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Memory-mapped I/0

e Microcontrollers have many interesting
peripherals

- But how do you interact with them?

e Need to:
- Send commands
- Configure device
- Receive data

e But we don’t want new processor instructions for
everything

- Actually, it would be great if the processor didn’t know
anything weird was going on at all



Memory-mapped I/0

e Instead of real memory, some addresses map to
|/O devices instead

Example:
e Address 0x80000004 is a General Purpose 1/0 (GPIO) Pin
- Writing a 1 to that address would turn it on
- Writing a 0 to that address would turn it off
- Reading at that address would return the value (1 or 0)
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Memory-mapped I/0

e Instead of real memory, some addresses map to
|/O devices instead

e But how do you make this happen?
- MAGIC isn’ t a bad guess, but not very helpful

Let’ s start by looking at how a memory bus works
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Bus terminology

« Any given transaction have an “initiator” and
“target”

e Any device capable of being an initiator is said to
be a “bus master”

- In many cases there is only one bus master (single
master vs. multi-master).

o A device that can only be a target is said to be a
slave device.



Basic example

Let’ s demonstrate a hypothetical example bus

«Characteristics
- Asynchronous (no clock)
- One Initiator and One Target

«Signals
- Addr[7:0], Data[7:0], CMD, REQ#, ACK#
« CMD=0 is read, CMD=1 is write.
« REQ# low means initiator is requesting something.
o ACK# low means target has done its job.



Read transaction

Initiator wants to read location 0x24

Addr[7:0] 22X 0x24 X7

CMD

Data[7:0] 9? 0x55 29
REQ#

ACK# \ -

ABCD E

H I



A read transaction

e Say initiator wants to read location 0x24

A. Initiator sets Addr=0x24, CMD=0

B. Initiator then sets REQ# to low

C. Target sees read request

D. Target drives data onto data bus

E. Target then sets ACK# to low

F. Initiator grabs the data from the data bus
G

. Initiator sets REQ# to high, stops driving Addr and
CMD

H. Target stops driving data, sets ACK# to high
terminating the transaction

|. Bus is seen to be idle



A write transaction

e Say initiator wants to write OxF4 location 0x31
A. Initiator sets Addr=0x24, CMD=1, Data=0xF4
B. Initiator then sets REQ# to low
C. Target sees write request
D

. Target reads data from data bus

(only needs to store in register, not write all the way to
memory)

. Target then sets ACK# to low.

Initiator sets REQ# to high, stops driving other lines
. Target sets ACK# to high, terminating the transaction
. Bus is seen to be idle.

L & mm



Returning to memory-mapped I/0

Now that we have an example bus, how would
memory-mapped |/0 work on it?

Example peripherals
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Off -> 0



The push-button
(if Addr=0x04 write 0 or 1 depending on

button)

Button (0 or 1)

ACK#



The push-button

(if Addr=0x04 write 0 or 1 depending on

button)

Addr[7]
Addr[6]
Addr[5]

Addr[4]

|
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ¥#
CMD

Button (0 or 1)
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Delay —— ACK#

What about
CMD?




The LED
(1 bit reg written by LSB of address

0x05)

ACK#

CMD LED




The LED
(1 bit reg written by LSB of address

0x05)

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
[
[

o Delay | ACK#

Addr[2]
Addr[1]
Addr{0]

REQ#
CMD

» LED

DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0}




Let’s write a simple assembly program
Light on if button is pressed.

Peripheral Details
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Ooff -> 0
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Driving shared wires

e It is commonly the case that some shared wires
might have more than one potential device that

needs to drive them.
- For example there might be a shared data bus that is
used by the targets and the initiator. We saw this in
the simple bus.

- In that case, we need a way to allow one device to
control the wires while the others “stay out of the

Way”
e Most common solutions are:

- using tri-state drivers (so only one device is
driving the bus at a time)

- using open-collector connections (so if any
device drives a 0 there is a 0 on the bus
otherwise thereis a 1)



Or just say no to shared wires.

e Another option is to not share wires that could
be driven by more than one device...

- This can be really expensive.
e Each target device would need its own
data bus.
e That’s a LOT of wires!

- Not doable when connecting chips on a PCB as you are
paying for each pin.
- Quite doable (though not pretty) inside of a chip.



Wire count

e Say you have a single-master bus with 5 other
devices connected and a 32-bit data bus.

- If we share the data bus using tri-state connections,
each device has “only” 32-pins.

- |f each device that could drive data has it’s own bus...

e Each slave would need pins for data
e The master would need pins for
data

o Again, recall pins==55555§.



What happens when this “instruction” executes?

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

printf(“Ox%x\n”, *reg); // Prints out new value

}



““reg += 3” is turned into a |ld, add, str sequence

e Load instruction

A bus read operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a read operation is in process (e.g. R/W#)
Some “handshaking” occurs

The target drives the contents of “reg” onto the data lines
The contents of “reg” is loaded into a CPU register (e.g. r0)

e Add instruction

An immediate add (e.g. add r0, #3) adds three to this value

e Store instruction

A bus write operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a write operation is in process (e.g. R/W#)
Some “handshaking” occurs

The CPU drives the contents of “r0” onto the data lines

The target stores the data value into address “reg”



Details of the bus “handshaking” depend
on the particular memory/peripherals involved

e SoC memory/peripherals
- AMBA AHB/APB

« NAND Flash
- Open NAND Flash Interface (ONFI)

« DDR SDRAM
- JEDEC JESD79, JESD79-2F, etc.




Why use a standardized bus?

e Downsides
- Have to follow the specification
- Probably has actions that are unnecessary

o Upside
- Generic systems
- Allows modules to be reused on different systems
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Modern embedded systems have multiple busses
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Actel SmartFusion system/bus architecture
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Questions?

Comments?

Discussion?



