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Abstract. Consider a pair of correlated Gaussian sources (X1, X2). Two
separate encoders observe the two components and communicate com-
pressed versions of their observations to a common decoder. The de-
coder is interested in reconstructing a linear combination of X1 and X2

to within a mean-square distortion of D. We obtain an inner bound to
the optimal rate-distortion region for this problem. A portion of this in-
ner bound is achieved by a scheme that reconstructs the linear function
directly rather than reconstructing the individual components X1 and
X2 first. This results in a better rate region for certain parameter values.
Our coding scheme relies on lattice coding techniques in contrast to more
prevalent random coding arguments used to demonstrate achievable rate
regions in information theory. We then consider the case of linear re-
construction of K sources and provide an inner bound to the optimal
rate-distortion region. Some parts of the inner bound are achieved using
the following coding structure: lattice vector quantization followed by
“correlated” lattice-structured binning.

1 Introduction

In this work, we present a coding scheme for distributed coding of a pair of
jointly Gaussian sources. The encoders each observe a different component of the
source and communicate compressed versions of their observations to a common
decoder through rate-constrained noiseless channels. The decoder is interested
in reconstructing a linear function of the sources to within a mean squared error
distortion of D.

The problem of distributed source coding to reconstruct a function of the
sources losslessly was considered in [1]. An inner bound was obtained for the
performance limit which was shown to be optimal if the sources are condition-
ally independent given the function. In [2], the performance limit is given for
the case of lossless reconstruction of the modulo-2 sum of two correlated binary
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sources and was shown to be tight for the symmetric case. This has been ex-
tended to several cases in [3] (see Problem 23 on page 400) and [4]. An improved
inner bound was provided for this case in [5]. The key point to note is that
the performance limits given in [2, 4, 5] are outside the inner bound provided
in [1]. While [1] employs random vector quantization followed by independent
random binning , the coding schemes of [2, 4, 5] instead use structured random
binning based on linear codes on finite fields. Further, the binning operation of
the quantizers of the sources are “correlated”. This incorporation of structure
in binning appears to give improvements in rates especially for those cases that
involve reconstruction of a function of the sources.

With this as motivation, in this paper we consider a lossy distributed coding
problem with K jointly Gaussian sources with one reconstruction. The decoder
wishes to reconstruct a linear function of the sources with squared error as fidelity
criterion. We consider a coding scheme with the following structure: sources are
quantized using structured vector quantizers followed by “correlated” structured
binning. The structure used in this process is given by lattice codes. We provide
an inner bound to the optimal rate-distortion region. We show that the proposed
inner bound is better for certain parameter values than an inner bound that
can be obtained by using a coding scheme that uses random vector quantizers
following by independent random binning. For this purpose we use the machinery
developed by [9–12] for the Wyner-Ziv problem in the quadratic Gaussian case.

The paper is organized as follows. In Section 2, we give a concise overview
of the asymptotic properties of high-dimensional lattices that are known in the
literature and we use these properties in the rest of the paper. In Section 3, we
define the problem formally for the case of two sources and present an inner
bound to the optimal rate-distortion region given by a coding structure involv-
ing structured quantizers followed by “correlated” structured binning. Further,
we also present another inner bound achieved by a scheme that is based on the
Berger-Tung inner bound. Then we present our lattice based coding scheme and
prove achievability of the inner bound. In Section 4, we consider a generalization
of the problem that involves reconstruction of a linear function of an arbitrary fi-
nite number of sources. In Section 5, we provide a set of numerical results for the
two-source case that demonstrate the conditions under which the lattice based
scheme performs better than the Berger-Tung based scheme. We conclude with
some comments in Section 6. We use the following notation throughout this
paper. Variables with superscript n denote an n-length random vector whose
components are mutually independent. However, random vectors whose compo-
nents are not independent are denoted without the use of the superscript. The
dimension of such random vectors will be clear from the context.

2 Preliminaries on high-dimensional Lattices

2.1 Overview of Lattice Codes

Lattice codes play the same role in Euclidean space that linear codes play in
Hamming space. Introduction to lattices and to coding schemes that employ



lattice codes can be found in [9–11]. In the rest of this section, we will briefly
review some properties of lattice codes that are relevant to our coding scheme.
We use the same notation as in [10] for these quantities.

An n-dimensional lattice Λ is composed of all integer combinations of the
columns of an n×n matrix G called the generator matrix of the lattice. Associ-
ated with every lattice Λ is a natural quantizer namely one that associates with
every point in Rn its nearest lattice point. This quantizer can be described by the
function QΛ(x). The quantization error associated with the quantizer QΛ(·) is
defined by x mod Λ = x−QΛ(x). This operation satisfies the useful distribution
property

((x mod Λ) + y) mod Λ = (x + y) mod Λ ∀x, y. (1)

The basic Voronoi region V0(Λ) of the lattice Λ is the set of all points closer to
the origin than to any other lattice point. Let V (Λ) denote the volume of the
Voronoi region of Λ. The second moment of a lattice Λ is the expected value per
dimension of the norm of a random vector uniformly distributed over V0(Λ) and
is given by

σ2(Λ) =
1
n

∫
V0(Λ)

‖ x ‖2 dx∫
V0(Λ)

dx
(2)

The normalized second moment is defined as G(Λ) , σ2(Λ)/V 2/n(Λ).
In [12], the existence of high dimensional lattices that are “good” for quanti-

zation and for coding is discussed. The criteria used therein to define goodness
are as follows:

– A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a good
channel σ2

Z-code sequence if ∀ε > 0, ∃N(ε) such that for all n > N(ε) the
following conditions are satisfied for some E(ε) > 0:

V (Λ(n)) < 2n( 1
2 log(2πeσ2

Z)+ε) and Pe(Λ(n), σ2
Z) < 2−nE(ε). (3)

Here Pe is the probability of decoding error when the lattice points of Λ(n)

are used as codewords in the problem of coding for the unconstrained AWGN
channel with noise variance σ2

Z as considered by Poltyrev [13].
– A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a

good source D-code sequence if ∀ε > 0,∃N(ε) such that for all n > N(ε) the
following conditions are satisfied:

log(2πeG(Λ(n))) < ε and σ2(Λ(n)) = D. (4)

2.2 Nested Lattice Codes

For lossy coding problems involving side-information at the encoder/decoder,
it is natural to consider nested codes [10]. We review the properties of nested
lattice codes here. Further details can be found in [10].



A pair of n-dimensional lattices (Λ1, Λ2) is nested, i.e., Λ2 ⊂ Λ1, if their
corresponding generating matrices G1, G2 satisfy G2 = G1 · J where J is an
n×n integer matrix with determinant greater than one. Λ1 is referred to as the
fine lattice while Λ2 is the coarse lattice. In many applications of nested lattice
codes, we require the lattices involved to be a good source code and/or a good
channel code. We term a nested lattice (Λ1, Λ2) good if (a) the fine lattice Λ1 is
both a good δ1-source code and a good δ1-channel code and (b) the coarse lattice
Λ2 is both a good δ2-source code and a δ2-channel code. The existence of good
lattice codes and good nested lattice codes (for various notions of goodness) has
been studied in [11, 12, 14] which use the random coding method of [15]. Using
the results of [11, 12], it was shown in [14] that good nested lattices in the sense
described above do exist.

3 Distributed source coding for the two-source case

3.1 Problem Statement and Main Result

In this section we consider a distributed source coding problem for the recon-
struction of the linear function Z , F (X1, X2) = X1 − cX2. Consideration of
this function is enough to infer the behavior of any linear function c1X1 + c2X2

and has the advantage of fewer variables.
Consider a pair of correlated jointly Gaussian sources (X1, X2) with a given

joint distribution pX1X2(x1, x2). The source sequence (Xn
1 , Xn

2 ) is independent
over time and has the product distribution

∏n
i=1 pX1X2(x1i, x2i). The fidelity

criterion used is average squared error. Given such a jointly Gaussian distribution
pX1X2 , we are interested in the optimal rate-distortion region which is defined as
the set of all achievable tuples (R1, R2, D) where achievability is defined in the
usual Shannon sense. Here D is the mean squared error between the function
and its reconstruction at the decoder. Without loss of generality, the sources can
be assumed to have unit variance and let the correlation coefficient ρ > 0. In
this case, σ2

Z , Var(Z) = 1 + c2 − 2ρc.
We present the rate region of our scheme below.

Theorem 3.1. The set of all tuples of rates and distortion (R1, R2, D) that
satisfy

2−2R1 + 2−2R2 ≤
(

σ2
Z

D

)−1

(5)

are achievable.

Proof: See Section 3.2.
We also present an achievable rate region based on ideas similar to Berger-

Tung coding scheme [6, 7].



Theorem 3.2. Let the region RDin be defined as follows.

RDin =
⋃

(q1,q2)∈R2
+

{
(R1, R2, D) : R1 ≥

1
2

log
(1 + q1)(1 + q2)− ρ2

q1(1 + q2)
,

R2 ≥
1
2

log
(1 + q1)(1 + q2)− ρ2

q2(1 + q1)
, R1 + R2 ≥

1
2

log
(1 + q1)(1 + q2)− ρ2

q1q2

D ≥ q1α + q2c
2α + q1q2σ

2
Z

(1 + q1)(1 + q2)− ρ2

}
. (6)

where α , 1 − ρ2 and R+ is the set of positive reals. Then the rate distortion
tuples (R1, R2, D) which belong to RD∗in are achievable where ∗ denotes convex
closure.

Proof: Follows directly from the application of Berger-Tung inner bound with
the auxiliary random variables involved being Gaussian.

For certain values of ρ, c and D, the sum-rate given by Theorem 3.1 is better
than that given in Theorem 3.2. This implies that each rate region contains
rate points which are not contained in the other. Thus, an overall achievable
rate region for the coding problem can be obtained as the convex closure of the
union of all rate distortion tuples (R1, R2, D) given in Theorems 3.1 and 3.2. A
further comparison of the two schemes is presented in Section 5. Note that for
c < 0, it has been shown in [8] that the rate region given in Theorem 3.2 is tight.

3.2 The Coding Scheme

In this section, we present a lattice based coding scheme for the problem of
reconstructing the above linear function of two jointly Gaussian sources whose
performance approaches the inner bound given in Theorem 3.1. In what follows,
a nested lattice code is taken to mean a sequence of nested lattice codes indexed
by the lattice dimension n.

We will require nested lattice codes (Λ11, Λ12, Λ2) where Λ2 ⊂ Λ11 and Λ2 ⊂
Λ12. We need the fine lattices Λ11 and Λ12 to be good source codes (of appropriate
second moment) and the coarse lattice Λ2 to be a good channel code. The proof
of the existence of such nested lattices was shown in [14]. The parameters of the
nested lattice are chosen to be

σ2(Λ11) = q1, σ2(Λ12) =
Dσ2

Z

σ2
Z −D

− q1, and σ2(Λ2) =
σ4

Z

σ2
Z −D

(7)

where 0 < q1 < Dσ2
Z/(σ2

Z − D). The coding problem is non-trivial only for
D < σ2

Z and in this range, Dσ2
Z/(σ2

Z −D) < σ2(Λ2) and therefore Λ2 ⊂ Λ11 and
Λ2 ⊂ Λ12 indeed.

Let U1 and U2 be random vectors (dithers) that are independent of each
other and of the source pair (X1, X2). Let Ui be uniformly distributed over the
basic Voronoi region V0,1i of the fine lattices Λ1i for i = 1, 2. The decoder is



assumed to share this randomness with the encoders. The source encoders use
these nested lattices to quantize X1 and cX2 respectively according to equation

S1 = (QΛ11(X
n
1 + U1)) mod Λ2 , S2 = (QΛ12(cX

n
2 + U2)) mod Λ2. (8)

Note that the second encoder scales the source X2 before encoding it. The de-
coder receives the indices S1 and S2 and reconstructs

Ẑ =
(

σ2
Z −D

σ2
Z

)
([(S1 − U1)− (S2 − U2)] mod Λ2) . (9)

In general, the rate of a nested lattice encoder (Λ1, Λ2) with Λ2 ⊂ Λ1 is given
by R = 1

2 log σ2(Λ2)
σ2(Λ1)

. Thus, the rates of the two encoders are given by

R1 =
1
2

log
σ4

Z

q1(σ2
Z −D)

and R2 =
1
2

log
σ4

Z

Dσ2
Z − q1(σ2

Z −D)
(10)

Clearly, for a fixed choice of q1 all rates greater than those given in equation (10)
are achievable. The union of all achievable rate-distortion tuples (R1, R2, D) over
all choices of q1 gives us an achievable region. Eliminating q1 between the two
rate equations gives the rate region claimed in Theorem 3.1. It remains to show
that this scheme indeed reconstructs the function Z to within a distortion D.
We show this in the following.

Using the distributive property of lattices described in equation (1), we can
reduce the coding scheme to a simpler equivalent scheme by eliminating the first
mod-Λ2 operation in both the signal paths. The decoder can now be described
by the equation

Ẑ =
(

σ2
Z −D

σ2
Z

)
([(Xn

1 + eq1)− (cXn
2 + eq2)] mod Λ2) (11)

=
(

σ2
Z −D

σ2
Z

)
([Zn + eq1 − eq2 ] mod Λ2) (12)

where eq1 and eq2 are dithered lattice quantization noises given by

eq1 = QΛ11(X
n
1 + U1)− (Xn

1 + U1) , eq2 = QΛ12(cX
n
2 + U2)− (cXn

2 + U2). (13)

The subtractive dither quantization noise eqi
is independent of both sources

X1 and X2 and has the same distribution as −Ui for i = 1, 2 [10]. Since the
dithers U1 and U2 are independent and for a fixed choice of the nested lattice eqi

is a function of Ui alone, eq1 and eq2 are independent as well. Let eq = eq1−eq2 be
the effective dither quantization noise. The decoder reconstruction in equation
(12) can be simplified as

Ẑ =
(

σ2
Z −D

σ2
Z

)
([Zn + eq] mod Λ2)

c.d=
(

σ2
Z −D

σ2
Z

)
(Zn + eq) (14)

= Zn +
((

σ2
Z −D

σ2
Z

)
eq −

D

σ2
Z

Zn

)
, Zn + N. (15)



The c.d= in equation (14) stands for equality under the assumption of correct
decoding. Decoding error occurs if equation (14) doesn’t hold. Let Pe be the
probability of decoding error. Assuming correct decoding, the distortion achieved
by this scheme is the second moment per dimension1 of the random vector N in
equation (15). This can be expressed as

E ‖ N ‖2

n
=

(
σ2

Z −D

σ2
Z

)2 E ‖ eq ‖2

n
+

(
D

σ2
Z

)2 E ‖ Zn ‖2

n
(16)

where we have used the independence of eq1 and eq2 to each other and to the
sources X1 and X2 (and therefore to Z = X1− cX2). Since eqi has the same dis-
tribution as −Ui, their expected norm per dimension is just the second moment
of the corresponding lattice σ2(Λ1i). Hence the effective distortion achieved by
the scheme is

1
n

E‖Zn − Ẑ‖2 =
(

σ2
Z −D

σ2
Z

)2 (
Dσ2

Z

σ2
Z −D

)
+

D2σ2
Z

σ4
Z

= D. (17)

Hence, the proposed scheme achieves the desired distortion provided correct
decoding occurs at equation (14). Let us now prove that equation (14) in-
deed holds with high probability for an optimal choice of the nested lattice,
i.e., there exists a nested lattice code for which Pe → 0 as n → ∞ where,
Pe = Pr ((Zn + eq) mod Λ2 6= (Zn + eq)) .

To this end, let us first compute the normalized second moment of (Zn +eq).

1
n

E ‖ Zn + eq ‖2= σ2
Z + q1 +

σ2
ZD

σ2
Z −D

− q1 = σ2(Λ2). (18)

It was shown in [9] that as n → ∞, the quantization noises eqi
tend to a

white Gaussian noise for an optimal choice of the nested lattice. It can be shown
that, under these conditions, eq also tends to a white Gaussian noise of the same
variance as eq. The proof involves entropy power inequality and is omitted.

We choose Λ2 to be an exponentially good channel code in the sense defined
in Section 2.1 (also see [10]). For such lattices, the probability of decoding error
Pe → 0 exponentially fast if (Zn + eq) is Gaussian. The analysis in [11] showed
that if (Zn + eq) tends to a white Gaussian noise vector, the effect on Pe of
the deviation from Gaussianity is sub-exponential and the overall error behavior
is asymptotically the same. This implies that the reconstruction error Zn − Ẑ
tends in probability to the random vector N defined in equation (15). Since all
random vectors involved have finite normalized second moment, this convergence
in probability implies convergence in second moment as well, i.e., 1

nE ‖ Zn −
Ẑ ‖2→ D. Averaged over the random dithers U1 and U2, we have shown that the
appropriate distortion is achieved. Hence there must exist a pair of deterministic
dithers that also achieve distortion D and we have proved the claim of Theorem
3.1.
1 We refer to this quantity also as the normalized second moment of the random vector

N . This should not be confused with the normalized second moment of a lattice as
defined in Section 2.1.



4 Distributed source coding for the K source case

In this section, we consider the case of reconstructing a linear function of an ar-
bitrary number of sources. In the case of two sources, the two strategies used in
Theorems 3.1 and 3.2 were direct reconstruction of the function Z and estimat-
ing the function from noisy versions of the sources respectively. In the presence
of more than two sources, a host of strategies which are a combination of these
two strategies become available. Some sets of sources might use the “correlated”
binning strategy of Theorem 3.1 while others might use the “independent” bin-
ning strategy of Theorem 3.2. The union of the rate-distortion tuples achieved
by all such schemes gives an achievable rate region for the problem.

Let the sources be given by X1, X2, . . . , XK which are jointly Gaussian. The
decoder wishes to reconstruct a linear function given by Z =

∑K
i=1 ciXi with

squared error fidelity criterion. The performance limit RD is given by the set
of all rate-distortion tuples (R1, R2, . . . , RK , D) that are achievable in the sense
defined in Section 3.

For any set A ⊂ {1, . . . ,K}, let XA denote those sources whose indices are in
A, i.e., XA , {Xi : i ∈ A}. Let ZA be defined as

∑
i∈A ciXi. Let Θ be a partition

of {1, . . . ,K} with θ = |Θ|. Let πΘ : Θ → {1, . . . , θ} be a permutation. One can
think of πΘ as ordering the elements of Θ. Each set of sources XA, A ∈ Θ are
decoded simultaneously at the decoder with the objective of reconstructing ZA.
The order of decoding is given by πΘ(A) with the lower ranked sets of sources
decoded earlier. Let Q = (q1, . . . , qK) ∈ RK

+ be a tuple of positive reals. For any
partition Θ and ordering πΘ, let us define recursively a positive-valued function
σ2

Θ : Θ → R+ as σ2
Θ(A) = E

[
(ZA − fA(SA))2

]
where fA(SA) = E(ZA|SA),

SA = {ZB + QB : B ∈ Θ, πΘ(B) < πΘ(A)} and {QA : A ∈ Θ} is a collection of
|Θ| independent zero-mean Gaussian random variables with variances given by
qA = Var(QA) ,

∑
i∈A qi, and this collection is independent of the sources. Let

f({ZA + QA : A ∈ Θ}) , E (Z|{ZA + QA : A ∈ Θ}).

Theorem 4.1. For a given tuple of sources X1, . . . , XK and tuple of real num-
bers (c1, c2, . . . , cK), we have RD∗in ⊂ RD, where ∗ denotes convex closure and

RDin =
⋃

Θ,πΘ,Q

{
(R1, . . . , RK , D) : Ri ≥

1
2

log
σ2

Θ(A) + qA

qi
for i ∈ A,

D ≥ E [(Z − f ({ZA + QA : A ∈ Θ}))2]
}

(19)

Proof: This inner bound to the optimal rate region can be proved by demon-
strating a coding scheme that achieves the rates given. As in Section 3.2, we use
“correlated” binning based on lattice codes. The basic idea of the proof is to
use high dimensional lattices to mimic the Gaussian test channels used in the
description of Theorem 4.1. The details are omitted. We remark that the general
K-user rate region described above can be used to re-derive Theorems 3.1 and
3.2 by appropriate choices of the partition Θ.



5 Comparison of the Rate Regions

In this section, we compare the rate regions of the lattice based coding scheme
given in Theorem 3.1 and the Berger-Tung based coding scheme given in The-
orem 3.2 for the case of two users. The function under consideration is Z =
X1 − cX2. To demonstrate the performance of the lattice binning scheme, we
choose the sum rate of the two encoders as the performance metric.

In Fig. 1, we compare the sum-rates of the two schemes for ρ = 0.8 and
c = 0.8. Fig. 1 shows that for small distortion values, the lattice scheme achieves
a smaller sum rate than the Berger-Tung based scheme. We observe that the
lattice based scheme performs better than the Berger-Tung based scheme for
small distortions provided ρ is sufficiently high and c lies in a certain interval.
Fig. 2 is a contour plot that illustrates this in detail. The contour labeled R
encloses that region in which the pair (ρ, c) should lie for the lattice binning
scheme to achieve a sum rate that is at least R units less than the sum rate of the
Berger-Tung scheme for some distortion D. Observe that we get improvements
only for c > 0.
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6 Conclusion

We have thus demonstrated a lattice based coding scheme that directly encodes
the linear function that the decoder is interested in instead of encoding the
sources separately and estimating the function at the decoder. For the case of two
users, it is seen that the lattice based coding scheme gives a lower sum-rate for
certain values of ρ, c, D. Hence, using a combination of the lattice based and the
Berger-Tung based coding schemes results in a better rate-region than using any
one scheme alone. For the case of reconstructing a linear function of K sources,



we have extended this concept to provide an inner bound to the optimal rate-
distortion function. Some parts of the inner bound are achieved using a coding
scheme that has the following structure: lattice vector quantization followed by
“correlated” lattice-structured binning.
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