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Abstract

In this work, we consider the problems of channel coding with feedback and source
coding with feedforward. We give a new interpretation of directed information [1] which
helps us understand why it arises in the capacity and rate-distortion function of these two
problems. Comparing the two problems studied, we �nd that in channel coding feedback
boosts capacity due to a larger constraint set of optimization of the same objective func-
tion. On the other hand, feedforward reduces the rate-distortion function due to a smaller
objective function optimized over an unchanged constraint set. Using our interpretation
of directed information, we �nd the capacity of channels with arbitrarily delayed feedback
and causal/non-causal state information. We also solve the corresponding source coding
problem.
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1 Introduction

It is a well-known result in information theory that feedback does not increase the capacity of a
discrete memoryless channel [2]. However, feedback could increase the capacity of a channel with
memory. Recently, directed information has been used to elegantly characterize the capacity of
channels with feedback [1, 3, 4]. In these works, the feedback considered was available at the
encoder with delay 1. There is a source coding counterpart to channel coding with feedback,
viz., source coding with feedforward. The problem of source coding with feedforward was
considered in [5, 6, 7, 8]. In [5], a characterization of attainable performance was provided
for sources that can be represented auto-regressively with an innovation process satisfying the
Shannon lower bound (SLB) with equality. The optimal rate-distortion function for source
coding with feedforward for arbitrary sources and distortion measures was characterized using
directed information in [7].

In this work, we consider generalized versions of the communication problems described
above. In the �rst part of the paper, we consider channels with arbitrarily delayed feedback
and side information (available either causally or non-causally at both the transmitter and
receiver). In the second part, we deal with source coding with delayed feedforward and side
information. We give a new, intuitive interpretation of directed information. This interpretation
is crucial for obtaining performance limits for problems with delayed feedback/feedforward and
side information.

�This work was supported by NSF Grant CCF-0329715 and Grant (CAREER) CCF-0448115.



2 Notation and Preliminaries

We �rst lay down the notation used in the rest of this paper. The symbols Xn and Yn are used
to denote the channel input and output, respectively, at time n. The notation Xn denotes the
sequence of random variables (X1; X2 : : : ; Xn). A channel is de�ned as a sequence of probability
distributions:

P ch
YjX = fPYnjXn;Y n�1g1n=1: (1)

We denote the input distribution for a channel without feedback as

PX = fPXnjXn�1g1n=1: (2)

For a channel with feedback, the input distribution can depend on the fed-back output symbols.
We will be dealing with arbitrary delays in feedback. If the feedback has delay k, the channel
input at time n can depend on the �rst (n� k) channel outputs. In this case, the distribution
is denoted by

~PXjYk = fPXnjXn�1;Y n�kg1n=1: (3)

Note that for a channel with feedback delay k, (1) and (3) completely de�ne the joint distribution
of the system as follows.

PXY = P ch
YjX �

~PXjYk

Throughout this paper, we will assume that the joint process fXn; Y ng1n=1 is stationary and
ergodic. It is also assumed that the feedback is noiseless.

We will also use the �nite dimensional probability distributions corresponding to the random
processes in (1) and (3) in order to express directed information and other related quantities.
In particular, we will need the following de�nitions of directed probability distributions [4].

De�nition 1.

~PXN jY N ,

NY
n=1

PXnjXn�1;Y n�1 ;

~P k
XN jY N ,

NY
n=1

PXnjXn�1;Y n�k ;

~P ch
Y N jXN ,

NY
n=1

PYnjXn;Y n�1 :

In the above de�nition, we note that for n < k, PXnjXn�1;Y n�k is taken to be equal to
PXnjXn�1 . We also observe that, using Bayes' rule, the joint probability distribution of the
system at time N can always be written as

PXN ;Y N =
NY
n=1

PXnjXn�1;Y n�1 � PYnjXn;Y n�1 = ~PXN jY N � ~P ch
Y N jXN : (4)

3 Channel Coding- Feedback with delay

In this section, we consider a channel with feedback with arbitrary delay k, as shown in Figure
1. We want to characterize the capacity of this channel. Toward this end, we give a new
interpretation for directed information, a quantity �rst de�ned by Massey [1]. We then use this
interpretation to deduce the capacity of a channel with arbitrarily delayed feedback. It should
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Figure 1: Channel with k-delayed feedback

be mentioned here that �nite-state machine channels with arbitrarily delayed feedback were
considered in [9].

A technical remark is in order before we proceed. Throughout this work, we will use the word
`capacity' to denote the maximum achievable rate assuming that the joint process fXn; Y ng1n=1
is stationary and ergodic. This assumption is made only to keep the expressions intuitive and
to give insight into the feedback problem. The stationary and ergodic assumption enables us
to use a directed version [10] of the Asymptotic Equipartition Property to give simple proofs
of the capacity results. We can also rigorously prove the results for the general non-stationary,
non-ergodic case by using information spectrum [11] versions of all the information quantities
in the capacity expressions.

The notion of directed information is needed to characterize the feedback capacity. The
directed information owing from random sequence XN to random sequence Y N is de�ned as

I(XN ! Y N ) ,
NX
n=1

I(Xn;YnjY
n�1): (5)

Using the chain rule, this can be written as

I(XN ! Y N ) = I(XN ;Y N )�
NX
n=2

I(Y n�1;XnjX
n�1) (6)

We start with a channel without feedback. The no-feedback capacity is

Cno�FB = sup
PX

lim
N!1

1

N
I(XN ;Y N ): (7)

When there is no feedback, the interpretation is that I(XN ;Y N ) is the reduction in uncertainty
of the input XN when the decoder observes Y N . Now consider the same channel with delay 1
feedback, i.e. k = 1 in Figure 1. It is known [4] that the capacity of this channel is

C1
FB = sup

P
XjY1

lim
N!1

1

N
I(XN ! Y N ): (8)

This can be interpreted as follows. When there is feedback with delay 1, to generate the input
Xn, the encoder knows all the past outputs Y

n�1. Hence the information I(Y n�1;XijX
n�1) is

already known at both encoder and decoder due to the feedback and is not `actually transmit-
ted'. In light of this interpretation, (6) says that when there is feedback, the mutual information
I(XN ;Y N ) is still the fundamental quantity that characterizes the capacity, but the information

that is known at both ends due to the feedback
�PN

n=2 I(Y
n;XnjX

n�1)
�
should be subtracted

out. This might seem surprising because it is obvious that the maximum achievable rate should



not decrease with feedback. Reassuringly, this is indeed true, since we have a larger set of
distributions to optimize over when there is feedback. In other words, although the objective
function with feedback is smaller

�
I(XN ! Y N ) � I(XN ;Y N )

�
, the constraint set of optimiza-

tion is larger when feedback is present since the space of PX is contained in the space of ~PXjY:
This interpretation of directed information lends itself to deducing the capacity when the

feedback has arbitrary delay k (Figure 1). Here, the encoder knows the outputs Y n�k to generate
input Xn. Hence the information I(Y n�k;XnjX

n�1) is already known at both encoder and
decoder due to the feedback and is not `actually transmitted'. One can guess that the capacity
should be

Ck
FB = sup

~P
XjYk

lim
N!1

1

N

"
I(XN ;Y N )�

NX
n=k+1

I(Y n�k;XnjX
n�1)

#
: (9)

Although the proof is omitted here, we can show that this is actually the capacity with k-delayed
feedback. For brevity, we de�ne

Ik(X
N ! Y N ) = I(XN ;Y N )�

NX
n=k+1

I(Y n�k;XnjX
n�1): (10)

In the next section, we will examine and compare in detail the three capacity expressions
given by (8), (7) and (9). Before proceeding, we need to express the directed information and
it's more general counterpart Ik(X

N ! Y N ) using the directed quantities in De�nition 1.

Proposition 1.

Ik(X
N ! Y N ) =

X
xN ;yN

P (xN ; yN ) log
P (xN ; yN )

~P k(xN jyN ) � P (yN )
:

Proof.

Ik(X
N ! Y N ) = I(XN ;Y N )�

NX

n=k+1

I(Y n�k;XnjX
n�1)

=
X

xN ;yN

P (xN ; yN ) log
P (xN ; yN )

P (xN )P (yN )
�

NX

n=k+1

X

xn;yn�k

P (xn; yn�k) log
P (xn; y

n�kjxn�1)

P (xnjxn�1)P (yn�kjxn�1)

=
X

xN ;yN

P (xN ; yN ) log
P (xN ; yN )

P (xN ) � P (yN )
�

NX

n=k+1

X

xN ;yN

P (xN ; yN ) log
P (xnjx

n�1; yn�k)

P (xnjxn�1)

=
X

xN ;yN

P (xN ; yN ) log
P (xN ; yN )

P (xN ) � P (yN )
�
X

xN ;yN

P (xN ; yN ) log

NY

n=k+1

P (xnjx
n�1; yn�k)

P (xnjxn�1)
: (11)

Using De�nition 1, we can write this as

Ik(X
N ! Y N ) =

X

xN ;yN

P (xN ; yN ) log
P (xN ; yN )

P (xN ) � P (yN )
�
X

xN ;yN

P (xN ; yN ) log
~P k(xN jyN )

P (xN )

=
X

xN ;yN

P (xN ; yN ) log
P (xN ; yN )

~P k(xN jyN ) � P (yN )
:

(12)

In particular, we have

I(XN ! Y N ) =
X
xN ;yN

P (xN ; yN ) log
P (xN ; yN )

~P (xN jyN ) � P (yN )
: (13)



3.1 They are all the same - Directed Information!

The capacity expressions for a channel with no feedback, unit delay feedback and k-delayed
feedback are given by (7),(8) and (9) respectively. We will now compare the three expressions
and show that the objective function in all three cases can be written as directed information
owing from XN to Y N .

First consider the case of k-delayed feedback. Consider a time-line of how input symbols are
produced at the encoder until time N .

X1 X2 : : : Xk Xk+1(Y
1) Xk+1(Y

2) : : : XN (Y
N�k).

The input distribution of the system until time N is given byn
PX1

; PX2jX1
; : : : ; PXkjXk�1 ; PXkjXk�1;Y 1 ; : : : ; PXN jXN�1;Y N�k

o
:

This coupled with the channel distribution P ch speci�es the joint distribution of the system at
time N as

PXN ;Y N = PX1
� P ch

Y1jX1
: : : PXk+1jXk;Y 1 � P ch

Yk+1jXk+1;Y k : : : PXN jXN�1;Y N�k � P ch
YN jXN ;Y N�k

= ~P k
XN jY N � ~P

ch
Y N jXN :

(14)

But from (4), we know that the joint distribution for the system can always be written as

PXN ;Y N = ~PXN jY N � ~P ch
Y N jXN :

Therefore, for a channel with k-delayed feedback, we must have

~P k
XN jY N = ~PXN jY N : (15)

Using this in Proposition 1 and (13), we get

Ik(X
N ! Y N ) = I(XN ! Y N )

for a channel with k-delayed feedback. It follows that the capacity can be written as

Ck
FB = sup

~P
XjYk

lim
N!1

1

N
I(XN ! Y N ): (16)

The no feedback case is just a special case of the above (k =1). When there is no feedback
in the channel, the joint distribution is given by

PXN ;Y N = PXN � ~P ch
Y N jXN :

Comparing with (4) again, we obtain

PXN = ~PXN jY N : (17)

which implies that when there is no feedback,

I(XN ;Y N ) = I(XN ! Y N ):

Therefore,

Cno�FB = sup
PX

lim
N!1

1

N
I(XN ! Y N ): (18)

Thus for all three cases- unit-delayed feedback, k-delayed feedback and no feedback the
objective function in the capacity expression is always directed information. But the space of
optimization gets progressively smaller from unit-delay feedback (sup~P

XjY1
) to k-delay feedback

(sup~P
XjYk

) to no feedback (supPX).
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Figure 2: Channel with k-delayed feedback and l-delayed state-information

4 Channels with feedback and State information

In this section, we analyze the general model shown in Figure 2. There is a channel with input
X, channel state S and output Y . It is de�ned by the sequence of distributions

P ch
YjX;S = fPYnjXn;Y n�1;Sng

1
n=1: (19)

There is k-delayed feedback, as in the previous section. In addition, the state information is
known with delay l at both the encoder and decoder. The communication is performed over N
channel uses. Thus at time n, the encoder has Y n�k and Sn�l available to generate channel
input Xn. We allow the possibility that l could be negative, i.e., the channel state information
is available non-causally. For instance, l = �3 means that at time n, state symbols Sn+3 are
available to both encoder and decoder. It is understood that for negative l, Sn�l = SN when
n� l � N .

4.1 Causal state information

Consider the case with causal state-information, i.e., l � 0. Since the channel input can depend
on the fed-back symbols and the available state information, the input distribution is of the
form

~PXjYk;Sl = fPXnjXn�1;Y n�k;Sn�lg
1
n=1: (20)

Consider N uses of the channel. First, we assume that the channel states SN are produced a

priori randomly according to fPSnjSn�1g
1
n=1 . Then, the joint distribution at time N is given

by

PXN ;Y N ;SN = PSN �
NY
n=1

PXnjXn�1;Y n�1;SN � PYnjY n�1;Xn;SN

= PSN �
NY
n=1

PXnjXn�1;Y n�k;Sn�l � P
ch
YnjY n�1;Xn;Sn ;

(21)

where we have made two practical assumptions to obtain the second equality. The �rst one is
the physical constraint on the channel input distribution that at time n, it can produce input
Xn based only on what is available to it, viz., (Xn�1; Y n�k; Sn�l). The second assumption
stems from the de�nition of the channel.

On the other hand, we can also assume that the channel states are produced in real time,
i.e., at time n, Sn, Xn are produced and the channel acts on Sn and Xn to produce Yn. Then,



the joint distribution at time N is determined as

PXN ;Y N ;SN =
NY
n=1

PSnjSn�1 � PXnjXn�1;Y n�1;Sn � PYnjY n�1;Xn;Sn

=
NY
n=1

PSnjSn�1 � PXnjXn�1;Y n�k;Sn�l � P
ch
YnjY n�1;Xn;Sn ;

(22)

where we have again made the assumption relating to the physical constraints on the channel
input. (21) and (22) arise from two di�erent physical models that result in the same joint dis-
tribution because of the practical assumptions inherent in each case. Without loss of generality,
we will consider the �rst model where SN is produced a priori, since this model can also be
used when the state information is known non-causally.

It is easy to see that the state symbols fSng can be considered as additional outputs of the
channel which are fed back to the encoder with delay l. This is justi�ed since the state infor-
mation is available with delay l at the encoder and the decoder acts on the channel outputs and
state information only at the end of all reception (at time N+l). Hence the encoder knows Y n�k

and Sn�l to produce the input Xn at time n. Hence the information I(Y n�kSn�l;XnjX
n�1)

is not `really transmitted' and comes for free. Using the same line of reasoning as before, we
state the following theorem, omitting the proof.

Theorem 1. The capacity of a channel whose output Y is fed back with delay k and state

information S is available with delay l at both the transmitter and the receiver is

C
k;l
FB = sup

~P
XjYk;Sl

lim
N!1

1

N

24I(XN ;Y NSN )�
NX

n=min (k;l)+1

I(Y n�kSn�l;XnjX
n�1)

35 : (23)

However, unlike the previous case, we cannot reduce this expression to a directed information
quantity.

4.2 Non-Causal state information

In this case, the channel state information is produced a priori and the state information
available at the encoder and decoder at time n is Sn+m, with m > 0. Hence, to generate input
Xn, the encoder can use m channel states from the future. The input distribution is given by

~PXjYk;S�m = fPXnjXn�1;Y n�k;Sn+mg
1
n=1: (24)

The joint distribution at time N is given by

PXN ;Y N ;SN = PSN �
NY
n=1

PXnjXn�1;Y n�1;SN � PYnjY n�1;Xn;SN

= PSN �
NY
n=1

PXnjXn�1;Y n�1;Sn+m � P
ch
YnjY n�1;Xn;Sn ;

(25)

where we have used the physical constraint on the channel input distribution and the de�nition
of the channel to obtain the second equality. The arguments in the previous section hold here
too, and we can show that the capacity is given by

C
k;�m
FB = sup

~P
XjYk;S�m

lim
N!1

1

N

"
I(XN ;Y NSN )�

NX
n=1

I(Y n�kSn+m;XnjX
n�1)

#
: (26)
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Figure 3: Source coding system with k-delayed feedforward.

5 Source Coding with Feedforward

We will now look at the source coding versions of the problems hitherto discussed. The dual of
channel coding with feedback is source coding with feedforward [7, 8, 5, 6]. Feedforward means
that in addition to the index, the decoder has access to some past source samples too. More
precisely, for a system with feedforward with delay k, the decoder has access to source samples
Xn�k to produce reconstruction symbol X̂n.

The model is shown in Figure 3. Consider a discrete source X with Nth order probability
distribution PXN , alphabet X and reconstruction alphabet bX . There is an associated distortion
measure d : XN � bXN ! R

+.
A source code with feedforward of block length N and rate R is de�ned as follows. The

encoder is a mapping to an index set: e : XN ! f1; : : : ; 2NRg. The decoder receives the
index transmitted by the encoder, and to reconstruct the nth sample, it has access to all the
past (n � k) samples of the source. In other words, the decoder is a sequence of mappings
gn : f1; : : : ; 2NRg�X n�k ! bX ; n = 1; : : : ; N . Let x̂N denote the reconstruction of the source
sequence xN . The goal is to �nd the smallest rate R such that Ed(xN ; x̂N ) � D.

We remark that in the following, for the sake of simplicity and intuition, we only consider the
case where the joint process fXn; X̂ng

1
n=1 is stationary and ergodic. So the term `rate distortion

function' will mean the minimum achievable rate assuming that the joint process is stationary
and ergodic. As in the case of channels, the results can be extended to the non-stationary,
non-ergodic case using information spectrum versions of the information quantities used here.

5.1 The Rate distortion function for Feedforward

We know that the rate-distortion function of a source without feedforward is [12]

Rno�ff (D) = inf
P
X̂jX:�(PX̂jX)�D

lim
N!1

1

N
I(X̂N ;XN ); (27)

where
P
X̂jX = fP

X̂njXng
1
n=1 and �(P

X̂jX) = lim sup
N!1

Ed(XN ; X̂N ):

I(XN ; X̂N ) is the minimum number of bits required to represent the sequence XN by the
sequence X̂N . When there is feedforward with delay k, the decoder already knows Xn�k to
reconstruct X̂n. Hence, we need not spend I(Xn�k; X̂njX̂

n�1) bits to code this information-
this rate comes for free. In other words, the performance limit on this problem is characterized
by

Ik(X̂
N ! XN ) = I(X̂N ;XN )�

NX
i=k+1

I(Xi�k; X̂ijX̂
i�1) (28)
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Figure 4: Source coding system with k-delayed feedforward and l-delayed side information.

The rate-distortion function for source coding with k-delay feedforward is [7]

Rk
ff (D) = inf

P
X̂jX:�(PX̂jX)�D

lim
N!1

1

N
Ik(X̂

N ! XN ): (29)

It can be seen from the above that for delay 1 feedforward,

R1
ff (D) = inf

P
X̂jX:�(PX̂jX)�D

lim
N!1

1

N
I(X̂N ! XN ); (30)

which is analogous to the case of channel coding with delay 1 feedback.

5.2 Are they all the same?

For channels with feedback, we saw in Section 3.1 that the capacity expressions for both the
no-feedback case and the k-delayed feedback case have the same objective function- directed
information owing from input to output. It is the constraint space of optimization that gets
progressively smaller with increasing k and is the smallest for no-feedback. So does this happen
in source coding with feedforward too?

We have a reversal of roles in source coding. Observe that the rate-distortion function with
k-delayed feedforward given by (29) and the rate-distortion function for no feedforward given
by (27). The set of optimization is always the same- P

X̂jX, subject to the distortion constraint.

It is clear from (28) that the objective function increases with increasing k and is the largest
when there is no feedforward (I(X̂N ;XN )).

In channel coding, for any k, the constraint on the input distribution ensures that

~P k
XN jY N = ~PXN jY N :

holds. It is this constraint that makes the objective function equal to the directed information in
each case. In source coding, both with and without feedforward, there is no such constraint on
the conditional distribution that can be picked. Hence the objective functions are all di�erent.
In summary, for channels, the boost in capacity of channels due to feedback is because of a
larger constraint set available to optimize the same objective function. In contrast, for sources,
the decrease in the rate-distortion function due to feedforward is because we optimize a smaller
objective function over the same constraint set.

5.3 Feed Forward with Delay and Side Information

In this section, we add side information to the feedforward problem (Figure 4). More precisely,
there is a source X with feedforward delay k and side-information S available along with the



source at the encoder and fed forward with delay l to the decoder. We also allow the possibility
that l could be negative.

The encoder is a mapping to an index set: e : XN � SN ! f1; : : : ; 2NRg. The decoder is
a sequence of mappings gn : f1; : : : ; 2NRg � X n�k � Sn�l ! bX ; n = 1; : : : ; N . Clearly, the
side-information can be considered as `another source' fed-forward with delay l. To reconstruct
the nth sample, the decoder has access to all the past (n � k) samples of the source and all
the (n � l) samples of side-information. Hence, we need not spend bits to code the informa-
tion I(X̂n;X

n�k; Sn�ljXn�1); 8n. We state the following theorem for source coding with
feedforward and side-information.

Theorem 2. The rate-distortion function for a source X with side-information S where the

source has delay k feedforward and the side-information has delay l feedforward is

R
k;l
ff (D) = inf

P
X̂jXS:�(PX̂jXS)�D

lim
N!1

1

N

"
I(X̂N ;XNSN )�

NX
n=1

I(X̂n;X
n�kSn�ljX̂n�1)

#
;

where

P
X̂jXS = fP

X̂njXn;Sn
g1n=1 and �(P

X̂jXS) = lim sup
N!1

Ed(XN ; X̂N ):
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