
Energy-Aware Programming in Pervasive Computing

Yu David Liu
Assistant Professor

Department of Computer Science
State University of New York at Binghamton

davidL@cs.binghamton.edu

What will mainstream computing look like in 2020? It is perhaps no longer daring to
imagine a picture with complex interactions among millions of mobile devices, thousands
of sensor nodes, and hundreds of cloud services. The key players in this picture – mobile
devices, sensors, and clouds – are invariantly linked to energy consumption. Mobile devices
– laptops, smartphones, and tablets – are mobile only when they function over battery, a
finite source of energy. Sensor networks are often deployed in remote/hostile/inconvenient
areas where recharging battery is impossible or expensive. For cloud service providers, power
consumption not only translates to electricity bills, but also affects the reliability of their
services due to accompanying heat dissipation.

Existing research on achieving energy efficiency largely focuses on innovations of VLSIs, ar-
chitectures, operating systems, and compilers. This white paper calls for more investigations
from the perspective of programming language design, i.e. how new programming models
can help construct energy-aware software, and foster next-generation green-conscious pro-
grammers. Achieving energy efficiency from the level of programming models (as apposed
to systems or hardware) has some unique benefits:

• Effectiveness with Application-Level Inputs. Programming languages are the interface
between programmers and computing platforms – the epicenter of “human-computer
interaction” in the development lifecycle. A more energy-friendly language design in-
creases programmer awareness of energy consumption, and promotes application-level
energy-efficient solutions directly from programmers. As an example, a programmer
intuitively knows that running a GPS localization program with a precision of 0.9995
is likely to consume more energy than the same program with precision 0.5. An ideal
language design should provide easy-to-use language abstractions to encourage the use
of precision 0.5 when the GPS device’s energy level is low.

• Portability. An essential trait of pervasive computing is computations often happen
across heterogeneous platforms. Programming language solutions excel at providing
platform-independent abstractions, which can in turn be mapped to different platforms
by compilers, middleware, and virtual machines.

1

davidL@cs.binghamton.edu


In the workshop, the author plans to discuss an ongoing project, a lightweight program
annotation system for energy-aware programming. In this system, energy states can be
abstracted as programmer-defined modifiers, and individual code fragments can be labeled
with expected energy states appropriate for their executions. The system can be used for
several purposes:

• the modifiers can be used to make system/hardware-level decisions, such as energy-
efficient/aware scheduling and dynamic voltage and frequency scaling.

• a program analysis can be constructed to rigorously reason energy consumption com-
positionally, and check the consistency of programmer intentions.

The author is a researcher in programming languages and compilers. This white paper
is aligned with his current interest in energy-aware programming [3]. In addition, he is
interested in designing programming languages for sensor networks [5] and clouds [4], the
domains important for building next-generation pervasive computing platforms. His recent
work on parallel languages coined the phrase pervasive atomicity [1], a correctness property
for multi-threaded software with the strength for scalability. His doctoral dissertation [2]
centered around providing language support for modeling complex interactions in modern
ultra-large-scale software, a theme relevant to the workshop.

References

[1] Kulkarni, A., Liu, Y. D., and Smith, S. F. Task types for pervasive atomicity.
In OOPSLA ’10: Proceedings of the 25th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (Reno, NV, USA, 2010).

[2] Liu, Y. D. Interaction-Oriented Programming. PhD thesis, Johns Hopkins University,
Baltimore, MD, USA, 2007.

[3] Liu, Y. D. Programming models for green software. NSF CAREER Award, 2011.

[4] Liu, Y. D., and Gopalan, K. Interaction-based programming towards translucent
clouds. In APLWACA ’10: Proceedings of the 2010 Workshop on Analysis and Program-
ming Languages for Web Applications and Cloud Applications (Toronto, Canada, 2010),
pp. 15–19.

[5] Liu, Y. D., Skalka, C., and Smith, S. Type-specialized staged programming with
process separation. Under Revision for Journal of Higher-Order and Symbolic Compu-
tation (2010).

2


