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ABSTRACT
We present Virtual High-resolution Time (VHT), a power-
proportional time-keeping service that offers a baseline power
draw of a low-speed clock (e.g. 32 kHz crystal), but pro-
vides the time resolution that only a higher frequency clock
could offer (e.g. 8 MHz crystal), and scales essentially lin-
early with access (i.e. the “reading” and “writing” of the
clock). We achieve this performance by revisiting a basic
assumption in the design of time-keeping systems – that
to achieve a given time-stamping resolution, a free-running
timebase of equivalent frequency is needed. We show that
this assumption is false and argue that the dependence is
not on usage (i.e. whether on or off) but rather on ac-
cess (i.e. reading and writing). Therefore, it is possible
to duty cycle the free-running timebase itself, and augment
it with a lower-frequency, temperature-compensated one,
which achieves comparable resolution, at a fraction of the
power, for typical workloads. The key technical challenge
lies in duty cycling the fast clock and synchronizing the fast
and slow clocks. To assess the viability of the approach, we
explore how VHT could be implemented on several different
platform architectures, and to study the power/performance
tradeoff, we characterize VHT on one particular architecture
in detail. Our results show power-proportional operation
with a 10× improvement in average power and a synchro-
nization accuracy exceeding 1 µs at duty cycles below 0.1%.
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1. INTRODUCTION
Time synchronization is an important service in sensor-

nets and many resources have been devoted to improving its
accuracy and precision. However, the overall mean synchro-
nization accuracy has not improved appreciably below about
1.5 µs, and low-power time synchronization at that level of
accuracy has been altogether absent. The reason for this ab-
sence is two-fold. First, radio hardware support is needed to
achieve high-precision message time-stamping,1 which may
or may not be feasible on a particular platform. Second,
high-frequency clocks are needed to achieve high-precision
time-keeping,2 but such clocks simply draw too much power
relative to the sleep mode power of duty-cycled sensor nodes,
and are therefore rarely used in low-power settings.

Conventional wisdom holds that to achieve a certain level
of time synchronization precision, a free-running timebase of
comparable frequency is needed. Since system power draw
is given by P ∝ CV 2f , where P is power, C is the switching
capacitance, V is the operating voltage, and f is the switch-
ing frequency, holding all other things constant, it would ap-
pear that time-keeping costs grow essentially linearly with
the required precision. We find that for a typical sensor
node, the difference in power draw from a 32 kHz crystal
and an 8 MHz crystal is a factor of 340, which is reasonably
close to the expected factor of 244. This observation would
appear to confirm the conventional wisdom that low-power
and high-precision are incompatible, but we argue otherwise.

In this paper, we claim that high-resolution, low-power
time synchronization is an oxymoron no more. First, a
growing number of modern, low-power radios already sup-
port sub-microsecond level message time-stamping with suf-
ficiently high accuracy and precision, addressing the first
challenge. Second, we show that by combining a pair of
clocks – one low-frequency (e.g. 32 kHz) and one high-
frequency (e.g. 8 MHz) – and by powering the high-frequency
clock only when timestamps are to be taken or when pre-
cisely time-triggered events must occur, we can achieve both
low-power and high-precision, and offer power-proportional
operation that scales essentially linearly with access (i.e.
reading or writing the clock) rather than with operation (i.e.
the clock is on or off). This distinction is subtle but impor-
tant because it enables the fast clock to be duty-cycled so
that it is powered down between accesses.

1Message time-stamping is the act of associating a specific
time to the transmission or reception of a message.
2Time-keeping is the process of maintaining an accurate rep-
resentation of time between resynchronization attempts.



The basic idea behind our approach, called Virtual High-
resolution Time (VHT), is to use the high-frequency clock to
improve precision on-demand but otherwise leave it turned
off. The key insight is that one can achieve high-precision by
using a low-frequency clock to obtain coarse-grained time,
and use a high-frequency clock to provide fine-grained pre-
cision relative to the coarse-grain timebase. If the coarse
and fine-grained clocks can be synchronized, perhaps using
a phase-locked loop (PLL) as is common in analog and digi-
tal VLSI designs, then all time ticks are phase-aligned. Even
if the two clocks run independently, the relative phase error
(or jitter) with respect to a phase-locked approach is limited
to ±Tf/2, where Tf is the period of the fast clock.

We show how our approach can be implemented using
an off-the-shelf microcontroller or a field-programmable gate
array. The former allows the VHT design to be put into
practice immediately while the latter outlines a roadmap
for integrating the ideas into future silicon. We also study
VHT’s basic power/performance tradeoff and characterize
VHT in depth on the Epic and TMote Sky platforms. Our
empirical results show power-proportional operation with a
10× improvement in average power and a synchronization
accuracy exceeding 1 µs at duty cycles that are effectively
below 0.1%. The key result is that the sleep mode power
of high-resolution time synchronization no longer dominates
the system power budget, opening up new applications.

As battery-operated and power-constrained nodes begin
to keep time with high-precision and low-power, applica-
tions like beam-forming [1], compressive sensing [2], and im-
proved time-of-flight ranging [3] will emerge or become more
popular. And as nodes achieve accurate, precise, and low-
power time-keeping, the benefits will accrue to node life-
time as well, since time drift-induced idle listening guard
bands can be cut short [4]. New industrial applications will
also emerge. The IEEE 1588 Precision Timing Protocol, for
example, was developed because NTP, the de facto Inter-
net time synchronization standard, was not precise enough
for industrial measurement and control systems. However,
IEEE 1588 requires sub-microsecond accuracies, a level of
precision not attained by prior work [5, 6], but well within
the reach of current technology at a power draw that is di-
gestible to many low-power wireless sensor network applica-
tions.

2. ACHIEVING HIGH PRECISION
The two key primitives needed to achieve ε-precision time

synchronization are

1. a high-resolution clock source with frequency f0, and

2. message time-stamping with accuracy ε < ±1/f0.

If a wireless node can provide both of these primitives, then
achieving precise time synchronization becomes a trivial mat-
ter of measuring clock offsets between nodes in the network
and applying one of the many existing frequency error esti-
mation techniques.

2.1 Importance of High-frequency Clocks
It should be clear that the higher the clock frequency,

the finer the time resolution with which message reception
or transmission can be timestamped. This is essential for
high-precision time synchronization, since a clock can only
estimate an event time to a resolution of 1/f0.

Another important aspect of high-precision time synchro-
nization is the accuracy with which the node can actually
estimate its current frequency error with respect to a refer-
ence clock. Without this error correction, nodes would have
to resynchronize at relatively short intervals. Frequency er-
ror estimation can be accomplished easily using two time
offset measurements as follows. Assume that a reference
node A sends two time beacons, the first one at time t1 and
the second one at time t2. Each beacon contains the quan-
tized time count cA(t) observed at the reference clock when
the particular beacon was transmitted. A node B can esti-
mate its current frequency error relative to node A’s clock
using its local clock counter as

f̂e =
(cA(t2)− cB(t2))− (cA(t1)− cB(t1))

cA(t2)− cA(t1)
, (1)

where cA(t) = bf0 · tc is the reference clock’s accurate time
count, and cB(t) = b(f0 + fe) · tc is the value of the counter
at node B. Without loss of generality, let us assume that
cA(t1) = cB(t1) = 0, i.e. that both of the nodes started
counting from zero, and define T = t2. Equation 1 becomes

f̂e =
cA(T )− cB(T )

cA(T )
(2)

From this relationship, we can determine the limit to the
resolution with which the frequency error can be estimated.
Since the counters on both nodes A and B are quantized dig-
ital systems, and the counters can increment only in unity
steps, we calculate the minimum resolution of the frequency
error estimation by taking the difference between two mea-
surements that are separated by one tick, i.e.,

δQ =
cA(T )− cB(T )

cA(T )
− cA(T )− (cB(T ) + 1)

cA(T )

=
1

cA(T )

=
1

T · f0
. (3)

To make the analysis more concrete, for an f0 = 8 MHz
clock, if the two beacons are T = 10 s apart, then the
frequency error resolution is 0.0125 ppm, while for a low-
frequency clock where f0 = 32.768 kHz, the resolution de-
creases to 3.05 ppm. Thus, high frequency clocks are needed
not just for time-stamping the reception or transmission of
a message with a high time resolution, but they are also
needed to improve the frequency error estimation over in-
tervals where the change in frequency error due to changes
in environmental temperature can be assumed constant. Or,
put another way, the greater the clock frequency, the shorter
the interval of time needed to synchronize a pair of clocks
to a given frequency error resolution.

2.2 Importance of Accurate Timestamps
Message time-stamping is the operation of associating a

time with a received or transmitted message. If this op-
eration is either inaccurate or imprecise, then overall time
synchronization accuracy will suffer. It has been shown that
time-stamping in software above the MAC layer is problem-
atic since software interrupts and non-deterministic jitter
often make obtaining accurate timestamps difficult or im-
possible. Thus, a range of techniques have been developed
for time-stamping, often targeted to the architecture and
features of a particular radio chip.
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Figure 2: Cumulative distribution of the empirical time difference between the rising edge of the interrupt
lines on three TI CC2420 and three Atmel RF230 radios. Figure 1 shows the experimental setup. The
CC2420 exhibits approximately five times better time-stamping precision than the RF230.
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Figure 1: Experimental setup for the SFD/interrupt
timing measurements.

2.2.1 Message Time-stamping in Sensor Networks
Most modern radios export an interrupt line that fires at

a particular point during the reception or transmission of a
radio message. This interrupt is commonly connected to a
microcontroller capture line. One of the earliest attempts at
time synchronization in sensor networks [7,8] used the inter-
rupt of the first byte sent or received by the TI CC1000 [9]
radio. While this worked reasonably well, and accuracies
of approximiately 10 µs were achieved using clock speeds of
∼1 MHz, a more robust technique was developed for use with
the Flooding Time Synchronization Protocol (FTSP) [5]. In-
stead of time-stamping just the first received or transmitted
byte, FTSP timestamped several bytes of a message. By
profiling the CC1000 radio chip, the FTSP developers deter-
mined the precise timing with which these interrupts arrive,
allowing them to infer a more accurate overall message time-
stamp. This particular technique allowed FTSP to achieve
a one-hop mean accuracy of 1.5 µs, which was at the time
unprecedented in wireless sensornets.

Since then, FTSP has been the de facto standard for
time synchronization, and only recently have improvements
emerged for superior multi-hop performance [10]. However,
even the newer work uses the same time-stamping mecha-
nism that was originally developed for FTSP years ago.

2.2.2 Message Time-stamping on 802.15.4 Radios
The Texas Instruments CC2420 and Atmel AT86RF230

are two common IEEE 802.15.4-compliant radios used in
popular sensor network platforms. The CC2420 was first
introduced to the sensor network community on the Telos
platform, where it was combined with a Texas Instruments
MSP430 microcontroller, and the MicaZ platform with an
Atmel ATMega128L microcontroller, while the RF230 is the
radio used on the Crossbow Iris platform. While the IEEE
802.15.4 standard comprises three different frequency bands,
the CC2420 and RF230 use the 2.4 GHz band. This means
they use an O-QPSK modulation and demodulation at a
2 MChip/s rate, resulting in an effective channel bandwidth
of 1 MHz. Using a spreading factor of eight for process gain,
the maximum data-rate is 250 kbit/s.

An important part of the IEEE 802.15.4 standard is the
definition of the physical and link layer frame format. Each
frame consists of a 4 byte preamble, 1 byte Start of Frame
Delimiter (SFD), 1 byte Frame Length, 2 byte Frame Con-
trol Field (FCF), 1 byte sequence number, 0 to 20 bytes
address information, 2 bytes of Frame Check Sequence, and
n bytes of frame payload. This frame structure is important
for understanding of the event time-stamping mechanism of
the CC2420 radio, while the RF230 makes only tangential
use of it. The CC2420 has a dedicated interrupt line that in-
dicates the moment when the SFD field has either been sent
by the radio (in case of frame transmission), or received by
the radio (in case of a frame reception).



In the case of the RF230, a single interrupt line is multi-
plexed among a range of different radio state machine events.
This multiplexing makes it much more complicated to use
for message time-stamping since some of the state machine
events depend on exogenous factors like the length of the
received message.

Since the timing of an interrupt on this line can be cap-
tured using a hardware timer unit, precise time-stamping is
available on the CC2420 radio. But the question of just how
accurate and precise this mechanism is on the CC2420, and
how well it compares to the RF230, remain unexplored in
the literature to the best of our knowledge. Figure 1 illus-
trates an experimental setup we use to explore this question
in detail.

Figures 2(a) and 2(b) illustrate a sequence of measure-
ments performed on three sensor network nodes using the
CC2420 to characterize the achievable time-stamping preci-
sion of the radio. In these experiments, one node transmits
and two nodes concurrently received a frame. We measure
the time elapsed between the SFD interrupt line rising at
the transmitter and the SFD line rising at the two receivers.
We observe that the distribution of measurements is almost
identical from the transmitter to receiver 1, and transmitter
to receiver 2, with a mean of 3.162 µs and 3.166 µs respec-
tively, and a standard deviation of 41.26 ns and 40.90 ns.
Figure 2(a) shows that 95% of the measurements fall within
an interval of only 160 ns.

We next explore the distribution of the difference in SFD
interrupt times at the two receivers. If the time differences
were negligible, then receiver-receiver synchronization, as
employed by the RBS scheme [7], would achieve high pair-
wise synchronization since nearly all non-determinism would
be eliminated. Unfortunately, as Figure 2(b) illustrates, this
is not the case. The figure shows the cumulative distribution
of the time difference between the SFD rising edges at the
two receivers. The distribution is essentially normal, with
mean 3.58 ns and standard deviation 58.14 ns.

Given the need for an accurate message time-stamping
primitive, we must employ a clock of frequency

f0 ≤
1

ε/2
=

1

80 ns
= 12.5 MHz

to guarantee with high probability that the message time-
stamp can be resolved to within ±1 clock tick. If this con-
dition is satisfied, trivial equations involving only two offset
measurements can still achieve high accuracy synchroniza-
tion, without requiring costly regression algorithms.

We perform similar measurements using the RF230 radio,
but instead of using the SFD interrupt, we use the TX done
and RX done interrupt events. While these interrupts are
not as precises as the SFD interrupt of the CC2420, since
they depend on the message length, Figure 2(c) and 2(d)
illustrate that they still have the potential to support high-
precision time synchronization. The mean time between
transmitter to receiver 1, and transmitter to receiver 2 are
both 17.4 µs with a standard deviation of 290 ns and 370 ns
respectively. While we can compensate for the mean error,
the standard deviation is approximately 7× higher than the
CC2420. Thus, the CC2420 will achieve an overall better
time synchronization accuracy if high-frequency clocks are
employed. However, at frequencies below 1 MHz, this dis-
tinction will disappear.

3. ACHIEVING LOW POWER
The two basic requirements for achiveing low-power time

synchronization are

1. low-frequency clocks, and

2. infrequent communication.

The low-frequency clocks are necessary to minimize the
power dissipation of the oscillator, digital counter, and clock-
ing network as P ∝ CV 2f . This is a well-known fact in low-
power embedded systems design, where 32 kHz3 crystals are
the norm for real-time clocks (RTC) and nearly all embed-
ded systems that employ duty-cycled operation use such a
subsystem for scheduling wakeup alarms. The power draw
of a 32 kHz RTC ranges from a µA or so to several tens or
hundreds of µA, depending on the configuration, load, and
clock stability. For example, the entire Telos platform [11]
draws only 7.2 µA at 3.0 V or 4.5 µA at 2.3 V4 when the
microcontroller is in sleep and a 32 kHz external crystal os-
cillator is clocking one of the timers.

But a low-frequency crystal is not the only thing necessary
for low-power time synchronization. Communications over-
head can dominate the power dissipation of the clock subsys-
tem and hinder efforts at low-power operation. Thus, infre-
quent communication events are also necessary, which trans-
lates into large resynchronization intervals. However, the
longer the resynchronization interval, the higher the prob-
ability that changing environmental temperatures – even
small ones – will cause greater frequency error and accu-
mulated drift between resynchronization attempts, and thus
introduce an additional time synchronization error.

3.1 Achieving High Clock Stability
A hardware solution to the clock skew problem is the

temperature-compensated crystal oscillators (TCXO). Many
TCXOs are available, and they come in many forms rang-
ing from low to high frequency, and some TCXOs also in-
tegrate a full RTC into a single package. While the power
draw of a TCXO during temperature compensation is high,
as Figure 3 illustrates, TCXO manufacturers recognize that
temperature measurement and compensation can be done
relatively infrequently since temperature is a relatively slow
varying process in many environments. Thus, the duty-
cycling of the temperature measurement circuitry dramati-
cally lowers the average power draw of these devices, making
their power draw viable for many sensor network applica-
tions. For example, the Maxim DS3231, a 32 kHz TCXO
with an integrated RTC, draws an average of 19.82 µA at
2.3 V when it is operated in its battery backup mode while
the DS32kHz draws even less power – just 2.3 µA at 2.3 V.
This draw is half of what a Telos mote draws in deep sleep
mode, without integrating any timer mechanism. The main
advantage in using a TCXO is that the frequency stability
increases from a typical -120 ppm to 10 ppm5 to ±2 ppm.

3The actual frequency is usually 32.768 kHz for easier divi-
sion in binary systems.
4The platform’s leakage current is 4.2 µA at 3 V and 2.4 µA
at 2.3 V.
532 kHz crystals are usually tuning fork crystals which
have a quadratic frequency error vs. temperature curve.
-120 ppm corresponds to the error at the low and high end
of the temperature, while 10 ppm is normally achieved at
about room temperature.
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mode and with a 100 kΩ pull-up resistor on the
32 kHz line for the DS3231.

While the energy consumption of TCXOs is small, the de-
vices are rarely found on sensor network platforms because
of their relatively large size and high cost compared to other
components. For example, the DS3231 is approximately
10x10 mm, almost twice the area of the TI CC2420 radio,
1.2× the area of an MSP430F1611 microcontroller, and 4×
the size of the more modern TI CC2520 radio. Since the
trend in sensor network platforms is smaller size and lower
cost, today’s off-the-shelf TCXOs are not ideally suited to
providing a high-stability, low-frequency clock source.

3.2 Temperature Compensated Time Sync
One alternative to TCXOs is temperature-compensated

time synchronization (TCTS) [12]. The TCTS algorithm
runs on a sensor network platform that is equipped with a
regular temperature sensor. The algorithm dynamically se-
lects an appropriate synchronization interval depending on
the the observed temperature excursions. The main idea be-
hind TCTS is as follows. Within a network of nodes, there
is at least one reference node that has access to an accurate
and stable timebase. This timebase could be a TCXO or per-
haps even a GPS receiver that provides accurate time to the
reference node. All other nodes in the network synchronize
with the reference node(s) using a time synchronization pro-
tocol. The only requirement on that time synchronization
protocol is that it can calculate the current frequency error
with respect to the reference node’s clock. Unlike other time
synchronization protocols, TCTS also records the current
temperature during a synchronization exchange. Both the
temperature and frequency error at the end of the synchro-
nization exchange is cached in a frequency vs. temperature
table in memory.

Before attempting subsequent resynchronization, TCTS
will measure the current temperature and consults its in-
ternal calibration table. If the current frequency error for
the measured temperature is cached, TCTS will not attempt
to resynchronize with the reference node since a new time
estimate is not required. Eventually, when all of the op-
erating temperatures have been observed, TCTS will have
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Figure 4: TCTS auto-calibrated f̂e vs. temperature
curve for three TMote Sky nodes. This figure illus-
trates the auto-calibration possibilities of TCTS.

auto-calibrated the low-stability clock, essentially providing
a TCXO timebase. The main advantage of this approach
is that no additional hardware is needed, since temperature
sensors are available on most any sensor network platform,
thus removing the need for a separate TCXO, and the addi-
tional area and cost that it would demand, from the design.

3.2.1 Running TCTS on the TMote Sky
In order to show that TCTS works not just in simula-

tion (as in prior work) but also in practice, we implemented
the algorithm on the TMote Sky platform. The TMote Sky
includes a 32 kHz external crystal oscillator, a CC2420 ra-
dio, and an MSP430F1611 microcontroller. This microcon-
troller, like many other embedded processors, contains an in-
tegrated, on-chip temperature sensor. While not ideal, since
it measures the CPU die temperature instead of the crystal
temperature, it is sufficient for our purposes, allowing TCTS
to work reliably and calibrate for changes in environmental
temperatures. However, we expect that TCTS would work
even better if the temperature sensor were located close to
the crystal itself.

For the evaluation of the TCTS algorithm, we chose a
synchronization interval during calibration of T = 100 s. As
other studies have shown [12], the 32 kHz crystal achieves
the best frequency estimation accuracy using this interval,
and using Equation (3), we calculate the minimum frequency
estimation resolution for this setting as 0.3 ppm. The ref-
erence node is a modified TMote Sky in which the 32 kHz
crystal has been replaced with a DS3231 TCXO.

Initially, we subject the nodes over several hours to a wide
range of temperatures from -10 ◦C to 60 ◦C using a temper-
ature chamber. The temperature is changed slowly in order
to allow TCTS time to calibrate itself to each temperature
setpoint. Figure 4 shows the extracted frequency error vs.
temperature index curve for three different nodes. The tem-
perature index is in terms of ADC readings since there is
no need to convert it to standard temperature units (e.g.
◦C). As expected, the frequency error has a quadratic shape
corresponding to a tuning-fork crystal oscillator, and the fre-
quency error over the observed temperature range is 35 ppm.
While the calibration process is not ideal, we note that un-
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Figure 5: TCTS compensation accuracy. We subject four TMote Sky nodes, two running a TCTS enhanced
version of FTSP and two running regular FTSP, to a high change in temperature, similar to a shade→sunshine
transition. The x-axis tick marks indicate the 36 s resynchronization intervals. We observe how the TCTS
nodes adapt their frequency error estimate f̂e based on the measured temperature, while the FTSP nodes
must wait until the synchronization event.

der actual, slow-changing environmental temperature condi-
tions, the TCTS algorithm could take multiple temperature
vs. frequency error measurements and average over time
to improve and smooth the calibration curve. In addition,
since we know that the curve should fit a quadratic function
of the form

fe(T ) = −A · (T − T0)2 +B,

where, A is the temperature coefficient, T0 = 20◦C repre-
sents room temperature, and B is a frequency error offset,
we can fit the measured calibration points to this curve and
obtain frequency error estimates for previously unobserved
temperatures, thus drastically improving the range and ac-
curacy while eliminating a factory calibration step and al-
lowing on-demand calibration.

To demonstrate the efficiency of TCTS, we subject four
nodes, two running an unmodified version of FTSP and two
running FTSP enhanced with TCTS, to a rapidly-varying
temperature environment. The FTSP resynchronization rate
is set to 30 seconds, but it could be much higher in a real de-
ployment. This experiment illustrates how FTSP can desyn-
chronize and calculate incorrent frequency error estimates f̂e

that it uses for compensation, while TCTS-enhanced nodes
rely on their temperature sensor and calibration table to
retrieve the new frequency error estimate. Figure 5 illus-
trates the result of the experiment. We see that although
the frequency error estimate starts to change when the tem-
perature rises for both node pairs, only the TCTS-enhanced
nodes are able to cope with the change and maintain tight
synchronization. Even more interesting is the effect on the
node when the temperature begins to fall. While the nodes
running TCTS are not affected, the offset measurements of
the regular FTSP nodes get corrupted with wrong values,
and thus the node drastically starts to undershoot the ac-
tual synchronization time. It takes several minutes for the
nodes to recover.

While measuring temperature is not free – the example of
the TCXO power measurements show that while they con-
sume high power – it can be accomplished in a very short

time. In our example hardware that uses the on-chip tem-
perature sensor, a measurement takes 35 ms and draws an
average of 600 µA, or a total of 66.5 µJ. This is an or-
der of magnitude smaller then just sending one radio mes-
sage over the wireless channel, which consumes about 600 µJ
alone [13], disregarding that at least one other node has to
spend roughly the same energy to receive that message.

4. VIRTUAL HIGH-RESOLUTION TIME
Section 2 concludes with the simple observation that high-

frequency clocks and an accurate time-stamping mechanism
are needed to achieve high accuracy. Section 3 advocates
low-frequency clocks and infrequent synchronization for low-
power operation. These two requirements stand in direct
contradiction in conventional designs. Our key insight is
that a high-frequency clock is needed only during the time-
stamping operation while a low-frequency clock is needed
during periods of system inactivity, and especially miccro-
controller and radio sleep times. This observation suggests
a new design in which a high frequency clock is active only
when the radio is active, and off when the radio is off (dur-
ing which time the design relies on a stable, low-frequency
clock). The key design question is how to construct such a
system that can choreograph and synchronize the two clocks
– one fast and one slow – to each other and expose a uni-
fied clock abstraction to system and application software.
The remainder of this section describes a new timer system,
Virtual High-resolution Time (VHT), and presents the con-
cepts and methodology for achieving this coordination, and
details on implementing it in a microcontroller or FPGA.

The basic idea behind VHT is that during active peri-
ods, the high-frequency clock is turned on, and a hardware
counter counts the number of high-frequency clock ticks that
occur during each low-frequency clock interval, i.e., there are

ϕ0 =
fH

fL

high-frequency clock ticks during each low-frequency one.
When an event of interest occurs, like the SFD event of the
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Figure 6: Illustration of the Virtual High-resolution
Time event time-stamping mechanism on a micro-
controller.

CC2420, the system records not only the value of the counter
sourced by the low-frequency clock, but also the value of the
counter sourced by the high-frequency clock which was reset
at the end of the most recent clock tick of the low-frequency
clock. Thus, this second timer will indicate the phase ϕ
within a low frequency clock tick, allowing effective resolu-
tion to be up-sampled to the high-frequency clock (modulo
one cycle of jitter). The event time is sampled as

tevent = CL · ϕ0 + ϕ. (4)

Generating a high-frequency clock from a low-frequency
clock source is common practice. Today, most high-frequency
radios synthesize a high-frequency oscillator from a typically
much lower one (e.g. 2.4 GHz from 16 MHz) using a phase-
locked loop (PLL) [14]. The synthesized frequency, once
stable, maintains a fixed phase relation with the reference
frequency. While a PLL would be an excellent choice for gen-
erating the high-frequency clock from a low-frequency on de-
mand, PLLs are rarely found in the low-end microcontrollers
that are employed in modern sensor network platforms. For
that reason, we employ a second, high-frequency crystal os-
cillator that can be turned on or off by the microcontroller.
While the high-frequency clock is not phase-locked with the
low-frequency clock, the phase error is limited to < 1/fH ,
and thus is of the same order as the quantization error.

4.1 Microcontroller-based VHT
In order to implement VHT, a microcontroller has to pro-

vide only a few standard components:

• 2 clock inputs (driven by the two oscillators), and

• 2 timers with capture and compare modes (sourced by
the two clocks).

In addition, the microcontroller must either have the ability
to internally enable the capture of the high frequency timer
so that it is triggered by the low frequency clock signal or
be augmented with external hardware that can trigger this
operation. The role of the capture is to synchronize the
counter values of the low- and high-frequency timers, i.e.,
every value captured corresponds to the time of the low fre-
quency clock signal’s rising edge. This capture value is later
used to calculate the phase of an event.

Assume that two capture units, one on each timer, are
connected to the SFD interrupt line of the CC2420. An ad-
ditional capture unit on the fast timer captures the counter
on every low frequency rising edge. This is illustrated in
Figure 6 as the Sync event, where the value of h0 is stored

HCLK
ANDH_EN 16-bit Counter

Clear

LCLK 16-bit Period Register

Latch

Add

64-bit LTC Register

Smart 
Adder

64-bit HTC Register

Figure 7: VHT on FPGA block diagram. The main
counter has a width of 16-bit that is fed by the high
frequency clock signal HCLK. The low frequency
clock LCLK drives the rest of the logic and incre-
ments the different counting registers LTC and HTC
based on the VHT algorithm.

in one of the capture units. Later, when the SFD line rises,
the two capture units on the two timers store l0 (the value
of the low-frequency counter) and h1 (the value of the high
frequency counter), respectively. Using these three captured
values, the event time can be calculated as

tevent = l0 · ϕ0 + (h1 − h0) mod ϕ0. (5)

The modulo operator is necessary since the microcontroller
may be too slow to read the capture register value of h0

before the next low frequency clock tick. However, since
these ticks come at an interval of ϕ0 high frequency ticks,
the modulo operator relaxes the timing constraint.

The implementation of VHT is straightforward using a
microcontroller but there are some drawbacks with certain
hardware configurations. For example, our prototype plat-
form uses the MSP430F1611 microcontroller which provides
all of the necessary components. However, implementing
VHT uses all of the available timer resources, impacting
other components like the ADC. Since all of the timers
are used, no timer is available for triggering ADC conver-
sions that conflict with VHT usage, and thus the utility
of the platform diminishes for many sensing-related opera-
tions. Another drawback is the limited width of the coun-
ters, which are only 16-bits wide. While overflows of the
high-frequency counter are not a problem, overflows of the
low-frequency counter must be dealt with in software to
provide virtualized system counters of higher widths. In
addition, while 32-bit counters may be adequate for low-
frequency 32 kHz signals, such timers overflow every five
minutes if they are used for VHT with a high-frequency clock
of 8 MHz, suggesting that 64-bit counters will be needed to
support long time intervals.

4.2 FPGA-based Dedicated VHT
Implementing VHT on an FPGA offers several advantages

over a microcontroller implementation with few drawbacks.
Figure 7 shows a simplified view of the major blocks con-
tributing to a VHDL implementation of VHT. The core con-
tains two counting registers, and one 16-bit counter. Two



clock signals, the low frequency (LCLK) and the high fre-
quency (HCLK) drive the respective parts of the implemen-
tation. An enable signal (H EN) indicates to the timer unit
if the HCLK is active or not, and switches the time resolu-
tion of the counting register HTC from high to low.

The key to the VHT implementation is a period counter
register. This register stores the value of the 16-bit counter
on every LCLK clock tick. Additionally, the 16-bit counter
is reset to 0, and starts counting again. The period counter
indicates how many HCLK ticks occur for each LCLK pe-
riod, and thus indicates by how much the counting register
has to be incremented at each LCLK clock tick when the
HCLK clock is turned off, i.e.,

increment =

—
fH

fL

�
.

In summary, at every LCLK clock tick, an adder (Add)
adds the period register to the LTC counting register. This
register keeps track of time in a low-resolution mode. At the
same time, a Smart Adder, depending on the H EN signal,
either adds the 16-bit counter value to the LTC counting
register and stores it in the HTC counting register, or if
the HCLK is turned off, just stores the LTC counting regis-
ter value directly in the HTC counting register. Thus, the
HTC register eventually switches between a low and high-
resolution time, without losing time itself.

Two important components of a timer block are the cap-
ture and compare units, but they are just like the capture
and compare registers found in microcontrollers today. The
only distinction is that rather than operating on the counter
that is directly incremented by the clock, they operate on
the derived HTC counting register instead. The capture unit
will, upon reception of a trigger signal, copy the HTC regis-
ter into a timer capture register TCCR, and thus store the
value for a microcontroller, which can read it later at a more
convenient time. Of course, a microcontroller may need to
know if the value corresponds to a high- or low-resolution
timestamp. This information could easily be conveyed by
one of the bits in the field, or by an additional configura-
tion register, since the FPGA keeps track of whether it is
operating in a low- or high-resolution mode.

We implemented micro-benchmarks of an initial proto-
type of the VHT algorithm on an Actel IGLOO AGL600
low-power FPGA. The current implementation consists of
the counting mechanism illustrated in Figure 7. We also
implemented a Serial Peripheral Interface (SPI) slave com-
munication module in order to communicate with an exter-
nal microcontroller. In micro-benchmarks, the FPGA core
consumes 42.8 µA while the 32 kHz clock is on, and 767 µA
when a 16 MHz clock drives the circuit. The quiescent cur-
rent of the core itself is 36 µA during flash freeze mode, i.e.,
when nothing happens on the FPGA itself. We note that
our current implementation demonstrates the functionality
of the key VHT components but is not a fully-integrated,
stand-alone VHT implementation. For example, our cur-
rent design does not include working capture and compare
units, which we leave to future work.

Unfortunately, even the FPGA implementation of the VHT
algorithm has some drawbacks. In general, the power draw
will be higher than if it were directly integrated into a micro-
controller. Additionally, the fact that the timers are off-chip
necessitates a communication interface between the micro-
controller and the FPGA. While SPI can operate at frequen-
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Figure 8: Distribution of VHT synchronization er-
ror. The high-frequency 8 MHz virtual clock pro-
vides a maximum time-resolution of 0.125 µs. Using
this clock, we achieve an average accuracy of 0.125 µs
(one tick) with a standard deviation of 0.645 µs.
These results break new ground.

cies up to 10 MHz, it takes time to setup and retrieve the
data, which can be cumbersome and sometimes even pro-
hibitively slow depending on the application requirements.
In an ideal world, our partial FPGA implementation would
be put onto silicon and directly integrated into a microcon-
troller. This would achieve the best of both worlds: large
timers and high speed for the measurements of the phase,
and low-power due to the direct integration in silicon.

5. EVALUATION
In this section, we evaluate the performance of the micro-

controller implementation of VHT since, with only minor
hardware modifications, it represents the most likely adop-
tion scenario on other platforms. We implement these mod-
ifications on the Epic Core [15], a modularized mote that is
supported by TinyOS and integrates both the CC2420 ra-
dio and the MSP430F1611 microcontroller. However, the
Epic Core does not provide an external high-speed crystal,
and the MSP430’s internal RC oscillator does not provide
enough stability for the microcontroller VHT implementa-
tion. Therefore, we add an external hardware clock that we
can enable and disable using a GPIO pin of the microcon-
troller. The only other hardware modification necessary is a
connection from the SFD interrupt to the second timer unit
capture input. Fortunately, both of these are simple modifi-
cations, since the Epic Core exposes both the SFD line and
connections for a secondary crystal on its perimeter pads.
Therefore, we can simply feed the SFD signal back into an
additional capture input and add a high-frequency crystal.
We produced five Epic Core nodes modified in this manner
for evaluation, limiting our sample size to five.

A number of software modifications are needed to evalu-
ate VHT as well. We start with the standard TinyOS 2.x
release, including the FTSP protocol. We modify TinyOS
to configure both hardware timer units of the MSP430 mi-
crocontroller. In addition, we make some small modifica-
tions to the radio stack so that an incoming or outgoing
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Figure 9: VHT synchronization error over 14 hours
with a resynchronization interval of 10 seconds.

radio message is timestamped with not just the value of the
32 kHz clock, but also with the phase ϕ from the secondary
(high-frequency) timer unit as well. These modifications are
backward-compatible and they make it possible to synchro-
nize a normal node that cannot support VHT with a node
that does support VHT. However, this backward compati-
bility only works if the VHT node is the reference, but not
vise versa, since VHT relies on the reference for estimating
other nodes’ phase offset.

To evaluate the accuracy of VHT, we begin with the five
VHT-capable nodes synchronizing at an interval of 10 sec-
onds. A sixth node sends out a beacon at two second in-
terval, which the five VHT nodes timestamp. These times-
tamps are collected through a wired back-channel in order
to minimize packet collisions and message losses. Figure 8
presents the histogram of the measurements, while Figure 9
illustrates the mean and maximum error over the 14 hour
long experiment. The histogram shows a Gaussian distri-
bution with a mean of 0.125 µs and a standard deviation
of 0.625 µs. To the best of our knowledge, this level of
synchronization accuracy has not been achieved before in a
low-power wireless sensor network.

We next explore the veracity of our earlier claim that
VHT offers high-accuracy time synchronization but at po-
tentially reduced power draw, since VHT duty cycles the
high-frequency crystal during sleep intervals. We claimed
this allows VHT to achieve a baseline power draw that con-
verges with that of 32 kHz sleep timer at low duty cycles.

To obtain the power data, we hand-modify a TMote Sky
rather than use the modified Epic Core. This rationale
for this decision is that we wish to characterize the power
draw one would expect in a real setting on a widely-adopted
platform rather than the power draw of a prototype plat-
form with a range of (other) peripherals that are not power-
optimized.6 To exclude the influence of all these additional
power sinks, we hand-modify a TMote Sky by adding an
external 8 MHz crystal and a patch wire from the CC2420

6As is the case with our Epic Core-based test nodes that
include a host of other sensors, signal conditioning circuitry,
and peripherals not present on the TMote or most other
sensor nodes.
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Figure 10: Comparison of the power draw of regu-
lar and VHT-enhanced nodes. Both systems run at
3V. The power is measured on an enhanced version
of a TMote Sky using TinyOS 2.x and the default
Low-Power Listening MAC with a polling interval
of 1.6 s, corresponding to a duty-cycle of 0.77%.
The system using VHT draws and average power of
437 µW and the system without VHT 1449 µW, or
three times greater. Note that at 0.77% duty-cycle,
radio communication draws on average 427 µW, thus
dominating the power budget over the VHT clock
system by a factor exceeding 40.

P0 Plclk Phclk PRadio

4.20 µA 1.06 µA 340.1 µA 18,866 µA

Table 1: Power draw of various VHT subsystems.

SFD line to an available Timer A capture pin.
Figure 10 shows the power draw of the modified TMote

Sky when running FTSP using the 8 MHz crystal as the
sole clock source, and also when running with VHT as a
clock source. Note the large dynamic range in power draw
for VHT (five orders-of-magnitude) poses a significant chal-
lenge to the Agilent digital multi-meter (DMM) used for
these measurements. The mote running VHT approaches
the noise floor of the measurement instrument. 7 In these
experiments, the node is running the default CC2420 Low-
Power Listening MAC protocol in TinyOS and the polling
interval is set to 1600 ms. Therefore, the radio is turned on
to take a channel sample every 1.6 seconds; these channel
samples are the large spikes visible in the power draw.

Since VHT effectively duty-cycles the high-frequency clock
along with the radio, its power draw is approximately 3×
lower than without VHT, as expected. Extrapolating from
this observation, we create a power draw model for a VHT-
equipped node. Given the duty cycle dc, we know that the

7We verify the power draw during sleep using different DMM
settings. However, in that mode the active radio power draw
is beyond the measurement range and thus invalidates aver-
age power draw calculations.



10
-2

10
-1

10
0

10
1

0.01 0.1 10

A
v

er
ag

e 
P

o
w

er
 D

ra
w

 [
m

W
]

Duty Cycle [%]

Theoretic Average Power Draw for Different Duty-Cycles

tpoll=1.6s

without VHT
with VHT

10
-2

10
-1

10
0

10
1

0.01 0.1 10

A
v

er
ag

e 
P

o
w

er
 D

ra
w

 [
m

W
]

Duty Cycle [%]

Theoretic Average Power Draw for Different Duty-Cycles

tpoll=1.6s

Figure 11: Theoretic average power draw of a duty-
cycling node with and without VHT. The lower av-
erage power for the VHT equipped node comes from
the duty-cycling of the high frequency clock. Note
that starting at a duty-cycle of below 0.1%, the
power improvement is > 10×.

average power draw of a node running LPL is given by

Pavg = P0 + Phclk + dc · (Pradio) (6)

for the regular node, and

Pavg,VHT = P0 + Plclk + dc · (Phclk + Pradio) (7)

for the VHT enhanced node, where P0 is leakage, Plclk is
the slow clock, Phclk is the fast clock, and Pradio is the radio
power draw. The particular power draws can be computed
from the data in Figure 10 given the LPL setting of 1,600 ms
corresponds to a duty-cycle of 0.77%. Table 1 summarizes
these results, and Figure 11 illustrates the two average power
draws, showing where the model and empirical data inter-
sect. These results show that VHT power draw scales well
with duty cycle but provides the benefits of high-precision
time-keeping. The figure shows the power-proportionality
of VHT: as the duty cyle decreases, the power draw of the
VHT-equipped node approaches that of a node clocked from
just a 32 kHz crystal.

6. RELATED WORK
Time synchronization protocols and sensor network appli-

cations have a long and tangled history. In this section, we
highlight several important contributions to the time syn-
chronization literature, but our focus is primarily on algo-
rithms and systems that have been tested on similar hard-
ware as we employ on our prototype hardware.

Reference Broadcast Synchronization (RBS) [7] was one
of the first time synchronization protocols proposed for sen-
sor networks. RBS’ main contribution is the removal of
the transmitter’s nondeterminism from the communications
critical path. RBS addresses the problem that it was dif-
ficult to accurately timestamp outbound messages due to
queueing and other delays, but that two receivers of a sin-
gle message implicitly share a point of reference against
which to compare their clocks. While this approach is ben-
eficial in the face of high transmission nondeterminism, it
becomes less relevant when low-level software- or hardware-

based times-tamping mechanisms are available. As we show
in Section 2.2.2, the CC2420 and RF230 radios offer just
such support, and are able to accurately and precisely time-
stamp a radio message. The CC2420 is so accurate, in fact,
that error sources not considered relevant by RBS become
important. RBS, for example, ignores the propagation delay
of messages. While this is not a problem if time-stamping
precision is worse than about 1 µs, it starts to be a sig-
nificant source of error at appreciably finer precisions. For
example, if two receivers are separated by a distance greater
than 30 meters, then an error of 100 ns may be introduced
in the common reference. A system using RBS could im-
prove its power/performance by using VHT, but it would
still encounter inaccuracies at sub-microsecond levels.

The Timing-sync Protocol for Sensor Networks (TPSN) [8]
uses a simple two-way synchronization exchange in order to
remove sender and receiver uncertainties, and compensate
for the propagation delay. The only sources of error re-
maining are variation in the time-stamping mechanism and
clock drift during the synchronization exchange. Through
some analysis, the authors of [8] show that, in theory, TPSN
should have a 2× better performance than RBS. However,
the authors do not implement a clock drift estimation tech-
nique, so their actual synchronization error is about 20 µs,
which is high compared to newer synchronization protocols.
TPSN would benefit greatly from using VHT, and by em-
ploying clock drift estimation, TPSN’s prospects for the next
generation of high-accuracy time synchronization protocol
are excellent. IEEE 1588, the Precision Time Synchroniza-
tion Protocol that runs over Ethernet, achieves accuracies of
better than 100 ns using a technique very similar to TPSN.

The Flooding Time Synchronization Protocol (FTSP) [5]
is the de facto time synchronization protocol in sensor net-
works. A key contribution of FTSP was to exploit the TI
CC1000 radio’s byte interrupt for a high-precision message
time-stamping. In addition, its simple and efficient time dis-
semination algorithm and root election protocol make it a
robust approach to synchronizing an entire network of nodes
to the time of one root node. While subsequent research
improved FTSP’s startup time (time to initial synchroniza-
tion) [16] and multi-hop performance [17] with only mini-
mal changes to the FTSP algorithm [10], no other work has
fundamentally improved on FTSPs time-stamping, power,
or per-link accuracy. While we use FTSP in our evaluation
of VHT, we note that FTSP suffers from the same draw-
backs as RBS. First, FTSP does not account for propaga-
tion delays, which become a non-trivial factor once nodes
are separated by distances exceeding 30 meters.

A problem that appears in deep multi-hop time synchro-
nization is when two nodes are radio neighbors but mem-
bers of different synchronization trees. In that case, the
error propagation in the two synchronization trees is likely
to be different, and so the two radio neighbors can have a
potentially large difference in their views of global virtual
time. This situation can become problematic if the synchro-
nization protocol is used for synchronized communications,
as might be the case for a scheduled MAC protocol. The
Gradient Time Synchronization Protocol (GTSP) [6] offers
one solution to this problem. GTSP synchronizes a logi-
cal local clock to the radio broadcasts overheard from all
the neighbors, resulting in nearby neighbors being in much
closer synchronization. While GTSP would benefit from the
power efficiency of VHT, it is unclear to us how GTSP deals



with propagation errors since the GTSP paper does not ex-
plore the issue in its evaluation [6]

VHT with TCTS is unusual, but not unique, in its focus
on the power cost of accurate time. Rowe et. al present
the Syntonistor, a new device for time synchronization that
phase and frequency locks onto ambient 60 Hz AC noise
found in nearly all buildings [18]. The device includes a
tuned LC tank circuit that resonates at 60 Hz and small
microcontroller that uses a PLL for robustness. Using this
approach, Rowe et al. showed that over an 11 day period,
the accuracy of their device was on average better than 1 ms,
while drawing only 58 µW. While not of comparable accu-
racy, the Syntonistor’s low average power draw makes it an
attractive choice. Whether the Syntonistor’s accuracy can
be extended using a technique like VHT, to provide high-
precison during times of need, while relying on the Synton-
istor for long-term stability, remains an open question.

The most similar work to the VHT algorithm is the Har-
monia time-synchronization system [19]. Harmonia is a sys-
tem in which a TCXO-driven RTC that provides a stable
1 Hz signal to a node is synchronized to an external ref-
erence. The Harmonia authors argue that while the 1 Hz
signal is quite stable, an ambiguity of at least 1 clock tick is
always present. Therefore, they use the high-frequency mi-
crocontroller clock that exists on every node to synchronize
the external RTC signal. The main distinction between Har-
monia and a regular time synchronization is that Harmonia
does not need to concern itself with frequency error esti-
mation because Harmonia relies on the presence of a stable
external clock at every node. Thus, Harmonia only performs
offset calibration and therefore may not be widely applica-
ble to other system architectures. In contrast, VHT offers a
drop-in replacement for high-frequency clocks in any system
architecture, regardless of whether an external RTC or just
a simple 32 kHz crystal is present.

7. CONCLUSION
Time synchronization is a fundamental service that is used

by all layers of system and application software, from schedul-
ing link layer communications to time-stamping application
layer events. However, sensor network designers have histor-
ically faced a dilemma with time-keeping and synchroniza-
tion: they could choose either low-power or high-resolution,
but not both, for the simple reason that higher temporal
resolutions translate to higher clock frequencies, which in
turn translate to higher power draws.

In this paper, we present Virtual High-resolution Time,
a new approach to time-keeping that offers both low-power
and high-resolution by using two clocks – one slow (and low-
power) and one fast (and high-resolution) – and carefully co-
ordinating their usage to present the illusion of a single high-
precision, power-proportional clock. VHT power draw scales
with clock access (i.e. reading and writing) rather than op-
eration (i.e. on or off), allowing applications to spend energy
in proportion to their actual needs.

We present a VHT implementation using an off-the-shelf
microcontroller and sketch a design using an FPGA that
shows how it can be integrated into future silicon. Our re-
sults show that VHT offers better than 1 µs time-keeping
precision and an order-of-magnitude improvement in power
draw compared to conventional techniques at 0.1% or lower
radio duty cycles. These results enable previously infeasible
application regimes for timing-critical sensor networks.
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