
1"

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 6: Interrupts
January 27, 2015

Slides"developed"in"part"by"Mark"Brehob"

2

Announcements

•  Additional GSI/IA office hours (OH)
–  Pat Pannuto 10-11am MW in EECS Learning Center

•  (Glass rooms between BBB and Dow)

Interrupts, traps, exceptions, and faults

3

Timers

Central

Processing
Unit

Software

Hardware

Internal

External

System Buses
AHB/APB

ldr (read)!
str (write)!

ISA

EECS 370

USART

DAC/ADC

Internal &
External
Memory

GPIO/INT

C
Assembly

Machine Code

Interrupts

interrupts!

SVC#!

fault!

traps &!
exceptions!

INT#!

Interrupts

Merriam-Webster:
–  “to break the uniformity or continuity of”

•  Informs a program of some external events
•  Breaks execution flow

Key questions:
•  Where do interrupts come from?
•  How do we save state for later continuation?
•  How can we ignore interrupts?
•  How can we prioritize interrupts?
•  How can we share interrupts?

4

Interrupts

Interrupt (a.k.a. exception or trap):
•  An event that causes the CPU to stop executing current program
•  Begin executing a special piece of code

•  Called an interrupt handler or interrupt service routine (ISR)
•  Typically, the ISR does some work
•  Then resumes the interrupted program

Interrupts are really glorified procedure calls, except that they:

•  can occur between any two instructions
•  are “transparent” to the running program (usually)
•  are not explicitly requested by the program (typically)
•  call a procedure at an address determined by the type of

interrupt, not the program

Two basic types of interrupts
(1/2)

•  Those caused by an instruction
–  Examples:

• TLB miss
•  Illegal/unimplemented instruction
• div by 0
• SVC (supervisor call, e.g.: SVC #3)

–  Names:
• Trap, exception

Two basic types of interrupts
(2/2)

•  Those caused by the external world
–  External device
–  Reset button
–  Timer expires
–  Power failure
–  System error

•  Names:
–  interrupt, external interrupt

Two key questions to determine how data is
transferred to/from a non-trivial I/O device:

1.  How does the CPU know when data is available?
a.  Polling
b.  Interrupts

2.  How is data transferred into and out of the

device?
a.  Programmed I/O
b.  Direct Memory Access (DMA)

Why are interrupts useful? Example: I/O Data Transfer

How it works

•  Something tells the processor core there is an
interrupt

•  Core transfers control to code that needs to be
executed

•  Said code “returns” to old program
•  Much harder then it looks.

–  Why?

Devil is in the details

•  How do you figure out where to branch to?

•  How to you ensure that you can get back to
where you started?

•  Don’t we have a pipeline? What about partially
executed instructions?

•  What if we get an interrupt while we are
processing our interrupt?

•  What if we are in a “critical section?”

Where

•  If you know what caused the interrupt
then you want to jump to the code that
handles that interrupt.
–  If you number the possible interrupt cases,

and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

–  If you don’t have the number, you need to
poll all possible sources of the interrupt to
see who caused it.

•  Then you branch to the right code

Get back to where you once belonged

•  Need to store the return address somewhere.
–  Stack might be a scary place.

•  That would involve a load/store and might cause an
interrupt (page fault)!

–  So a dedicated register seems like a good choice
•  But that might cause problems later…
•  What happens if another interrupt happens?

Modern architectures

•  A modern processor has many (often 50+)
instructions in-flight at once.
–  What do we do with them?

•  Drain the pipeline?
–  What if one of them causes an exception?

•  Punt all that work
–  Slows us down

•  What if the instruction that caused the exception
was executed before some other instruction?
–  What if that other instruction caused an interrupt?

Nested interrupts

•  If we get one interrupt while handling
another what to do?
–  Just handle it

•  But what about that dedicated register?
•  What if I’m doing something that can’t be stopped?

–  Ignore it
•  But what if it is important?

–  Prioritize
•  Take those interrupts you care about. Ignore the

rest
•  Still have dedicated register problems.

Critical section

•  We probably need to ignore some interrupts but
take others.
–  Probably should be sure our code can’t cause an

exception.
–  Use same prioritization as before.

•  What about instructions that shouldn’t be
interrupted?
–  Disable interrupts while processing an interrupt?

Our processor

•  Over 100 interrupt sources
–  Power on reset, bus errors, I/O pins changing state, data in

on a serial bus etc.

•  Need a great deal of control
–  Ability to enable and disable interrupt sources
–  Ability to control where to branch to for each interrupt
–  Ability to set interrupt priorities

•  Who wins in case of a tie
•  Can interrupt A interrupt the ISR for interrupt B?

–  If so, A can “preempt” B.

•  All that control will involve memory mapped I/O.
–  And given the number of interrupts that’s going to be a pain

16

SmartFusion interrupt sources

17

18

And the interrupt vectors
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

19

How to change where to go on an interrupt?
Answer: edit the interrupt vector table [IVT]

20

Enabling and disabling interrupt sources

21

22

23

Interrupt types

•  Two main types
–  Level-triggered
–  Edge-triggered

24

Level-triggered interrupts

•  Signaled by asserting a line low or high
•  Interrupting device drives line low or high and holds it

there until it is serviced
•  Device deasserts when directed to or after serviced
•  Can share the line among multiple devices (w/ OD+PU)
•  Active devices assert the line
•  Inactive devices let the line float
•  Easy to share line w/o losing interrupts
•  But servicing increases CPU load ! example
•  And requires CPU to keep cycling through to check
•  Different ISR costs suggests careful ordering of ISR checks
•  Can’t detect a new interrupt when one is already asserted

25

Edge-triggered interrupts

•  Signaled by a level *transition* (e.g. rising/falling edge)
•  Interrupting device drive a pulse (train) onto INT line
•  What if the pulse is too short? Need a pulse extender!
•  Sharing *is* possible...under some circumstances
•  INT line has a pull up and all devices are OC/OD.
•  Devices *pulse* lines
•  Could we miss an interrupt? Maybe...if close in time
•  What happens if interrupts merge? Need one more ISR pass
•  Must check trailing edge of interrupt
•  Easy to detect "new interrupts”
•  Benefits: more immune to unserviceable interrupts
•  Pitfalls: spurious edges, missed edges
•  Source of "lockups" in early computers

26

Pending interrupts

27

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

28

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/O register)

29

30

Answer

31

Interrupt pulses before entering ISR

32

Answer

33

34

