data, sets ACK# to high
terminating the transaction

|. Bus is seen to be idle

A write transaction

e Say initiator wants to write OxF4 location 0x31
A. Initiator sets Addr=0x24, CMD=1, Data=0xF4
B. Initiator then sets REQ# to low
C. Target sees write request
D

. Target reads data from data bus

(only needs to store in register, not write all the way to
memory)

. Target then sets ACK# to low.

Initiator sets REQ# to high, stops driving other lines
. Target sets ACK# to high, terminating the transaction
. Bus is seen to be idle.

L & mm

Returning to memory-mapped I/0

Now that we have an example bus, how would
memory-mapped |/0 work on it?

Example peripherals
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Off -> 0

The push-button
(if Addr=0x04 write 0 or 1 depending on

button)

Button (0 or 1)

ACK#

The push-button

(if Addr=0x04 write 0 or 1 depending on

button)

Addr[7]
Addr[6]
Addr[5]

Addr[4]

|
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ¥#
CMD

Button (0 or 1)

vevIveYY

S = N W A

Datal

Datal
Datal
Datal

Datal
Datal

Data|
Data|

i

Delay —— ACK#

What about
CMD?

The LED
(1 bit reg written by LSB of address

0x05)

ACK#

CMD LED

The LED
(1 bit reg written by LSB of address

0x05)

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
[
[

o Delay | ACK#

Addr[2]
Addr[1]
Addr{0]

REQ#
CMD

» LED

DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0}

Let’s write a simple assembly program
Light on if button is pressed.

Peripheral Details
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Ooff -> 0

Today...

Memory-Mapped |I/0
Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

20

Driving shared wires

e It is commonly the case that some shared wires
might have more than one potential device that

needs to drive them.
- For example there might be a shared data bus that is
used by the targets and the initiator. We saw this in
the simple bus.

- In that case, we need a way to allow one device to
control the wires while the others “stay out of the

Way”
e Most common solutions are:

- using tri-state drivers (so only one device is
driving the bus at a time)

- using open-collector connections (so if any
device drives a 0 there is a 0 on the bus
otherwise thereis a 1)

Or just say no to shared wires.

e Another option is to not share wires that could
be driven by more than one device...

- This can be really expensive.
e Each target device would need its own
data bus.
e That’s a LOT of wires!

- Not doable when connecting chips on a PCB as you are
paying for each pin.
- Quite doable (though not pretty) inside of a chip.

Wire count

e Say you have a single-master bus with 5 other
devices connected and a 32-bit data bus.

- If we share the data bus using tri-state connections,
each device has “only” 32-pins.

- |f each device that could drive data has it’s own bus...

e Each slave would need pins for data
e The master would need pins for
data

o Again, recall pins==55555§.

What happens when this “instruction” executes?

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

printf(“Ox%x\n”, *reg); // Prints out new value

}

““reg += 3” is turned into a |ld, add, str sequence

e Load instruction

A bus read operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a read operation is in process (e.g. R/W#)
Some “handshaking” occurs

The target drives the contents of “reg” onto the data lines
The contents of “reg” is loaded into a CPU register (e.g. r0)

e Add instruction

An immediate add (e.g. add r0, #3) adds three to this value

e Store instruction

A bus write operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a write operation is in process (e.g. R/W#)
Some “handshaking” occurs

The CPU drives the contents of “r0” onto the data lines

The target stores the data value into address “reg”

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

e SoC memory/peripherals
- AMBA AHB/APB

« NAND Flash
- Open NAND Flash Interface (ONFI)

« DDR SDRAM
- JEDEC JESD79, JESD79-2F, etc.

Why use a standardized bus?

e Downsides
- Have to follow the specification
- Probably has actions that are unnecessary

o Upside
- Generic systems
- Allows modules to be reused on different systems

Today...

Memory-Mapped |I/0
Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

28

Modern embedded systems have multiple busses

«\0 N
20
&;@ S R
<~Q 2 RS &
(S 0('9 S <P
MASTER sl SLAVE
HN | Hiiﬁ A Atmel SAM3U
A
TsT System Controller JTAG & Serial Wire L Tris UTxlér J v:ma
oKl + T & + T Regulgt%r
-PCK2 PLLA In-Circuit Emulator USB
| SysTick Counter] N Device
UPLL |—> v HS
PMC Cortex-M3 Processor 1
xoﬂ#?— 3-20 Fax 99 c
DMA
— MPY NANDRDY
12/8/4 }' o S D0-D15
NAND Flash ﬁ?msso
SRAM
Uni (4KBytes) A2-A20
voourm—[sw_] NCS0
Expanded | == e
p FLASH SRAMO SRAM{1 ROM Peripheral Peripheral 4-Channel :wgm‘évsﬁ
3 73 f RC 32K 8 2x128 KBytes 32 KBytes| | 16 KBytes| | 15 KByte DMA Bridge DMA
OCUs GPEREQ || | 1xt28KBytes || 16 KBytes|| 16 KBytes Controller e <> NWAIT
xiNz2—>] O 1x64 KBytes || 8 KBytes Memory v
XOUT32€ e Controller NANDALE
SHON «—| surc <_>A22/
EWUP —»] PDC eoc| |PDC PDC PDC NANDCLE
NCS3
VDDBU—[POH] USARTO TCO
NASTE—>» Bpiovial I R PSS USARTH pwM || Tc1 sPI ssc ey NCs2
ERASE—> RSTC o ™WH USART2 TC2
< 10-bit ADC USART3 NANDOE,
NRST € Al AT

>
>
>

Iﬁ@unma

7 713

A A N 00@%‘5%% R R\2 ?f],& I\Q & o‘*ob
& &oo%%«“‘zx\d o%’\\;g':gg%dé’*i“& RO ,\ogio{\@ GRS «%&»d‘
® s o
39" GYQ :;00 QD 6{5 &S Q’%Oé)t @X{?\ IR \O&QO
& L & &R
&K & ¥

Historical
373 focus

Actel SmartFusion system/bus architecture

0

Questions?

Comments?

Discussion?

