
1 

EECS 373 
Design of Microprocessor-Based Systems 
 
 
 
 
Prabal Dutta 
University of Michigan 
 
 
 
 
Lecture 7: Interrupts (2) 
January 29, 2015 

Some slides prepared by Mark Brehob 

High-level review of interrupts 

•  Why do we need them?  Why are the alternatives 
unacceptable?   
–  Convince me! 

•  What sources of interrupts are there? 
–  Hardware and software! 

•  What makes them difficult to deal with? 
–  Interrupt controllers are complex: there is a lot to do! 

•  Enable/disable, prioritize, allow premption (nested 
interrupts), etc. 

–  Software issues are non-trivial 
•  Can’t trash work of task you interrupted 
•  Need to be able to restore state 
•  Shared data issues are a real pain 

2 

3 4 

5 6 



Pending interrupts 

7 

The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 8 

9 10 

11 12 



Masking 

13 

Interrupt Service Routines 

•  Automatic saving of registers upon exception 
–  PC, PSR, R0-R3, R12, LR 
–  This occurs over data buss 

•  While data bus busy, fetch exception vector 
–  i.e. target address of exception handler 
–  This occurs over instruction bus 

•  Update SP to new location 
•  Update IPSR (low part of xPSR) with exception new # 
•  Set PC to vector handler 
•  Update LR to special value EXC_RETURN 
•  Several other NVIC registers gets updated 
•  Latency can be as short as 12 cycles (w/o mem delays) 

14 

The xPSR register layout 

15 

ARM interrupt summary 

1.  We’ve got a bunch of memory-mapped registers 
that control things (NVIC) 
–  Enable/disable individual interrupts 
–  Set/clear pending 
–  Interrupt priority and preemption 

 

2.  We’ve got to understand how the hardware 
interrupt lines interact with the NVIC 

3.  And how we figure out where to set the PC to 
point to for a given interrupt source. 

16 

1. NVIC registers (example) 

17 

1. More registers (example) 

18 



1. Yet another part of the NVIC registers! 

19 

2. How external lines interact with the NVIC 

20 

The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 

3. How the hardware figures out what to set the PC to 

g_pfnVectors: 
    .word  _estack 
    .word  Reset_Handler 
    .word  NMI_Handler 
    .word  HardFault_Handler 
    .word  MemManage_Handler 
    .word  BusFault_Handler 
    .word  UsageFault_Handler 
    .word  0 
    .word  0 
    .word  0 
    .word  0 
    .word  SVC_Handler 
    .word  DebugMon_Handler 
    .word  0 
    .word  PendSV_Handler 
    .word  SysTick_Handler 
    .word  WdogWakeup_IRQHandler 
    .word  BrownOut_1_5V_IRQHandler 
    .word  BrownOut_3_3V_IRQHandler 
.............. (they continue)  

21 

Discussion: So let’s say a GPIO pin goes high 
 - When will we get an interrupt? 
 - What happens if the interrupt is allowed to proceed? 

22 

What happens when we return from an ISR? 

23 

•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

•  Tail chaining 
–  When new exception occurs 
–  But CPU handling another exception of same/higher priority 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking completes 
–  And second exception of higher preempt priority arrives 
–  The later exception will be processed first 

Other stuff: The xPSR register layout 

24 



Example of Complexity: The Reset Interrupt 

1) No%power%
2)  System%is%held%in%RESET%as%long%as%VCC15%<%0.8V%

a)  In%reset:%registers%forced%to%default%
b) RCGOsc%begins%to%oscillate%
c)  MSS_CCC%drives%RCGOsc/4%into%FCLK%
d)  PORESET_N%is%held%low%

3) Once%VCC15GOOD,%PORESET_N%goes%high%
a) MSS%reads%from%eNVM%address%0x0%and%0x4 

25 

Interrupt types 

•  Two main types 
–  Level-triggered 
–  Edge-triggered 

26 

Level-triggered interrupts 

•  Signaled by asserting a line low or high 
•  Interrupting device drives line low or high and holds it 

there until it is serviced 
•  Device deasserts when directed to or after serviced 
•  Can share the line among multiple devices (w/ OD+PU) 
•  Active devices assert the line 
•  Inactive devices let the line float 
•  Easy to share line w/o losing interrupts 
•  But servicing increases CPU load ! example 
•  And requires CPU to keep cycling through to check 
•  Different ISR costs suggests careful ordering of ISR checks  
•  Can’t detect a new interrupt when one is already asserted 

27 

Edge-triggered interrupts 

•  Signaled by a level *transition* (e.g. rising/falling edge) 
•  Interrupting device drive a pulse (train) onto INT line 
•  What if the pulse is too short?  Need a pulse extender! 
•  Sharing *is* possible...under some circumstances 
•  INT line has a pull up and all devices are OC/OD. 
•  Devices *pulse* lines 
•  Could we miss an interrupt?  Maybe...if close in time 
•  What happens if interrupts merge?  Need one more ISR pass 
•  Must check trailing edge of interrupt 
•  Easy to detect "new interrupts” 
•  Benefits: more immune to unserviceable interrupts 
•  Pitfalls: spurious edges, missed edges 
•  Source of "lockups" in early computers 

28 


