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Abstract — New architectures for transmission of

correlated messages over the broadcast channel is pre-

sented. We propose to use graphs as digital interface

between source coding and channel coding since the

correlation structure of sources can be maintained.

An achievable rate region for broadcast channels with

correlated messages is presented. We consider graphs

to represent correlated messages, and to translate the

correlation in the given messages into channel en-

coder. It is shown that such correlated messages can

be sent with arbitrarily small error probability over

the broadcast channel, given by p(y1, y2|x), by using a

special channel code which exploits the existing cor-

relation in the messages, if the sizes of messages and

the correlation structure of the messages satisfy cer-

tain conditions. We prove this by using the random

coding argument, random binning, and jointly typical

sequence property. If the messages are independent,

this rate region is exactly same as Marton region,

which is the best known inner bound of the capacity

region of the broadcast channel. However, the achiev-

able rate region can be larger than Marton region if

the messages are correlated.

I. Introduction

The broadcast channel was first introduced by Cover [5] in
1972. Since then, many information theorists have studied
the broadcast channel, and found the capacity region for sev-
eral special classes such as degraded broadcast channels (e.g.,
Bergmans [2] [3], Gallager [10], Ahlswede and Körner [1]),
broadcast channel with degraded message sets (Körner and
Marton [13]), more capable broadcast channels (El Gamal
[8]), deterministic broadcast channels (Marton [14], Pinsker
[16]), and broadcast channels with one deterministic compo-
nent (Marton [15], Gelfand and Pinsker [11]). Recently the
capacity region of the Gaussian Multiple Input Multiple Out-
put (MIMO) broadcast channel was found in [22], [4], [20],
[21], and [23].

Marton [15] established an inner bound to the capacity
region for the discrete memoryless broadcast channel, which
contains all the known achievable rate regions. This is a gen-
eralization of the results of Cover [6] and Van der Meulen
[19]. She proved this bound by using a random coding method
which is a combination of the coding techniques of Bergmans
[2], Cover [6], and Van der Meulen [19], and the random coding
technique used to prove source coding theorems in rate distor-
tion theory. Subsequently El Gamal and Van der Meulen [9]
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gave a simpler proof of the Marton region involving standard
random coding technique, random binning technique, and a
jointly typicality lemma.

Later, Han and Costa [12] presented a new coding theorem
for the broadcast channel with arbitrarily correlated sources.
Their work is very similar to what Cover, El Gamal and Salehi
[7] did for the case of multiple access channels with arbitrar-
ily correlated sources. Their results includes Marton’s coding
theorem as a special case. They established a new coding
scheme that specifies, instead of achievable rates, a class of
source-channel matching conditions between the source and
the channel. They also gave an interesting example which
is closely related to the example given by Cover, El Gamal
and Salehi [7]. Both examples reveal that separate source and
channel coding is not optimal for the transmission of corre-
lated sources over multiuser channels.

Consider a broadcast channel communication system with
one sender and two receivers. The sender wants to simul-
taneously transmit a pair of messages, one message for each
receiver. The messages for each receiver can not be chosen
independently, in other words, if a message is selected for re-
ceiver 1, the message for receiver 2 can not be arbitrary among
the set, and vice versa.

In [17],[18] we recently showed that the achievable rate re-
gion of multiple access channels with correlated messages can
be increased, if the sizes of the messages and the correlation
structure of the messages satisfy certain conditions, by using
correlated codewords, which exploits the existing correlation
in the given messages.

We apply a similar method to the broadcast channel with
correlated messages which can be associated with a “message-
graph”. The main objective of this paper is to establish an
achievable rate region of general broadcast channels with cor-
related messages by adopting the special channel encoding
scheme which uses graphs to represent the correlation.

Note that our achievable rate region is exactly same as
Marton region if the messages are independent, but, it can be
increased if the messages are correlated. As the amount of the
correlation in the messages become larger, the achievable rate
region also become bigger.

We will consider a graph, referred to as a “bin-index graph”,
which retains the correlation information between the mes-
sages, and will also be used to generate a special channel input.
Since matching the message-graph and the bin-index graph is
a crucial part in our scheme, we briefly recall the concept of
graph matching by permutation and relabeling introduced in
[17].

The outline of the remaining part is as follows. First, in Sec-
tion II, we recall the broadcast channel briefly and discuss the
previous results connected with our work. Then, we formulate
the problem in Section III. Thereafter, in Section IV we give



the main result of this paper, i.e., the achievable rate region
for the broadcast channel with correlated messages, given as
Theorem 1.

II. Preliminaries

In this section, we provide an overview of the previous study
results in the literature on the broadcast channel which are
closely related to our work.

II.A Broadcast Channel

A broadcast channel is composed of one sender and many
receivers. The objective is to broadcast information from a
sender to the many receivers. We consider broadcast chan-
nels with only two receivers since multiple receivers cases
can be similarly treated. The discrete memoryless broad-
cast channel with one sender and two receivers, shown in
Fig. 1, consists of an input alphabet X and two output
alphabets Y1 and Y2 and a probability transition function
p(yn

1 , yn
2 |x

n) =
∏n

i=1 p(y1i, y2i|xi) when used without feed-
back.

1 2( , )W W Encoder

Decoder 1

Decoder 2

1W

2W

nX

1
nY

2
nY

Broadcast

Channel

1 2( , | )n n np y y x

Figure 1: Broadcast channel

Definition 1 A transmission system with parameters
(n, ∆1, ∆2, τ) for the given broadcast channel would involve

• Two message sets W1 = {1, 2, . . . , ∆1} and W2 =
{1, 2, . . . , ∆2}

• A code C where C ⊂ Xn and |C| = ∆1∆2

• An encoder mapping e where e : W1 × W2 → C, i.e.,
∀(i, j) ∈ W1 ×W2, assign xn = e(i, j) ∈ C

• A set of decoder mappings {d(1), d(2)} where d(1) : Yn
1 →

W1, d(2) : Yn
2 → W2

• A performance measure given by the average probability
of error criterion:

τ =
∑

(i,j)∈W1×W2

|C|−1Pr
[

(d(1)(Y n
1 ), d(2)(Y n

2 ))6=(i, j)|xn=e(i, j)
]

Definition 2 A rate pair (R1, R2) is said to be achievable
for the given broadcast channel if ∀ǫ > 0, and for sufficiently
large n, there exists a transmission system as defined above
satisfying 1

n
log ∆i > Ri − ǫ for i = 1, 2 and with the average

probability of error τ < ǫ.

Definition 3 The capacity region RBC of the broadcast
channel is the closure of the set of all achievable rate pairs
(R1, R2).

II.B Marton’s Achievable Rate Region for the

Broadcast Channel

The capacity region of broadcast channel is still unknown. But
Marton [15] found an achievable rate region for the general
discrete memoryless broadcast channel, which is the largest
known inner bound to the capacity region, given by any rate
pairs (R1, R2) satisfying

R1 ≤ I(U ; Y1) (1)

R2 ≤ I(V ; Y2) (2)

R1 + R2 ≤ I(U ; Y1) + I(V ; Y2) − I(U ; V ) (3)

for some p(u, v, x) on U ×V ×X where U and V are auxiliary
random variables with finite alphabets U and V, respectively
such that (U, V ) → X → (Y1, Y2).

III. Problem Formulation

Before we discuss the main problem, let us first define a
bipartite graph and related mathematical terms.

Definition 4 • A bipartite graph G is defined as G =
(A1, A2, B) where A1 and A2 are two non-empty sets
of vertices, and B is a set of edges where every edge of
B joins a vertex in A1 to a vertex in A2. In general,
B ⊆ A1 × A2.

• If G is a bipartite graph, V1(G) and V2(G) are the first
and the second vertex sets of G and E(G) is the edge
set of G. Without loss of generality, V1 = V1(G) and
V2 = V2(G) denote the set of vertices on the left and
right side of G, respectively.

• If (i, j) ∈ E(G), then i and j are adjacent, or neighbor-
ing vertices of G, and the vertices i and j are incident
to the edge (i, j).

• If each vertex in one set is adjacent to every vertex in
the other set, then G is said to be a complete bipartite
graph. In this case, E(G) = V1(G) × V2(G).

• The degree, or valency, degG(v) of a vertex v in a graph
G is the number of edges incident to v.

• A subgraph of a graph G is a graph whose vertex and
edge sets are subsets of those of G. On the contrary, a
supergraph of a graph G is a graph that contains G as
a subgraph.

Since we consider particular type of bipartite graphs in our
discussion, let us define those bipartite graphs.

Definition 5 • A bipartite graph G is said to have pa-
rameters (θ1, θ2, θ

′
1, θ

′
2) if it satisfies:

– |Vi(G)| = θi for i=1, 2,

– ∀u ∈ V1(G), degG(u) = θ′
2, and ∀v ∈ V2(G),

degG(v) = θ′
1 such that θ1θ

′
2 = θ′

1θ2.

• For two bipartite graphs G1 and G2, G2 is said to
“ cover” G1 if E(G1) ⊆ E(G2).

Definition 6 Two message sets W1 and W2 can be associated
with a bipartite graph G, referred to as a message-graph, where
V1(G) = W1, V2(G) = W2, and every edge in E(G) denotes a
message pair (W1, W2) ∈ W1 ×W2 which occurs with nonzero
equal probability. In general, E(G) ⊆ W1 ×W2.



Note that E(G) is always a subset of W1×W2. If the messages
belonging to W1 and W2 are “independent”, then θ1 = θ′

1 and
θ2 = θ′

2 since all the message pairs can occur jointly. Thus
in this case E(G) = W1 ×W2. As the “correlation” between
two message sets becomes higher, θ′

1 and θ′
2 will decrease since

there will be less edges in the graph G.

III.A Broadcast Channel with Correlated

Messages

Consider a stationary discrete memoryless broadcast chan-
nel with one sender and two receivers. The sender wants
to deliver a message pair (W1, W2) to two receivers which
have integer message sets W1 = {1, 2, . . . , ∆1} and W2 =
{1, 2, . . . , ∆2}, respectively, which can be associated with a
message-graph G(W1,W2, E(G)). We assume that there is
some kind of “correlation” between two message sets, i.e.,
messages for each receiver can not be chosen independently.
If the messages of the receivers can be chosen independently,
then all possible pairs (W1, W2) in the set W1 ×W2 can occur
jointly. On the other hand, if they are related, only some pairs
(W1, W2) in the set W1×W2 occur and the other pairs do not.
We can also think these messages, without loss of generality,
as follows.

• If the messages for receivers are independent, the mes-
sage pairs (W1, W2) are equally likely with probability

1
|W1×W2|

. In this case, each individual message W1 and

W2 are individually equally likely with probability 1
|W1|

and 1
|W2|

, respectively.

• If the messages for receivers are “correlated”, the mes-
sage pairs (W1, W2) ∈ E(G) are equally likely with
probability 1

|E(G)|
, and the message pairs (W1, W2) /∈

E(G) have zero probability where a set E(G) ⊂ W1 ×
W2, and each individual message W1 and W2 are indi-
vidually equally likely with probability 1

|W1|
and 1

|W2|
,

respectively.

III.B Channel Codes for the Broadcast

Channel with Correlated Messages

It was recently shown, in [17] and [18], that the achiev-
able rates for multiple access channel (MAC) with correlated
messages can be increased by adopting special channel codes
which exploit the existing correlation structure in the mes-
sages.

In this work we similarly consider special channel codes
and graphs for the broadcast channel with correlated mes-
sages. Conventional channel codes in broadcast channels do
not consider the existing correlation structure in the given
messages for many receivers. In other words, even though
messages for receivers are “correlated”, they are treated as
independent messages. As shown in the example in [12], if we
can design special channel codes which translate the existing
“correlation” between the messages into the channel input, we
might achieve higher transmission rates than is bounded by
the conventional codes.

Since there is only one sender in the broadcast channel, we
will consider a bipartite graph, which is called a “bin-index
graph”, in order to generate a special channel input which
contains the correlation information between the messages.
So, the correlation between the messages is translated into
a bin-index graph, and then, this bin-index graph is used to
generate the special channel code. Here, a bin-index graph

should match with the given message-graph to give the best
performance, or should at least contain the message-graph as
a subgraph for reliable transmission.

III.C Graph Matching by Permutation and

Relabeling

We use message-graphs to associate the correlation between
the messages, and also consider bin-index graphs to generate
special channel codes. Since these two graphs should match
for reliable transmission, we discuss the matching of two bi-
partite graphs which involves permutation and relabeling of
vertices of the graphs. Here we will give a simple example and
summarize the result. More detail explanation can be found
in [17].
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Figure 2: Example of permutation and relabeling of a bipar-
tite graph

Suppose we are given a “correlated” message-graph, char-
acterized by A and a “correlated” bin-index graph character-
ized by B in Fig. 2. In this case, it is not efficient to use the
bin-index graph B to send the message sets associated with A
since B does not cover A. However, there exists an interest-
ing property between the two graphs. Note that if we permute
right vertices of A, (1, 2, 3) into (2′, 3′, 1′), relabel (2′, 3′, 1′) as
(2, 3, 1), and then move right vertices together with their con-
nected edges in natural order (1, 2, 3), then we get graph B.
This implies that we can use the bin-index graph B to send
the message sets associated with A after permuting and rela-
beling. This procedure is illustrated in Fig. 2. Clearly, we
can also get graph A from graph B similarly.

In general, it may not be easy to construct a specific “corre-
lation” structure in the codebook which can be used to send a
given message-graph. But this example motivates us to study
the structure of bipartite graphs and its relation to permuta-
tion and relabeling.
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Figure 3: All the possible bipartite graphs in the set K3,2:
any graph can be obtained from any other by permutation
and relabeling.

Let us consider a set of bipartite graphs G(n, n, a, a), sim-
ply denoted by Kn,a, n ∈ Z+ where Z+ is the set of positive
integers, and a ∈ {1, 2, . . . , n}. For example, Figure 3 illus-
trates all the elements of K3,2. So there are totally six distinct
bipartite graphs in the set K3,2. Note that all the elements
in K3,2 can be generated from any one element in the set by
permutation and relabeling.

However, in the case of n = 4, a = 2, we can not get all
graphs in K4,2 by just permutation and relabeling of any one
graph in the set. The set K4,2 can be partitioned into two



equivalence classes where the cardinalities of these classes are
72 and 18 respectively, and the equivalence relation is charac-
terized by the feasibility of obtaining one element in the class
by permutation and relabeling of the vertices of the other.
Further, it can be shown that similar partitions exist in Kn,a

for general n and a. At this point, we do not have a precise
characterization of the number of equivalence classes in Kn,a.

To sum up, there is an interesting property in the set of
bipartite graphs Kn,a as follows.

• In Kn,a, graphs can be partitioned into equivalence
classes, where one element in a class can be obtained
from the other in the same class by permutation and
relabeling. Thus if we have a bin-index graph G1 that
does not cover a given message-graph G2, but if G1 cov-
ers a graph G3, where G2 and G3 belong to the same
equivalence class, then we can use G1 to transmit the
message-graph G2.

• The elements of Kn,a belonging to different equivalence
classes may have different “correlation” structures.

IV. Achievable Rate Region of Broadcast

Channels with Correlated Messages

In this section we characterize transmissibility of certain
message-graphs over a stationary and memoryless broadcast
channel.

IV.A Summary of Results

We consider a stationary discrete memoryless broadcast chan-
nel characterized by a conditional probability distribution
p(y1, y2|x), with input alphabet given by a finite set X , and
output alphabets Y1 and Y2.

Definition 7 A transmission system with parameters
(n, ∆1, ∆2, ∆

′
1, ∆

′
2, τ) for the given broadcast channel with

“ correlated” messages would involve:

• G = {G : G has parameters (∆1, ∆2, ∆
′
1, ∆

′
2) where

Vi(G) = {1, 2, . . . , ∆i} for i = 1, 2},

• A code C where C ⊂ Xn and |C| = ∆1∆
′
2,

• ∀G ∈ G, an encoder mapping eG where eG : E(G) → C,
i.e., ∀(i, j) ∈ E(G), assign xn = eG(i, j) ∈ C,

• ∀G ∈ G, a set of decoder mappings {d
(1)
G , d

(2)
G } such

that d
(1)
G : Yn

1 → W1, d
(2)
G : Yn

2 → W2 where W1 =
{1, 2, . . . , ∆1} and W2 = {1, 2, . . . , ∆2},

• A performance measure given by the following
minimum-average probability of error criterion:

τ = min
G∈G

∑

(i,j)∈E(G)

1

|E(G)|
·

Pr
[

(d
(1)
G (Y n

1 ), d
(2)
G (Y n

2 ))6=(i, j)|xn=eG(i, j)
]

. (4)

Definition 8 A tuple of rates (R1, R2, R
′
1, R

′
2) is said to be

achievable for the broadcast channel with correlated messages,
if for any ǫ > 0, and for sufficiently large n, there exists
a transmission system with parameters (n, ∆1, ∆2, ∆

′
1, ∆

′
2, τ)

satisfying: 1
n

log ∆1 > R1 − ǫ, 1
n

log ∆2 > R2 − ǫ, 1
n

log ∆′
1 >

R′
1 − ǫ, 1

n
log ∆′

2 > R′
2 − ǫ, and the corresponding minimum-

average probability of error τ < ǫ.

An achievable rate region of a broadcast channel with cor-
related messages is given by the following theorem, which is
the main result of this paper.

Theorem 1 For the discrete memoryless broadcast channel
(X , p(y1, y2|x),Y1 ×Y2), an achievable rate region is all tuple
of rates (R1, R2, R

′
1, R

′
2) satisfying

R1 ≤ I(U ; Y1), (5)

R2 ≤ I(V ; Y2), (6)

R1 + R2 ≤ I(U ; Y1) + I(V ; Y2) − I(U ; V ) + α, (7)

R′
i ≤ Ri − α, for i = 1, 2 (8)

for some distribution p(u, v, x) = p(u, v)p(x|u, v) where α is a
nonnegative constant which characterizes the amount of cor-
relation between the messages for two receivers, 0 ≤ α ≤
min{R1, R2} such that (U, V ) → X → (Y1, Y2).

Remark 1 Note that the achievable rate region given in The-
orem 1 is almost the same as Marton’s region [15] except for a
nonnegative constant α which is determined by the correlation
between messages. When the messages are independent, i.e.,
when all the elements in the set W1 ×W2 can occur, the rate
region become exactly same as Marton’s since α = 0. However,
when the messages are correlated, i.e., only some elements in
the set W1 ×W2 can occur, the rate region can be larger since
α > 0 in this case. As the correlation between the messages
increases, in other words, as α increases, the achievable rate
region also become larger.

IV.B Proof of Theorem 1

In this section we prove Theorem 1 by using a method
similar to that is given in [9] which involves standard random
coding, random binning, and the jointly typicality of randomly
generated sequences. In addition to the techniques given in
[9], we use a concept of a “super-bin”, which is a group of
consecutive bins, to take into account the correlation between
the messages.

B.1 Random Sequences and Bin Generation

Let ǫ > 0 and an integer n ≥ 1 be given. Generate
2n(I(U ;Y1)−ǫ) independent identically distributed (i.i.d.) se-

quences un ∈ A
(n)
ǫ (U) from the distribution p(u), which is a

marginal of the joint distribution p(u, v), each with probabil-

ity 1

|A
(n)
ǫ (U)|

where A
(n)
ǫ (U) is the set of ǫ-typical n-sequences.

Label these sequences as un(k), k = 1, 2, . . . , 2n(I(U ;Y1)−ǫ).

Similarly, generate 2n(I(V ;Y2)−ǫ) i.i.d. sequences vn ∈ A
(n)
ǫ (V )

from the distribution p(v), which is also a marginal of p(u, v),
each with probability 1

|A
(n)
ǫ (V )|

, and label these as vn(l), l =

1, 2, . . . , 2n(I(V ;Y2)−ǫ). Without loss of generality 2n(I(U ;Y1)−ǫ)

and 2n(I(V ;Y2)−ǫ) are assumed to be integers.

Next, for i ∈ {1, 2, . . . , 2nR1} and j ∈ {1, 2, . . . , 2nR2}, de-
fine the bins Bi and Cj such that

Bi={un(k)|k∈ [(i−1)2n(I(U ;Y1)−R1−ǫ)+1, i2n(I(U ;Y1)−R1−ǫ)]}
(9)

Cj={vn(l)|l∈ [(j−1)2n(I(V ;Y2)−R2−ǫ)+1, j2n(I(V ;Y2)−R2−ǫ)]}
(10)



where without loss of generality 2n(I(U ;Y1)−R1−ǫ) and
2n(I(V ;Y2)−R2−ǫ) are considered to be integers, and [a, b] de-
notes the set of integers from a to b. Each bin Bi is
a set of randomly generated un sequences with cardinality
2n(I(U ;Y1)−R1−ǫ), and similarly each Cj is a set of randomly
generated vn sequences with cardinality 2n(I(V ;Y2)−R2−ǫ). We
also define super-bins B̃p and C̃q for p = [1, 2n(R1−α)] and
q = [1, 2n(R2−α)], each of which is a union of 2nα consecutive
bins Bi and Cj , respectively, i.e.,

B̃p =

p 2nα

⋃

i=(p−1)2nα+1

Bi, (11)

C̃q =

q2nα

⋃

i=(q−1)2nα+1

Ci (12)

As an example, Figure 4 shows bins and super-bins generated
from p(u, v) when a super-bin contains three bins.
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Figure 4: Bin index-graph G(2nR1 , 2nR2 , 2nR′

1 , 2nR′

2) where
Ri − R′

i = α, for i=1, 2

For every (p, j) ∈ [1, 2n(R1−α)] × [1, 2nR2 ], define the sets
Dpj ,

Dpj={(un(k),vn(l))|un(k)∈B̃p, vn(l)∈Cj , (u
n(k),vn(l))∈A(n)

ǫ },
(13)

and similarly for every (i, q) ∈ [1, 2nR1 ] × [1, 2n(R2−α)], define
the sets Eiq,

Eiq={(un(k),vn(l))|un(k)∈Bi, v
n(l)∈C̃q, (u

n(k),vn(l))∈A(n)
ǫ },

(14)

where A
(n)
ǫ = A

(n)
ǫ (U, V ) is a set of jointly ǫ-typical sequences

(un, vn) with respect to the distribution p(u, v).
We now find the condition, given in the following Lemma

1, which guarantees that any set Dpj and Eiq has at least one
jointly ǫ-typical sequence pair (un, vn).

Lemma 1 For any particular bin Bi and Cj, for any partic-
ular super-bin B̃p and C̃q, ǫ > 0, and sufficiently large n,

Pr{|Dpj | = 0} ≤
ǫ

4
, (15)

Pr{|Eiq| = 0} ≤
ǫ

4
(16)

provided

R1+R2 <I(U ; Y1)+I(V ; Y2)−I(U ; V )+α −2ǫ−δ(ǫ) (17)

where δ(ǫ) → 0 as ǫ → 0.

B.2 Bin Index-Graph and Codebook Generation

We can generate a bipartite graph from the above randomly
generated sequences by taking the indices of the bins as ver-
tices of the bipartite graph and making an edge for an in-
dex pair (i, j) when there exists a jointly typical sequence

pair (un, vn) in Bi × Cj , i.e., if ∃(un, vn) ∈ A
(n)
ǫ ∩(Bi×Cj).

The generated bipartite graph is referred to as a “bin-index
graph”, illustrated in the Figure 4, which is a bipartite graph
G(2nR1 , 2nR2 , 2nR′

1 , 2nR′

2) as defined in Definition 5. For i=1

and 2, since 2nRi bins are grouped into 2nR′

i super-bins, each
of which is composed of 2nα bins, there is a relation between
Ri and R′

i, i.e., Ri−R′
i = α, for i=1, 2. Note that when α = 0,

i.e., Ri = R′
i, a super-bin contains only one bin, so in this case

the bin-index graph become a complete bipartite graph where
each vertex is connected with all the vertices in the other side.
In other words, when α = 0, the degree of a vertex become
maximum. As α increases, the number of edges in the graph
decreases and the degree of a vertex also become smaller.

Since our goal is to find minimum probability of error over
all message graphs, we assume that the generated bin index-
graph and the message-graph belong to the same equivalence
class. This means that these two graphs can be matched by
using the permutation and relabeling explained in the Sec-
tion C. For each message pair which is represented as an
edge in the message-graph, i.e., ∀(i, j)∈E(G), pick one pair

(un(k), vn(l)) ∈ A
(n)
ǫ ∩ (Bi ×Cj) and find an xn = eG(i, j)

which is jointly typical with that pair, i.e., (un(k), vn(l), xn) ∈

A
(n)
ǫ (U, V, X).

B.3 Encoding

If a message pair (i, j) is to be transmitted, sender just sends
xn = eG(i, j) to the channel.

B.4 Decoding

Receiver 1 finds the unique index k̂ such that un(k̂) is jointly
ǫ-typical with the received sequence yn

1 , i.e., (un(k̂), yn
1 ) ∈

A
(n)
ǫ (U, Y1). Similarly, Receiver 2 finds the unique index l̂

such that vn(l̂) is jointly ǫ-typical with the received sequence

yn
2 , i.e., (vn(l̂), yn

2 )∈A
(n)
ǫ (V, Y2). Then, each receiver finds de-

coded messages i and j such that un(k̂) ∈ Bi and vn(l̂) ∈ Cj ,
respectively.

B.5 Probability of Error Analysis

Let us calculate probability of error denoted by P (E). If one
or more of the following events occur, it will be declared as an
error.

E1: The encoding step fails, i.e., for some message pair
(i, j) ∈ E(G), ∄(un(k), vn(l)) ∈ (Bi × Cj) ∩ A

(n)
ǫ (U, V )

E2: (un(k), vn(l), xn, yn
1 , yn

2 ) /∈ A
(n)
ǫ (U, V, X, Y1, Y2)

E3: Decoding step fails at receiver 1, i.e., ∃ k̂ 6= k such that
(un(k̂), yn

1 ) ∈ A
(n)
ǫ (U, Y1)

E4: Decoding step fails at receiver 2, i.e., ∃ l̂ 6= l such that
(vn(l̂), yn

2 ) ∈ A
(n)
ǫ (V, Y2)

It is easy to see that, for sufficiently large n
P (E1) ≤

ǫ
4
, if R1 + R2 < I(U ; Y1) + I(V ; Y2)− I(U ; V ) + α−

2ǫ − δ(ǫ) from the result of the Lemma 1;
P (E2) ≤

ǫ
4
, from the Markov lemma [24];



P (E3) ≤
ǫ
4
, if R1 < I(U ; Y1) − ǫ;

P (E4) ≤
ǫ
4
, if R2 < I(V ; Y2) − ǫ.

Therefore, by applying the union bound

P (E) = P (
4

⋃

i=1

Ei) ≤
4

∑

i=1

P (Ei) ≤ ǫ. (18)

Once we have a tuple of achievable rates (R1, R2, R
′
1, R

′
2) such

that R′
i = Ri − α for i = 1, 2, we can transmit dependent

(correlated) message sets with arbitrarily small probability of
error. So, a tuple of rates (R1, R2, R

′
1, R

′
2) such that R′

i ≤
Ri −α for i = 1, 2 is also achievable. Therefore, the Theorem
1 is proved. ¥

V. Conclusion

We have discussed the transmission of correlated messages
over the broadcast channel. It is shown that if one knows
that only certain pairs of messages occurs, the transmission
rate can be increased by using the special channel encoding
scheme which exploits the known characteristics of the mes-
sages. We have assumed that some correlated sources are al-
ready mapped into messages sets preserving a predetermined
correlation, which also can be associated with a graph. We
have established an achievable rate region for the general dis-
crete memoryless broadcast channel, which can be larger than
Marton’s region when the messages are correlated and satisfy
certain conditions.
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