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Abstract—It is shown that the original construction of polar
codes suffices to achieve the symmetric capacity of discrete
memoryless channels with arbitrary input alphabet sizes. It is
shown that in general, channel polarization happens in several,
rather than only two, levels so that the synthesized channels
are either useless, perfect or “partially perfect”. Given a coset
decomposition of the input alphabet, there exists a corresponding
partially perfect channel whose outputs uniquely determine the
coset where the channel input symbol belongs to. By a slight
modification of the encoding and decoding rules, it is shown that
perfect transmission of certain information letters over partially
perfect channels is possible. It is also shown through an example
that polar codes do not achieve the capacity of coset codes over
arbitrary channels.

I. INTRODUCTION

Polar codes were originally proposed by Arikan in [1] for
discrete memoryless channels with binary input. Polar codes
over binary input channels are shifted linear (coset) codes
that achieve the symmetric capacity of these channels and are
constructed based on the Kronecker power of the 2×2 matrix[

1 0
1 1

]
. It is known that non-binary codes outperform

binary codes in certain communication settings. In order to
construct capacity achieving codes over non binary channels,
there have been attempts to extend polar coding techniques for
channels of arbitrary input sizes. It is shown in [5] that polar
codes achieve the symmetric capacity of the channel when the
size of the input alphabet is a prime. For channels of arbitrary
input alphabet sizes however, it is shown that the original
construction of polar codes does not achieve the symmetric
capacity of the channel and a randomized construction of
polar codes based on permutations is proposed to achieve the
symmetric capacity of the channel [5]. In another approach
in [5], a multilevel code construction is proposed which is
based on the decomposition of the composite input channel
into channels of prime input alphabet size. In [2], It is shown
that for channels for which the input alphabet size is a prime
power, polar codes defined on the input alphabet can achieve
the symmetric capacity without the need to use multilevel
code construction methods. Independent from this work, Park
and Barg [3] observed the multilevel polarization for channels
of input alphabet a power of 2.
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In this paper, we show that with a slight modification
of the encoding and decoding rules, the original generator
matrix used for binary input channels suffices to achieve the
symmetric capacity of the channel. Coset codes, in general,
do not achieve the symmetric capacity of channels and hence
the constructed polar code cannot generally be a coset code.
Although the code uses the same generator matrix as in the
binary case, the constructed code is not a coset code due to
the fact that the message tuples do not form a group.

The paper is organized as follows, In section II some
definitions and basic facts are stated which are used in the
paper. In section III, it is shown that polar codes achieve
the symmetric capacity of channels with input alphabet size
q = pr where p is a prime and r is an integer. This result is
generalized to arbitrary channels in section IV. In section V,
two examples of channels over Z4 are provided. The intent of
the first example is to illustrate the multilevel polarization of
the channel and in the second example we show that polar
codes as coset codes (i.e. without the modification of the
encoding rule), do not achieve the capacity of coset codes
over the channel.

II. PRELIMINARIES

1) Source and Channel Models: We consider discrete mem-
oryless and stationary channels used without feedback. We
associate two finite sets X and Y with the channel as the
channel input and output alphabets. These channels can be
characterized by a conditional probability law W (y|x) for
x ∈ X and y ∈ Y . The channel is specified by (X ,Y,W ).
Assuming a perfect source coding block applied prior to the
channel coding, the source of information generates messages
over the set {1, 2, . . . ,M} uniformly.

2) Achievability and Capacity: A transmission system with
parameters (n,M, τ) for reliable communication over a given
channel (X ,Y,W ) consists of an encoding mapping and a
decoding mapping e : {1, 2, . . . ,M} → Xn, f : Yn →
{1, 2, . . . ,M} such that for all m = 1, 2, . . . ,M ,

1

M

M∑
m=1

Wn (f(Y n) 6= m|Xn = e(m)) ≤ τ

Given a channel (X ,Y,W ), the rate R is said to be achievable
if for all ε > 0 and for all sufficiently large n, there
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exists a transmission system for reliable communication with
parameters (n,M, τ) such that 1

n logM ≥ R− ε, τ ≤ ε.
3) Symmetric Capacity and the Bhattacharyya Parameter:

For a channel (X ,Y,W ), the symmetric capacity is defined
as I0 = I(X;Y ) when the channel input X is uniformly
distributed over X and Y is the output of the channel. i.e. for
q = |X |,

I0(W ) =
∑
x∈X

∑
y∈Y

1

q
W (y|x) log W (y|x)∑

x̃∈X
1
qW (y|x̃)

The Bhattacharyya distance between two distinct input sym-
bols x and x̃ is defined as

Z(W{x,x̃}) =
∑
y∈Y

√
W (y|x)W (y|x̃)

and the average Bhattacharyya distance is defined as

Z(W ) =
∑

x,x̃∈X ,x 6=x̃

1

q(q − 1)
Z(W{x,x̃})

4) Polar Codes: For any N = 2n, the generator matrix
for polar codes is defined as GN = BNF

⊗n where BN is

a permutation of rows, F =

[
1 0
1 1

]
and ⊗ denotes the

Kronecker product. The decoding algorithm for polar codes is
a specific form of successive cancellation [1].

5) Polar Codes Over Abelian Groups: For any discrete
memoryless channel, there always exists an Abelian Group
structure defiend over the channel input alphabet. In general,
for an Abelian group, there may not exist a multipliction
operation and therefore, before using polar codes for channels
of arbitrary input alphabet size, a generator matrix for codes
over abelian groups needs to be properly defined. In section
VII-A, a convention is introduced to generate codes over
groups using 0− 1 valued generator matrices.

6) Group Codes: Let the channel input alphabet X be
equipped with the structure of a finite Abelian group G of
the same size. Then the channel is specified by (G,Y,W ).
A group code over G of length n for this channel is any
subgroup of Gn. The group capacity of a channel (G,Y,W )
is the maximum achievable rate using group codes over G for
this channel. Group codes generalize the notion of linear codes
over fields to channels with composite input alphabet sizes. A
coset code is a shift of a group code by a constant vector.

7) Notation: We denote by O(ε) any function of ε such
that O(ε)→ 0 as ε→ 0. We denote by a ≈ b if a = b+O(ε).
Given a partition {A0, A1, · · · , Ar} of the index set [1, N ] and
sets Tt for t = 0, · · · , r, the direct sum

⊕I
i=1 T

At
t is defined

as the set of all tuples uN1 = (u1, · · · , uN ) such that ui ∈ Tt
whenever i ∈ At.

III. POLAR CODES OVER Zpr RINGS

In this section, we consider channels of input alphabet size
q = pr for some prime number p and a positive integer r. In
this case, the input alphabet of the channel can be equipped
with addition and multiplication modulo pr to be considered as
a ring. We prove the achievability of the symmetric capacity

of these channels using polar codes and later in section IV
we will generalize this result to channels of arbitrary input
alphabet sizes.

A. Zpr Rings

Let G = Zpr = {0, 1, 2, · · · , pr − 1} be the input alphabet
of the channel, where p is a prime and r is an integer. For
t = 0, 1, · · · , r, define the subgroups Ht of G as:

Ht = ptG = {0, pt, 2pt, · · · , (pr−t − 1)pt}

and for t = 0, 1, · · · , r, define the subsets Kt of G as Kt =
Ht\Ht+1. Note that K0 is the set of all invertible elements of
G and Kr = {0}. One can sort the sets K0 < K1 < · · · < Kr

in a decreasing order of “inversability” of its elements. Let Tt
be a transversal of Ht in G i.e. Tt is a subset of G containing
one and only one element from each coset (shift) of Ht in G.
One valid choice for Tt is {0, 1, · · · , pt − 1}.

B. Recursive Channel Transformation

1) The Basic Channel Transforms: It has been shown in
[1] that the error probability of polar codes over binary input
channels is upper bounded by the sum of the Bhattacharyya
parameters of certain channels defined by a recursive channel
transformation. The same set of synthesized channels appear
for polar codes over channels with arbitrary input alphabet
sizes. The channel transformations are given by:

W−(y1, y2|u1) =
∑
u2∈G

1

q
W (y1|u1 + u2)W (y2|u2)

for y1, y2 ∈ Y and u1 ∈ G (1)

W+(y1, y2, u1|u2) =
1

q
W (y1|u1 + u2)W (y2|u2)

for y1, y2 ∈ Y and u1, u2 ∈ G (2)

Repeating these operations n times recursively, we obtain
N = 2n channels W (1)

N , · · · ,W (N)
N . For i = 1, · · · , N , these

channels are given by:

W
(i)
N (yN1 , u

i−1
1 |ui) =

∑
uNi+1∈GN−i

1

qN−1
WN (yN1 |uN1 GN )

Where GN is the generator matrix for polar codes.
For the case of binary input channels, it has been shown [1]
that as N → ∞, these channels polarize in the sense that
their Bhattacharyya parameter is either close to zero (perfect
channel) or close to one (useless channel). In the next part,
we show that in general, when the input alphabet is a prime
power, the polarization happens in multiple levels so that as
N →∞ channels get useless, perfect or partially perfect.
For an integer n, let J be a uniform random variable over
the set {1, 2, · · · , N = 2n} and define the random variable
In(W ) as

In(W ) = I(W
(J)
N ) (3)
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It has been shown in [5] that the process I0, I1, I2, · · · is a
martingale; hence E{In} = I0. Similarly, for an integer n,
define the random variable Znd (W ) = Zd(W

(J)
N ) where

Zd(W ) =
1

q

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d) (4)

This quantity is defined in [5].
2) Asymptotic Behavior of Synthesized Channels: It is

shown in Lemma VII.1 that Znd converges to a Bernoulli
variable. The next lemma gives a sufficient condition for
two processes Znd and Znd′ to converge to the same random
variable.

Lemma III.1. If d, d′ ∈ Kt for some 0 ≤ t ≤ r− 1, then Znd
and Znd′ converge to the same bernoulli variable.

Proof: It has been shown that Znd and Znd′ both converge
to bernoulli random variables. It suffices to show that Znd ≈ 1
implies Znd′ ≈ 1 and Znd ≈ 0 implies Znd′ ≈ 0. First assume
Znd ≈ 1. Lemma VII.4 implies that for all y ∈ Y , if x− x′ ∈
〈d〉 = 〈d′〉 then W (y|x) ≈ W (y|x′). This and Lemma VII.8
in turn imply that Znd′ ≈ 1.
Next, assume Znd ≈ 0 and assume for contradiction that Znd′ ≈
1. Same as above, the second assumption implies that Znd ≈ 1
which is a contradiction.

For t = 0 · · · r− 1, pick an arbitrary element kt ∈ Kt. The
lemma above suggests that we only need to study Zkt ’s rather
than all Zd’s.

Lemma III.2. if Zkt ≈ 1 then Zks ≈ 1 for all t ≤ s ≤ r− 1.

Proof: Follows from lemma VII.4 and lemma VII.8 and
the fact that ks ∈ 〈kt〉.

This lemma implies that for the group G = Zpr all possible
asymptotic cases are:
• case 0: Zk0 = 1, Zk1 = 1, Zk2 = 1, · · · , Zkr−1

= 1.
• case 1: Zk0 = 0, Zk1 = 1, Zk1 = 1, · · · , Zkr−1 = 1.
• case 2: Zk0 = 0, Zk1 = 0, Zk1 = 1, · · · , Zkr−1 = 1.

...
• case r: Zk0 = 0, Zk1 = 0, Zk1 = 0, · · · , Zkr−1 = 0.

Where for t = 0, · · · , r, the case t happens with some
probability pt.
For t = 0, · · · , r, define Zt(W (i)

N ) =
∑
d/∈Ht Zd(W

(i)
N ). Note

that Zt(W (i)
N ) = 0 in case t. Next, We study the behavior of

In in each of these asymptotic cases.

Lemma III.3. For a channel (Zpr ,Y,W ) and for t =
0, 1, · · · , r, if Zk0 ≈ 0, Zk1 ≈ 0, · · · , Zkt−1 ≈ 0, Zkt ≈
1, · · · , Zkr−1 ≈ 1, then I0(W ) ≈ t log p.

Proof: We first prove the statement for the case where
the approximate equalities are replaced with equalities. From
Lemma VII.4, we have W (y|x) =W (y|x̃) if x− x̃ ∈ Ht and
from Lemma VII.9 we have W (y|x)W (y|x̃) = 0 if x − x̃ ∈
K0 ∪K1 ∪Kt−1 = G\Ht. Therefore, for y ∈ Y with positive
probability pY (y), W (y|x) is uniform over a coset of Ht and
zero over all other cosets. i.e. for all y ∈ Y , there exists a coset

Cyt of Ht such that 1
qW (y|x) = pY (y)

|Cyt |
= pY (y)

pr−t for y ∈ Cyt
and W (y|x) = 0 otherwise. The mutual information is equal
to

I0(W ) =
∑
x∈X

∑
y∈Y

1

q
W (y|x) log W (y|x)∑

x̃∈X
1
qW (y|x̃)

=
∑
y∈Y

∑
x∈Cyt

1

q
W (y|x) log W (y|x)∑

x̃∈Cyt
1
qW (y|x̃)

=
∑
y∈Y

∑
x∈Cyt

pY (y)

pr−t
log

prpY (y)
pr−t∑

x̃∈Cyt
pY (y)
pr−t

=
∑
y∈Y

pr−t
pY (y)

pr−t
log

prpY (y)
pr−t

pr−t pY (y)
pr−t

=
∑
y∈Y

pY (y) log p
t = t log p

The lemma is proved considering the continuity of the mutual
information.

We have shown that the process In converges to an r + 1
valued discrete random variable: I = t log p with probability
pt for t = 0, · · · , r.

3) Summary of Channel Transformation: For the channel
(Zpr ,Y,W ), the convergence of the processes In and (Zt)n

for t = 0, 1, · · · , r implies that for all ε > 0, there exists a
number N and a partition {Aε0, Aε1, · · · , Aεr} of [1, N ] such
that for t = 0, · · · , r and i ∈ Aεt , I(W

(i)
N ) = t log(p) + O(ε)

and Zt(W
(i)
N ) = O(ε). Moreover, as ε → 0, |A

ε
t |
N → pt for

some probabilities p0, · · · , pr.

C. Encoding and Decoding

In the original construction of polar codes, we fix the
input symbols corresponding to useless channels and send
information symbols over perfect channels. Here, since the
channels do not polarize into two levels, the encoding is
slightly different and we send “some” information bits over
“partially perfect” channels. At the encoder, if i ∈ Aεt for
some t = 0, · · · , r, the information symbol is chosen from
the transversal Tt arbitrarily and not from the whole set
G. As we will see later, the channel W (i)

N is perfect for
symbols chosen from Tt and perfect decoding is possible at
the decoder. Let X εN =

⊕r
t=0 T

Aεt
t be the set of all valid input

sequences. For the sake of analysis, as in the binary case, the
message uN1 is dithered with a uniformly distributed random
vector bN1 ∈

⊕r
t=0H

Aεt
t revealed to both the encoder and

the decoder. A message vN1 ∈ X εN is encoded to the vector
xN1 = (vN1 + bN1 )GN . Note that uN1 = vN1 + bN1 is uniformly
distributed over GN .
At the decoder, after observing the output vector yN1 , for
t = 0, · · · , r and i ∈ At , use the following decoding rule:

ûi = fi(y
N
1 , û

i−1
1 ) = argmax

g∈Tt
W

(i)
N (yN1 , û

i−1
1 |g)
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And finally, the message is recovered as vN1 = uN1 − bN1 .
The total number of valid input sequences is equal to

2NR =

r∏
t=0

|Tt||At| =
r∏
t=0

pt|At| =

r∏
t=0

ptptN

Therefore, the rate is equal to R =
∑r
t=0 ptt log p. On the

other hand, since In is a martingale [5], we have E{I∞} = I0.
Since E{I∞} =

∑r
t=0 ptt log p we observe that the rate R is

equal to the symmetric capacity I0. We will see in the next
section that this rate is achievable.

D. Error Analysis
Let Bi be the event that the first error occurs when the

decoder decodes the ith symbol:

Bi =
{
(uN1 , y

N
1 ) ∈ GN × YN |ui−11 = f i−11 (uN1 , y

N
1 )

, ui 6= fi(u
N
1 , y

N
1 )
}

⊆
{
(uN1 , y

N
1 ) ∈ X εN × YN |ui 6= fi(u

N
1 , y

N
1 )
}

For t = 0, · · · , r and i ∈ At, define

Ei =
{
(uN1 , y

N
1 ) ∈ X εN × YN |W

(i)
N (yN1 , u

i−1
1 |ui)

≤W (i)
N (yN1 , u

i−1
1 |ũi) for some ũi ∈ Tt

}
Lemma III.4. For t = 0, · · · , r and i ∈ At, P (Ei) ≤
qZt(W

(i)
N ) = O(ε).

Proof: For ui, ũi ∈ Tt, if ui 6= ũi, then ui, ũi are not
in the same coset of Ht and hence ui − ũi /∈ Ht. Similarly,
ui − ũi /∈ Hs for s = t, t+ 1, · · · , r.

P (Ei) =
∑
uN1 ,y

N
1

1

qN
WN (yN1 , u

N
1 )1Ei(u

N
1 , y

N
1 )

≤
∑
uN1 ,y

N
1

1

qN
WN (yN1 , u

N
1 )

∑
ũi 6=ui

√√√√W
(i)
N (yN1 , u

i−1
1 |ũi)

W
(i)
N (yN1 , u

i−1
1 |ui)

=
∑
ui∈Tt

∑
ũi∈Tt,ũi 6=ui

1

q
Z{ui,ũi}(W

(i)
N )

Note that for d = ui−ũi, Z{ui,ũi}(W
(i)
N ) ≤ qZd(W (i)

N ). Since
d ∈ K0 ∪K1 ∪ · · ·Kt−1 = G\Ht,

Z{ui,ũi}(W
(i)
N ) ≤ qZt(W (i)

N ) = O(ε)

The probability of block error is given by P (err) =∑r
t=0

∑
i∈At P (Bi). Since Bi ⊆ Ei, we get

P (err) ≤
r∑
t=0

∑
i∈At

qZt(W
(i)
N ) = O(ε)

Therefore, the probability of block error goes to zero as
ε→ 0.

IV. POLAR CODES OVER ABELIAN GROUPS

For any channel input alphabet size there always exist an
Abelian group of the same size. In this section, we generalize
the result of the previous section to channels of arbitrary input
alphabet size.

A. Abelian Groups

Let the Abelian group G be the input alphabet of the
channel. It is a standard fact that any Abelian group can be
decomposed as a direct sum of Zpr groups. Let G =

⊕L
l=1Rl

with Rl = Zprll
where pl’s are prime and rl’s are integers.

For t = (t1, t2, · · · , tL) with tl ∈ {0, 1, · · · , rl}, there exists a
corresponding subgroup H of G defined by H =

⊕L
l=1 p

tl
l Rl.

Let TH be a transversal of H in G.

B. Recursive Channel Transformation

1) The Basic Channel Transforms: The synthesized chan-
nels W (i)

N and the process In(W ) are defined exactly the same
way as the Zpr case through Equations 1 and 3.

2) Asymptotic Behavior of Synthesized Channels: Define
Znd (W ) same as 4, it has been shown that For all d 6= 0,
Z∞d (W ) is 0− 1 valued.

Lemma IV.1. If Zd1(W ) ≈ 1 and Zd2(W ) ≈ 1, then
Zd′(W ) ≈ 1 for d′ ∈ 〈d1, d2〉.

Proof: Immediate from Lemma VII.2 and Lemma VII.6.

It has been shown that all Zd(W )’s are 0 − 1 valued.
Let d1, d2, · · · , dm be the set od all d’s with Zd = 1. It
has been shown in Lemma IV.1 that if Zd1(W ) ≈ 1 and
Zd2(W ) ≈ 1, then Zd′(W ) ≈ 1 for d′ ∈ 〈d1, d2〉 where
〈d1, d2〉 is the subgroup generated by d1 and d2. This lemma
is generalizable to the case where Zd1(W ) ≈ 1, Zd2(W ) ≈
1, · · · , Zdm(W ) ≈ 1. In this case we have Zd′(W ) ≈ 1 for
d′ ∈ 〈d1, d2, · · · , dm〉. This means Zd = 1 whenever d ∈ H
where H is the subgroup of G generated by d1, d2, · · · , dm
and Zd = 0 otherwise. Hence all possible asymptotic cases
can be indexed by subgroups of G. i.e. for any H ≤ G, one
possible asymptotic case is

• Case H: Zd(W ) =

{
1 if d ∈ H;
0 Otherwise.

For H ≤ G, define ZH(W
(i)
N ) =

∑
d/∈H Zd(W

(i)
N ). Note

that ZH(W
(i)
N ) = O(ε) in case H .

Next, We study the behavior of In in each of these cases.

Lemma IV.2. For a channel (G,Y,W ) and for a subgroup
H =

⊕L
l=1 p

tl
l Rl of G, if Zd ≈ 1 for d ∈ H and Zd ≈ 0 for

s /∈ H , then I0(W ) ≈ log |G||H| =
∑L
l=1 tl log pl.

Proof: Considering the continuity of the mutual infor-
mation, it suffices to show the lemma when the approximate
equalities are replaced with equalities. From Lemma VII.4,
we have W (y|x) = W (y|x̃) if x − x̃ ∈ H and from Lemma
VII.9 we have W (y|x)W (y|x̃) = 0 if x − x̃ ∈ G\Ht.
Therefore for y ∈ Y with positive probability pY (y), W (y|x)
is uniform over a coset of H and zero over all other cosets.
i.e. for all y ∈ Y , there exists a coset CyH of H such that
1
qW (y|x) = pY (y)

|CyH |
= pY (y)∏L

l=1 p
r−tl

for y ∈ CyH and W (y|x) = 0
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otherwise. The mutual information is equal to

I0(W ) =
∑
x∈X

∑
y∈Y

1

q
W (y|x) log W (y|x)∑

x̃∈X
1
qW (y|x̃)

=
∑
y∈Y

∑
x∈CyH

1

q
W (y|x) log W (y|x)∑

x̃∈CyH
1
qW (y|x̃)

=
∑
y∈Y

∑
x∈CyH

pY (y)∏L
l=1 p

r−tl
log

∏L
l=1 p

rlpY (y)∏L
l=1 p

r−tl∑
x̃∈CyH

pY (y)
pr−t

=
∑
y∈Y

pY (y) log
L∏
l=1

ptl =
L∑
l=1

tl log pl = log
|G|
|H|

We have shown that the process In converges to a discrete
random variable: I = log |G||H| with probability pH for H ≤ G.

3) Summary of Channel Transformation: For the channel
(G,Y,W ), the convergence of the processes In and (ZH)n

for t = 0, 1, · · · , r implies that for all ε > 0, there exists
a number N and a partition {AεH |H ≤ G} of [1, N ] such
that for H ≤ G and i ∈ AεH , I(W (i)

N ) = log |G||H| + O(ε) and

ZH(W
(i)
N ) = O(ε). Moreover, as ε→ 0, |A

ε
H |
N → pH for some

probabilities pH , H ≤ G.

C. Encoding and Decoding
At the encoder, if i ∈ AεH for some H ≤ G, the information

symbol is chosen from the transversal TH arbitrarily. Let
X εN =

⊕
H≤G T

AεH
H be the set of all valid input sequences. As

in the Zpr case, the message uN1 is dithered with a uniformly
distributed random vector bN1 ∈

⊕
H≤GH

AεH revealed to both
the encoder and the decoder. A message vN1 ∈ X εN is encoded
to the vector xN1 = (vN1 + bN1 )GN . Note that uN1 = vN1 + bN1
is uniformly distributed over GN .
At the decoder, after observing the output vector yN1 , for
H ≤ G and i ∈ AεH , use the following decoding rule:

ûi = fi(y
N
1 , û

i−1
1 ) = arg max

g∈TH
W

(i)
N (yN1 , û

i−1
1 |g)

And finally, the message is recovered as vN1 = uN1 − bN1 .
The total number of valid input sequences is equal to

2NR =
∏
H≤G

|TH ||AH | =
∏
H≤G

(
|G|
|H|

)|AH |
Therefore the rate is equal to R =

∑
H≤G

|AH |
N log |G||H| . On

the other hand, since In is a martingale [5], we have E{I∞} =
I0. Since E{I∞} =

∑
H≤G pH log |G||H| we observe that the

rate R converges to the symmetric capacity I0 as ε→ 0. We
will see in the next section that this rate is achievable.

D. Error Analysis
Let Bi be the event that the first error occurs when the

decoder decodes the ith symbol:

Bi =
{
(uN1 , y

N
1 ) ∈ GN × YN |ui−11 = f i−11 (uN1 , y

N
1 )

, ui 6= fi(u
N
1 , y

N
1 )
}

⊆
{
(uN1 , y

N
1 ) ∈ GN × YN |ui 6= fi(u

N
1 , y

N
1 )
}

For H ≤ G and i ∈ AεH , define

Ei =
{
(uN1 , y

N
1 ) ∈ GN × YN |W (i)

N (yN1 , u
i−1
1 |ui)

≤W (i)
N (yN1 , u

i−1
1 |ũi) for some ũi ∈ TH

}
Lemma IV.3. For H ≤ G and i ∈ AεH , P (Ei) ≤
qZH(W

(i)
N ) = O(ε).

Proof: For ui, ũi ∈ TH , if ui 6= ũi, then ui, ũi are not in
the same coset of H and hence ui − ũi /∈ H .

P (Ei) =
∑
uN1 ,y

N
1

1

qN
WN (yN1 , u

N
1 )1Ei(u

N
1 , y

N
1 )

≤
∑
uN1 ,y

N
1

1

qN
WN (yN1 , u

N
1 )

∑
ũi 6=ui

√√√√W
(i)
N (yN1 , u

i−1
1 |ũi)

W
(i)
N (yN1 , u

i−1
1 |ui)

=
∑
ui∈TH

∑
ũi∈TH ,ũi 6=ui

1

q
Z{ui,ũi}(W

(i)
N )

Note that for d = ui−ũi, Z{ui,ũi}(W
(i)
N ) ≤ qZd(W (i)

N ). Since
d /∈ H ,

Z{ui,ũi}(W
(i)
N ) ≤ q

(
ZH(W

(i)
N )
)
+O(ε)

The probability of block error is given by P (err) =∑
H≤G

∑
i∈AεH

P (Ei). Since Bi ⊆ Ei, we get

P (err) ≤
∑
H≤G

∑
i∈AεH

qZH(W
(i)
N ) = O(ε)

Therefore, the probability of block error goes to zero as ε→ 0.

V. EXAMPLES

In this part, we consider two examples of channels over
Z4. In the first example, the recursive equations for In(W )
is found and the multi-level polarization of the channel is
observed. It is also shown that polar codes achieve the group
capacity of this specific channel. The intent of the second
example is to show that in general polar codes do not achieve
the group capacity of channels. Note that since transversals
are not subgroups, the polar code used above is not a group
code. In order to obtain a group code based on polar codes we
can use perfect channels and fix useless and partially perfect
channels.

A. Example 1

We consider a channel with input Z4 where in the output
there exists an erasure for each coset of each nontrivial
subgroup. The channel is depicted in Figure 1.

Define H0 = {0, 1, 2, 3}, H1 = {0, 2} and H2 = {0} and
define K0 = {1, 3}, K1 = {2} and K2 = {0}.
For this channel we have:

I0 = I(X;Y ) = 2− ε− 2λ

I02 = I(X;Y |X ∈ H1) = 1− (ε+ λ)

(I ′2)
0 = I(X;Y |X ∈ 1 +H1) = 1− (ε+ λ) = I02
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Fig. 1. Channel 1

The capacity of group codes over this symmetric channel is
equal to [4]:

C = min(I04 , (I2 + I ′2)
0) = min(2− ε− 2λ, 2− 2ε− 2λ)

= 2− 2ε− 2λ

Given a sequence of bits b1b2 · · · bn, let N = 2n and i =

(b1b2 · · · bn)10 and define I(W b1b2···bn) = I(W
(i)
N ). we can

find I(W b1b2···bn) using the following recursion: Define ε0 = ε
and λ0 = λ. for i = 1, · · · , n, if bi = 1, let

εi = ε2i−1 + 2εi−1λi−1

λi = λ2i−1

and if bi = 0, let

εi = 2εi−1 −
(
ε2i−1 + 2εi−1λi−1

)
λi = 2λi−1 − λ2i−1

Then we have I(W b1b2···bn) = 2− εn − 2λn.
All possible cases for this channel are

• case 0 Z∞1 = Z∞3 = 1, Z∞2 = 1⇒ I∞ = 0
• case 1 Z∞1 = Z∞3 = 0, Z∞2 = 1⇒ I∞ = 1
• case 2 Z∞1 = Z∞3 = 0, Z∞2 = 0⇒ I∞ = 2

This result agrees with the asymptotic behavior of In

predicted by the recursion. Figures 2 and 3 show the three
level polarization of the mutual information as n grows.

Define I2(W
b1b2···bn) = I(W

(i)
N |X ∈ H1) and

I ′2(W
b1b2···bn) = I(W

(i)
N |X ∈ 1 +H1). For this channel, we

can show that I2(W b1b2···bn) = I ′2(W
b1b2···bn) = 1−(εn+λn)

and conclude that (I2+ I ′2)
n is a martingale. This observation

provides us with an Ad-hoc way to find the probabilities pt,
t = 0, 1, 2 of the limit random variable I∞ for this simple
channel. We can show the following for the final states:

• case 0 ⇒ (I2 + I ′2)
∞ = 0

• case 1 ⇒ (I2 + I ′2)
∞ = 0

• case 2 ⇒ (I2 + I ′2)
∞ = 2

Therefore we obtain the following three equations:

E{I∞4 } = p0 · 0 + p1 · 1 + p2 · 2 = I04 = 2− ε− 2λ

E{I∞4 } = p0 · 0 + p1 · 0 + p2 · 2 = (I2 + I ′2)
0 = 2− 2ε− 2λ

p0 + p1 + p2 = 1

Fig. 2. The behavior of In for N = 212. The three solid lines are the three
discrete values of I∞ with positive probability.

Fig. 3. The asymptotic behavior of In for N = 24, 28, 212, 214 when the
data is sorted.

Solving this system of equations, we obtain:

p2 = 1− ε− λ = C/2

p1 = I04 − (I2 + I ′2)
0

p0 = 1−
(
I04 − (I2 + I ′2)

0/2
)

We see that the fraction of perfect channels is equal to
the group capacity of the channel and therefore, polar codes
achieve the capacity of group codes for this channel.

B. Example 2
The channel is depicted in Figure 4. For this channel, when

λ = 0.2 we have:

I0 = I(X;Y ) = 0.6390

(I02 + I ′2)
0 = 0.2161

The rate R = min(I04 , (I2 + I ′2)
0) = 0.2161 is achievable

using group codes over this channel [4].
For this channel we have three possible asymptotic case:

1723



0

2

1

3

2

1

λ

λ

Fig. 4. Channel 2

• case 0 Z∞1 = 1, Z∞2 = 1⇒ I∞ = 0, (I2 + I ′2)
∞ = 0

• case 1 Z∞1 = 0, Z∞2 = 1⇒ I∞ = 0, (I2 + I ′2)
∞ = 1

• case 2 Z∞1 = 0, Z∞2 = 0⇒ I∞ = 0, (I2 + I ′2)
∞ = 2

Therefore we obtain the following three equations:

E{I∞4 } = p0 · 0 + p1 · 1 + p2 · 2
E{I∞4 } = p0 · 0 + p1 · 0 + p2 · 2
p0 + p1 + p2 = 1

Therefore, the group capacity of polar codes over this channel
is equal to 2p2 = E{I∞4 }. In order to show that polar codes
do not achieve the rate R, we show that E{(I2 + I ′2)

∞} <
R = (I2+I

′
2)

0. For this channel we can find E{(I2+I ′2)1} =
0.2063 which is strictly less than (I2 + I ′2)

0. The following
lemma implies E{I∞2 } ≤ E{I12} < R = (I2 + I ′2)

0 and
completes the proof.

Lemma V.1. For a channel (Z4,Y,W ), the process (I2 +
I ′2)

n, n = 0, 1, 2, · · · is a supermartingale.

Proof: Let X , U1 and U2 be uniform random variables
over Z4 and let X1 = U1+U2 and X2 = U2. Let Y , Y1 and Y2
be the output of the channel when the input is X , X1 and X2

respectively. Note that the variable X can be represented by a
pair (X̂, X̃) where X̂ takes value in {0, 1} and X̃ takes value
in {0, 2}. Define the variables X̂1, X̃1, X̂2 and X̃2 similarly.
Note that

1

2
(I2 + I ′2) =

1

2

(
I(X̃;Y |X̂ = 0) + I(X̃;Y |X̂ = 1)

)
= I(X̃;Y |X̂) = I(X̂X̃;Y )− I(X̂;Y )

= I(X;Y )− I(X̂;Y )

Since I(X;Y ) is a martingale it suffices to show that
I(X̂;Y ) is a submartingale. We have

I(Û2;W
+) = I(Û2;Y1Y2U1) = I(Û2;Y1Y2Û1Ũ1)

= I(Û2;Y1Y2Û1) + I(Û2; Ũ1|Y1Y2Û1)

≥ I(Û2;Y1Y2Û1)

I(Û1;W
−) = I(Û1;Y1Y2)

Therefore,

I(Û2;W
+) + I(Û1;W

−) ≥ I(Û2;Y1Y2Û1) + I(Û1;Y1Y2)

= I(Û1Û2;Y1Y2)

= I(X̂1X̂2;Y1Y2) = 2I(X̂;W )

VI. CONCLUSION

It has been shown that the original construction of polar
codes suffices to achieve the symmetric capacity of discrete
memoryless channels with arbitrary input alphabet sizes. It is
shown that in general, channel polarization happens in several
levels so that some synthesized channels are partially perfect
and there needs to be a modification of the coding scheme to
exploit these channels. It is also shown that polar codes do
not achieve the group capacity of arbitrary channels.
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VII. APPENDICES

A. Polar Codes Over Abelian Groups

Given a k× n matrix Gn of 0’s and 1’s, one can construct
a group code as follows: Given any message tuple uk ∈ Gk,
encode it to uk · Gn. Where the elements of Gn determine
whether an element of uk appears as a summand in the
encoded word or not. For example consider the generator
matrix

G4 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1


Then u4 ·G4 is defined as

[u1u2u3u4] ·


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 =


u1 + u2 + u3 + u4

u3 + u4
u2 + u4
u4


Using this convention, we can define a group code based on a
given binary matrix without actually defining a multiplication
operation for the group.

B. Lemmas For Zd(W )

Lemma VII.1. For all d 6= 0, Z∞d (W ) is 0− 1 valued.

Proof: It has been proved in [5] for d =
argmaxa 6=0 Za(W ). The proof for an arbitrary d is
similar.

Lemma VII.2. If Zd(W ) ≈ 1, then for all x ∈ G and y ∈ Y

W (y|x) ≈W (y|x+ d)

1724



in the sense that, if Zd(W ) > 1− ε then

|W (y|x)−W (y|x+ d)| < O(ε), ∀x ∈ G,∀y ∈ Y

Lemma VII.3. For constants b ≥ a ≥ 0, with |b−a| > δ > 0,
√
ab ≤ a+ b

2
− f(δ)

for some increasing function f : [0, 1]→ R which is O(δ).

Proof: We need to find the solution to the maximization
problem

min
|x−a|>δ

a+ x

2
−
√
ax

where a is assumed to be a constant. We have

∂

∂x

[
a+ x

2
−
√
ax =

1

2
− a

2
√
ax

]
> 0

for all x > a + δ. Therefore the minimum is attained by
x = a+ δ. Therefore,

a+ b

2
−
√
ab ≥ a+ (a+ δ)

2
−
√
a(a+ δ)

Next, we will minimize over 0 ≤ a ≤ 1.

∂

∂a

[
a+

δ

2
−
√
a(a+ δ)

]
< 0

Therefore, the minimum is attained for a = 1. We have shown
that whenever |b− a| > δ,

√
ab ≤ a+b

2 − f(δ) where f(δ) =
1 + δ

2 −
√
1 + δ is an increasing O(δ) function.

Proof: (of Lemma VII.2) Let f−1(ε) : [0, 32 −
√
2]→ R

be the local inverse of f(·). Note that f−1(·) is also O(ε).
We will prove that O(ε) = f−1(qε) will satisfy the condition
of the lemma. Assume for contradiction that for some x ∈ G
and some y ∈ Y , |W (y|x)−W (y|x+ d)| ≥ O(ε). Then,

Zd(W ) =
1

q

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d)

≤ 1

q

∑
x∈G

∑
y∈Y

W (y|x) +W (y|x+ d)

2
− f(f−1(qε))

q

= 1− ε

Which is a contradiction. We conclude the lemma.

Lemma VII.4. If Zd(W ) ≈ 1, then for all y ∈ Y , if x−x′ ∈
〈d〉 = {0, d, 2d, · · · } then W (y|x) ≈ W (y|x′) in the sense
that, if Zd(W ) > 1 − ε then for all x, x′ ∈ G such that
x−x′ ∈ 〈d〉 and for all y ∈ Y , |W (y|x)−W (y|x′)| < O(ε).

Proof: Immediate from the above lemma.

Lemma VII.5. If Zd(W ) ≈ 0, then for all x ∈ G and
y ∈ Y , either W (y|x) ≈ 0 or W (y|x + d) ≈ 0. In the
sense that, if Zd(W ) < ε then either W (y|x) ≤ O(ε) or
W (y|x+ d) ≤ O(ε).

Proof: We will show that O(ε) =
√
qε will satisfy this

condition. For all x ∈ G and y ∈ Y we have,

W (y|x)W (y|x+ d) ≤

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d)

2

= (qZd(W ))
2 ≤ q2ε2

If both W (y|x) and W (y|x + d) are greater than O(ε), we
will get a contradiction.

Lemma VII.6. If for all x ∈ G and y ∈ Y , W (y|x) ≈
W (y|x+ d), then Zd(W ) ≈ 1. In the sense that, if

|W (y|x)−W (y|x+ d)| < ε, ∀x ∈ G,∀y ∈ Y

then Zd(W ) > 1−O(ε).

Lemma VII.7. For constants b ≥ a ≥ 0, with |b− a| < δ,
√
ab ≥ a+ b

2
− δ

2
Proof: Similar to above.

Proof: (of Lemma VII.6) We will show that O(ε) = ε|Y|
2

satisfies this condition.

1− Zd(W ) = 1− 1

q

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d)

=
1

q

∑
x∈G

∑
y∈Y

(
W (y|x) +W (y|x+ d)

2

−
√
W (y|x)W (y|x+ d)

)
≤ 1

q

∑
x∈G

∑
y∈Y

ε

2
=
ε|Y|
2

Lemma VII.8. If for all y ∈ Y and x − x′ ∈ 〈d〉,
W (y|x) ≈W (y|x+ d), then Zd(W ) ≈ 1.

Proof: Immediate from Lemma VII.6.

Lemma VII.9. If for all x ∈ G and y ∈ Y , either W (y|x) ≈ 0
or W (y|x+d) ≈ 0, then Zd(W ) ≈ 0. In the sense that, if for
all x ∈ G and y ∈ Y , either W (y|x) ≤ ε or W (y|x+ d) ≤ ε,
then Zd(W ) < O(ε).

Proof: We will show that O(ε) = ε|Y| satisfies this
condition.

Zd(W ) =
1

q

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d)

≤ 1

q

∑
x∈G

∑
y∈Y

ε

= ε|Y|
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