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Abstract

In this work, we introduce the notion of the diversity gain region for a multi-user
channel. This region specifies the set of diversity-gain vectors that are simultane-
ously achievable by all users in a multi-user channel. This is done by associating
different probabilities of error for different users, contrary to the traditional ap-
proach where a single probability of system error is considered. We derive an inner
bound (achievable region) and an outer bound for the diversity gain region of a
MIMO fading multiple access channel.

1 Introduction

It is well-known that the error exponent for a single-user channel provides the rate of
exponential decay of the average probability of error as a function of the block length
of the codebooks [1, 2]. The concept of the error exponent was extended to a Gaus-
sian multiple access channel (MAC) in [3, 4], where an upper bound on the probability
of system error (i.e., the probability that any user is in error) was derived for random
codes. Recently, Zheng et al. considered error exponents in high signal-to-noise ra-
tio (SNR) approximation, called diversity gains, for multi-input-multi-output (MIMO)
fading single-user channels [5], and considered equal diversity gains for MIMO fading
multiple access channels [6].

In many applications of multi-user networks, different users might have different reli-
ability requirements. For instance, in an uplink (or downlink) of a cellular system, a user
running an FTP application might have more stringent reliability requirements than a
user running a multimedia application which is designed for graceful degradation. Based
on the traditional approaches [3, 4, 6] which consider a single probability of system error,
a network can only be designed to satisfy the most stringent reliability requirement. This
might result in a mismatch of resources allocation, and thus, it is inherently suboptimal.

Motivated by the above observation, we consider a new approach in analyzing the
users’ performance in a multi-user scenario. In addition to the rate vs. performance
tradeoffs that exist in traditional approaches, our approach realizes new degrees of free-
dom that enable a richer tradeoff among users’ performance. Our approach hinges on
the following two observations.

First, one can define a probability of error for each user, which, in general, may be
different for different users. Therefore, there are multiple error exponents, one for each
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user, for a given multi-user channel. Second, in contrast to a single-user channel where
the error exponent is fixed for a given rate, in a multi-user channel one can tradeoff the
error exponents among different users even for fixed rates. In [7, 8], we formalized these
ideas by introducing the notion of error exponent region (EEE), and derived EER inner
and outer bounds for Gaussian broadcast channels and Gaussian multiple access channels.
It is our intention in this paper to extend these results to MIMO fading multiple access
channels.

The rest of the paper is structured as follows. In Section 2, we introduce the notion
of multiplexing gain region (MGR) and diversity gain region (DGR). In Section 3, we
derive the DGR inner bound using two strategies - channel-splitting and superposition.
In Section 4, we derive the DGR outer bound. We conclude our work in Section 5.

2 Multiplexing Gain Region and Diversity Gain Re-

gion

Consider a MIMO fading multiple access channel with m1, m2 transmit antennas for
user 1 and user 2 and n receive antennas. The channel model is

Y =

√
SNR

m1

H1X1 +

√
SNR

m2

H2X2 + Z. (1)

The channel fading matrices between the transmitter 1 and the transmitter 2 and the
receiver are represented by an n×m1 matrix H1 and an n×m2 matrix H2. We assume
that H1 and H2 remain constant over a block length l, and change to a new independent
realization in the next block length l. H1 and H2 have i.i.d. entries and each entry has a
complex Gaussian distribution CN (0, 1). We assume that fading matrices are known by
the receiver but unknown to the transmitters. The channel inputs X1 and X2 are m1× l
and m2 × l matrices and are normalized such that the average transmit power at each
antenna is one. The noise Z is an n× l matrix with i.i.d. entries CN (0, 1). The channel
output Y is an n× l matrix.

Before introducing the notion of diversity gain region, let’s review the notion of error
exponent region (EER) introduced in [7, 8]. For a given operating (rate) point, an error
exponent region consists of all achievable error exponents when the channel is operated
at that point. For example, the error exponent region for a single-user channel operated
at rate R is a line segment from the origin to the error exponent E(R) (see Fig. 1(a)).
For a two-user channel, the error exponent region is a two-dimensional region which
depends on the operating (rate) point (R1, R2) (see Fig. 1(b)). The reader should not be
confused by the concept of error exponent region with the concept of channel capacity
region (CCR). In EER, it is possible to increase user 1’s error exponent by decreasing
user 2’s error exponent. This is similar to the idea of increasing the data rate of user 1
by reducing the data rate of user 2 in CCR. However, there is a fundamental difference
between CCR and EER. For a given channel, there is only one CCR. One the other
hand, an EER depends on the channel operating point, and for a given channel, there
are numerous EERs depending on which operating point we consider. Therefore, when
we refer to an EER, we need to specify the channel operating point.

When we work on a MIMO fading channel in this paper, we consider this channel
only in high SNR scenario. In [5, 6], an encoding scheme C(SNR) (a family of codes) in
a MIMO fading single-user channel is said to achieve multiplexing gain r and diversity
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Figure 1: Error exponent region (a) single-user channel, (b) multi-user channel.

gain d if

lim
SNR→∞

R(SNR)

log SNR
= r,

lim
SNR→∞

− log Pe(SNR)

log SNR
= d. (2)

Define R(SNR) ∼= r ln SNR and Pe(SNR)
.
= SNR−d if equalities hold in the limit, and

≥̃, ≤̃, ≥̇, ≤̇ are defined similarly. Following the same notations in [5, 6], we define an
encoding scheme C(SNR) to achieve multiplexing gain pair (r1, r2) and diversity gain
pair (d1, d2) in a MIMO fading multiple access channel if

lim
SNR→∞

R1(SNR)

log SNR
= r1, lim

SNR→∞
R2(SNR)

log SNR
= r2,

lim
SNR→∞

− log Pe1(SNR)

log SNR
= d1, lim

SNR→∞
− log Pe2(SNR)

log SNR
= d2, (3)

where R1(SNR), R2(SNR), Pe1(SNR), Pe2(SNR) are the rates and the probabilities of
error for user 1 and user 2. Multiplexing gain region (MGR) is thus defined as the set of
all achievable multiplexing gain pair (r1, r2) for all encoding schemes. The MGR is the
CCR in high SNR approximation. For a multiple access channel, the CCR is the closure
of the convex hull of all (R1, R2) satisfying

R1 ≤ I(X1; Y |X2) (4)

R2 ≤ I(X2; Y |X1) (5)

R1 + R2 ≤ I(X1, X2; Y ). (6)

Thus the MGR for a MIMO fading multiple access channel with m1,m2 transmit antennas
and n receive antennas is

r1 ≤ min(m1, n) (7)

r2 ≤ min(m2, n) (8)

r1 + r2 ≤ min(m1 + m2, n). (9)
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An EER depends on the operating point (R1, R2) [7, 8]. Similarly, given a multi-
plexing gain pair (r1, r2), we define the diversity gain region (DGR) as the set of all
achievable diversity gain pair (d1, d2). The diversity gain region is the EER in high SNR
approximation.

3 Achievable Diversity Gain Region

For the MIMO fading multiple access channel considered in this paper, we propose two
encoding strategies - superposition and channel-splitting. For the superposition encoding,
the channel inputs X1 and X2 have i.i.d. entries CN (0, 1). In the receiver side, we
decode users’ messages using joint maximum likelihood (ML) decoding, i.e., decoding
users’ messages based on the pair (i, j) maximizing P (Y |X1(i), X2(j)), where X1(i) and
X2(j) are the transmitted codewords from user 1 and user 2. There are three types
of error events [3]. Type 1 error occurs when user 1 codeword is decoded erroneously,
but user 2 codeword is decoded correctly. Type 2 error occurs when user 2 codeword
is decoded erroneously, but user 1 codeword is decoded correctly. Type 3 error occurs
when both users’ codewords are decoded as wrong codewords. Denote Pe,t1, Pe,t2, and
Pe,t3 the probabilities of type 1, type 2, and type 3 error events. Define dout

m,n(r) as the
outage diversity gain for a MIMO fading single-user channel with m transmit antennas
and n receive antennas, i.e., dout

m,n(r) is the piecewise linear function connecting the points
(k, dout

m,n(k)) = (k, (m− k)(n− k)), k ∈ Z+ [5]. Assuming the block length l ≥ m + n1 +
n2 − 1, it can be shown by random coding argument that there exist codebooks for user
1 and user 2 such that

Pe,t1≤̇SNR−dout
m1,n(r1) (10)

Pe,t2≤̇SNR−dout
m2,n(r2) (11)

Pe,t3≤̇SNR−dout
m1+m2,n(r1+r2). (12)

The probabilities of error for user 1 (Pe1) and user 2 (Pe2) can be upper bounded by

Pe1 = Pe,t1 + Pe,t3≤̇SNR−dout
m1,n(r1) + SNR−dout

m1+m2,n(r1+r2)

.
= SNR−min{dout

m1,n(r1),dout
m1+m2,n(r1+r2)} (13)

Pe2 = Pe,t2 + Pe,t3≤̇SNR−dout
m2,n(r2) + SNR−dout

m1+m2,n(r1+r2)

.
= SNR−min{dout

m2,n(r2),dout
m1+m2,n(r1+r2)}. (14)

Thus, we can derive achievable diversity gains for user 1 and user 2 in a MIMO fading
multiple access channel as

ds
1 = min{dout

m1,n(r1), d
out
m1+m2,n(r1 + r2)} (15)

ds
2 = min{dout

m2,n(r2), d
out
m1+m2,n(r1 + r2)}, (16)

where the superscript “s” denotes superposition.
The MGR of a MIMO fading multiple access channel can be divided into four regions

r12, r13, r23, and r3 depending whether type 1 error, type 2 error ,or type 3 error dominates
(see Fig. 2). In the region r12, dout

m1,n(r1) ≤ dout
m1+m2,n(r1+r2) and dout

m2,n(r2) ≤ dout
m1+m2,n(r1+

r2). The achievable diversity gains are ds
1 = dout

m1,n(r1) and ds
2 = dout

m2,n(r2). In this region,
we can not increase the diversity gains for either of the users, since each user attains his
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single-user diversity gain. In the region r13, dout
m1,n(r1) ≤ dout

m1+m2,n(r1 + r2) ≤ dout
m2,n(r2).

The achievable diversity gains are ds
1 = dout

m1,n(r1) and ds
2 = dout

m1+m2,n(r1 + r2). In this
region, although we can not increase the first user’s achievable diversity gain by reducing
the second user’s achievable diversity gain, it is possible to increase the second user’s
achievable diversity gain by reducing the first user’s achievable diversity gain because
the dominant error for user 2 is a type 3 error. A similar result also holds for region
r23 by exchanging the roles of user 1 and user 2 in the r13 region. In the region r3,
dout

m1+m2,n(r1 + r2) ≤ dout
m1,n(r1) and dout

m1+m2,n(r1 + r2) ≤ dout
m2,n(r2). The achievable diversity

gains are ds
1 = ds

2 = dout
m1+m2,n(r1 + r2). In this region, type 3 error is dominant over both

type 1 and type 2 errors, so it is possible to increase the first (second) user’s achievable
diversity gain by reducing the second (first) user’s achievable diversity gain.
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Figure 2: Multiplexing gain region for m1 = m2 = n = 4.

In Fig. 3(a), the solid curve is the boundary of the achievable DGR obtained by super-
position. In addition to superposition encoding, we can also derive achievable diversity
gains for user 1 and user 2 by channel-splitting. Before writing the achievable diversity
gains by channel-splitting, we need to review the diversity-multiplexing tradeoff for a
MIMO fading single-user channel derived in [5]. Define (x)+ = max(x, 0) and Rn

+ as
the set of real n-vectors with nonnegative elements. The random coding diversity gain
dm,n,l(r) is defined as

dm,n,l(r) = min
α∈Gc





min(m,n)∑
i=1

(2i− 1 + |m− n|)αi + l







min(m,n)∑
i=1

(1− αi)
+


− r






 , (17)

and

G =



α ∈ Rmin(m,n)+ | α1 ≥ α2 ≥ · · · ≥ αmin(m,n) ≥ 0, and

min(m,n)∑
i=1

(1− αi)
+ ≤ r



 (18)

Gc = Rmin(m,n)+ − G, (19)

and the expurgated diversity gain dex
m,n,l(r) is defined as

dex
m,n,l(r) = n d−1

m,l,n(lr), (20)
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and d−1
m,l,n is the inverse function of dm,l,n(r). Both the random coding diversity gain

dm,n,l(r) and the expurgated diversity gain dex
m,n,l(r) are achievable in a MIMO fading

single-user channel with m transmit antennas, n receive antennas, and block length l [5].
Note that the random coding diversity gain dm,n,l(r) is equal to dout

m,n(r) for l ≥ m+n−1.
In channel-splitting, we allocate pl symbols to user 1 and (1 − p)l symbols to user 2

inside each block length l, where p = k
l

and 1 ≤ k ≤ l − 1, k ∈ Z (see Fig. 4). Thus, the
achievable diversity gains are

dcs
1 = max{dm1,n,pl(

r1

p
), dex

m1,n,pl(
r1

p
)} (21)

dcs
2 = max{dm2,n,(1−p)l(

r2

1− p
), dex

m2,n,(1−p)l(
r2

1− p
)}, (22)

where the superscript “cs” denotes channel-splitting, and p is the portion of time allocated
to user 1 (p = k

l
and 1 ≤ k ≤ l − 1, k ∈ Z). In Fig. 3(a), the dotted curve is the

achievable DGR by channel-splitting. The union of the superposition achievable DGR
and the channel-splitting achievable DGR is an inner bound for the DGR. We summarize
all the results for the achievable DGR in the following theorem.

Theorem 1 For a MIMO fading multiple access channel with m1, m2 transmit anten-
nas for user 1, user 2, n receive antennas, and block length l ≥ m1 + m2 + n − 1, an
achievable DGR is DGR(r1, r2) = DGRs(r1, r2)∪DGRcs(r1, r2), where DGRs(r1, r2) and
DGRcs(r1, r2) are given by

DGRcs(r1, r2) = {(d1, d2) : p =
k

l
, 1 ≤ k ≤ l − 1, k ∈ Z

d1 ≤ max{dm,n1,pl(
r1

p
), dex

m,n1,pl(
r1

p
)}

d2 ≤ max{dm,n2,(1−p)l(
r2

1− p
), dex

m,n2,(1−p)l(
r2

1− p
)} (23)

DGRs(r1, r2) = {(d1, d2) :

d1 ≤ min{dout
m1,n(r1), d

out
m1+m2,n(r1 + r2)}

d2 ≤ min{dout
m2,n(r2), d

out
m1+m2,n(r1 + r2)}} (24)

¤

Although we can not increase the achievable DGR by superposition for operating
points inside region r12, we would like to know for which operating points (r1, r2) channel-
splitting can enlarge the achievable DGR by superposition. Therefore, consider the fol-
lowing. In (21), (22), we choose the largest p such that dcs

2 is positive, then we get
the largest achievable diversity gain dcs

1,max for user 1 by channel-splitting method. In
Fig. 5(a), we have dcs

1,max > ds
1 inside the dotted region. Similarly, we can obtain another

region with dcs
2,max > ds

2 by reducing dcs
1 close to zero. The union of these two regions

is the multiplexing gain region where superposition achievable DGR can be enlarged by
channel-splitting (see Fig. 5(b)).

4 Outer Bound for Diversity Gain Region

For a MIMO fading multiple access channel, the probabilities of decoding error for user 1
and user 2 can always be lower bounded by the probabilities of decoding error for user 1
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Figure 3: Diversity gain region for m1 = m2 = n = 4; r1 = 2.5, r2 = 0.5 (a) channel-
splitting(dotted) and superposition(solid), (b) inner bound(solid) and outer bound(dash-
dotted).
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N l

l l

Figure 4: Channel-splitting

and user 2 operating over the point-to-point channels defined by Y =
√

SNR
mi

HiXi + Z,

for i = 1, 2. Further, if we allow the two transmitters in the MIMO fading multiple
access channel to cooperate, we have a MIMO fading single-user channel with m1 + m2

transmit antennas and n receive antennas, whose probability of error (using an optimal
receiver), P ′

e, should be less than or equal to the probability of system error Pe in the
original multiple access channel. Using the union bound, it is also easy to show that
Pe ≤ 2 max{Pe1, Pe2}, where Pei denotes the probability of error for user i in the original
multiple access channel. Collecting all these ideas, we have the following outer bound for
the DGR

d1 ≤ dout
m1,n(r1) (25)

d2 ≤ dout
m2,n(r2) (26)

min{d1, d2} ≤ dout
m1+m2,n(r1 + r2). (27)

In Fig. 3(b), the solid curve is the achievable DGR, and the dashed-dotted curve is the
outer bound for the DGR. We can also conclude from (25), (26) that all the operating
points inside the region r12 in Fig. 2 have tight DGR inner and outer bounds.
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Figure 5: Multiplexing gain region for m1 = m2 = n = 4 (a) dcs
1,max > ds

1, (b) dcs
1,max > ds

1 or
dcs

2,max > ds
2.

5 Conclusion

In this work, we introduce the notion of multiplexing gain region and diversity gain
region, which are the channel capacity region and the error exponent region in high SNR
approximation. We derive the DGR inner bound and the DGR outer bound for a MIMO
fading multiple channel. The concept of the MGR and the DGR is very general and
can be applied to other multi-user channels, such as a MIMO fading broadcast channel.
Currently the authors are investigating tighter DGR inner bounds and DGR outer bounds
and practical schemes to achieve these bounds.
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