
AN UPPER BOUND TO THE RATE OF IDEAL DISTRIBUTED LOSSY SOURCE CODING
OF DENSELY SAMPLED DATA

David L. Neuhoff and S. Sandeep Pradhan

EECS Dept., University of Michigan, Ann Arbor, MI

ABSTRACT

Motivated by the question of the efficiency of dense sensor
networks for sampling, encoding and reconstructing spatial
random fields, this paper uses the Berger-Tung upper bound
to the discrete-time distributed rate-distortion function and
Grenander-Szego asymptotic eigenvalue theory to obtain an
upper bound to the smallest possible rate when using dis-
tributed lossy encoding of densely spaced samples that is
tighter than the bound recently obtained by Kashyap et al.
Both bounds indicate that with ideal distributed lossy cod-
ing, dense sensor networks can efficiently sense and con-
vey a field, in contrast to the negative result obtained by
Marco et al. for encoders based on time- and space-invariant
scalar quantization and ideal Slepian-Wolf distributed loss-
less coding.

1. INTRODUCTION

Suppose a spatially distributed random field is sampled by a
network of densely spaced sensors, and suppose these sam-
ples must be encoded with some loss for transmission to a
common decoder, where the field is approximately recon-
structed. The question posed in [1, 2] (see also [3]) is:
What happens to the number of encoded bits per unit area,
i.e the encoding rate, as sensor density increases, given a
fixed limit on the decoded reconstruction quality? On the
one hand, as density increases, more sensor values must be
encoded. On the other hand, adjacent values become more
correlated, which might be exploited, perhaps, to prevent
the encoding rate from growing. A key constraint is that
each sensor’s encoder must operate without access to the
(correlated) outputs of other sensors, since they are not co-
located. That is, the encoding must distributed.

To keep things simple, we consider a scenario like that
of [2, 4], in which a one-dimensional, continuous-space,
stationary, Gaussian random process X(s) is sampled at M
sites spaced τ meters apart. Indeed, a temporal sequence
(X1(s), X2(s), . . .) of independent sample functions from
this process is sampled at the given sites. A block of n sam-
ples (in time) at each site are block encoded, independently
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of the samples at other sites, for transmission to a common
decoder which, after receiving bits from the M sites, out-
puts continuous-space reproductions (X̂1(s), . . . , X̂n(s)) for
the length Mτ segments of the n continuous-space sample
functions. The quality of this reproduction is given by the
mean squared error (MSE),

D =
1

Mnτ

n∑

i=1

∫ Mτ

0

E
(
X i(s) − X̂ i(s)

)2

ds. (1)

In [2, 4] it was shown that for any d > 0, if M = b1/τc
and if all encoders use a fixed scalar quantizer designed so
that when τ is small the MSE D with linear reconstruction
is at most d, followed by ideal Slepian-Wolf lossless dis-
tributed coding, then the number of bits per unit distance,
i.e. the encoding rate or simply rate, tends to infinity as as
the sensor density increases, i.e., as τ → 0. This negative
result contrasts with the fact that if we relax both the dis-
tributed encoding and scalar quantization constraints, then it
is well known that ideal block coding can attain rate arbitrar-
ily close to the rate-distortion function of the continuous-
space process X , which is ordinarily finite.

It then becomes important to learn whether the negative
result of [2, 4] is due to the scalar quantization or to a funda-
mental limitation of distributed encoding. This was recently
answered in [5], which considered the scenario of [2, 4], and
found an upper bound to the rate of ideal distributed lossy
coding (rather than scalar quantization) applied with distor-
tion at most d, which remained bounded as τ → 0. One
may conclude that it is the scalar quantization, rather than
distributed coding per se, that caused the negative result of
[2, 4].

In this paper, we use the Berger-Tung [6] upper bound
to the distributed (discrete-time) rate-distortion function to
find a better upper bound to the limiting attainable rate, un-
der the relaxed condition that M is permitted to be large,
that is, the sensors are widely distributed as well as dense.
The latter permits the use of Grenander-Szego [7] asymp-
totic eigenvalue theory. Indeed, since recently it was shown
in [8] that the Berger-Tung upper bound is tight for the case
of discrete-time jointly Gaussian sources with mean squared
error criterion, we expect our bound to be tight, as well.



2. BACKGROUND

In the following we briefly review the formulation of dis-
tributed source coding of M correlated sources and the Berger-
Tung [6] inner bound on the rate-distortion region, which
will lead to an upper bound to the distributed rate-distortion
function of interest.

Let X1, X2, . . . , XM be M discrete memoryless cor-
related sources1 with alphabet Xi for source Xi for i =
1, 2, . . ., M and with joint distribution q(x1, x2, . . . , xM ).
Let X̂i denote the reconstruction alphabet associated with
source Xi. Associated with these sources, there exists a tu-
ple of bounded distortion measures di : Xi × X̂i → R+

for i = 1, 2, . . . , M . A distributed source code with param-
eters (n, ∆1, ∆2, . . ., ∆M , Θ1, Θ2, . . . , ΘM ) is character-
ized by M encoding and decoding functions, respectively,
of the form

ei : Xn
i → {1, 2, . . . , Θi} (2)

fi :

M×
j=1

{1, 2, . . . , Θj} → X̂n
i (3)

which satisfy the following conditions

Edi [Xn
i , fi (e1(X

n
1 ), e2(X

n
2 ), . . . , eM (Xn

M ))] ≤ ∆i,
(4)

where the distortion between two sequences is obtained as
the average of the distortion between pairs of samples.

A tuple of rates and distortions (R1, . . . , RM , D1, . . . ,
DM ) is said to be achievable if for all ε > 0 there exists a
distributed source code with parameters (n, ∆1, ∆2, . . . , ∆M ,
Θ1, Θ2, . . . , ΘM ) such that for i = 1, 2, . . . , M , the follow-
ing hold

1

n
log Θi ≤ Ri + ε, and ∆i ≤ Di + ε. (5)

The achievable rate-distortion region is the set of all achiev-
able tuples.

Berger-Tung Inner Bound: In [6] an information theoretic
characterization of an achievable rate-distortion region is
provided. Specifically, a tuple (R1, . . . , RM , D1, . . . , DM )
was shown to be achievable if there exists for i = 1, 2, . . . , M ,
a conditional distribution pi(u|x) defined on some finite al-
phabet Ui and, also, a tuple of functions g1, . . . , gM , gi :
U1 × U2 . . . × UM → X̂i, such that with

p(u1, u2, . . . , uM |x1, x2, . . . , xM ) =

M∏

i=1

pi(ui|xi) (6)

the following hold: (a) Edi(X, X̂i) ≤ Di, i = 1, 2, . . . , M
and (b) I(XS ; US|USc) ≤ RS ∀S ⊆ {1, 2, . . . , M} where
XS is the collection of sources indexed by S (similarly for
US) and RS =

∑
i∈S Ri.

1To simplify notation, the time index is not shown.

Note that the random variables {Ui} are referred to as
auxilliary random variables. This inner bound can be ex-
tended to continuous-valued sources with distortion mea-
sures which are not bounded using the techniques of [9].

3. MAIN RESULTS

For each integer t, let {X t(s) : −∞ < s < ∞} be a zero-
mean, unit variance, continuous-space, stationary Gaussian
process, denoted X t for short. Subject to a constraint on
MSE (defined by (1)), we wish to find an upper bound to
the rate (in bits per unit distance) of an ideal distributed
lossy source code that operates by encoding spatial samples
Xt(1/N), . . . , Xt(M/N) (taken at intervals of τ = 1/N )
with a distributed code of the kind described in the previous
section and then reconstructing an approximate continuous-
space sample function. We take the limit first as M becomes
large, and then as N becomes large.

We assert that it suffices to focus on the rate and distor-
tion for just the samples. First, the rate in bits per unit dis-
tance is simply the average of R1, . . . , RM (bits per sam-
ple) multiplied by the sampling rate N (samples per unit
distance). Second, it can be shown that there exists a se-
quence (indexed by N ) of reconstruction methods such that
in the limit the MSE for the continuous-space reproduc-
tion equals the average of D1, . . . , DM for the distributed
code. As a result, we can find an upper bound to the least
possible rate at a given MSE by finding a particular tu-
ple (R1, . . . , RM , D1, . . . , DM ) in the Berger-Tung inner
bound region, and then averaging rates and distortions over
M and taking limits as M and N increase.

To put the problem in the framework of the previous
section, let Yi denote the source consisting of successive
samples of Xt(s) taken at s = i/N . Let K denote the co-
variance matrix of Y1, . . . , YM . The achievable tuple in the
Berger-Tung inner bound region that we seek is obtained by
choosing p(u|x) to be that which derives from the following
auxiliary random variables:

Ui =
1

1 + φN

(Yi + Zi), i = 1, . . . , M (7)

where φN ≥ 0 is an arbitrary number, and Zi is N (0, φN )

and independent of Yi. For each i, let Ŷi = gi(U1, . . . , UM )
be the minimum mean squared error (MMSE) estimate of
Yi based on {Ui}M

i=1. For this choice, it can be shown that

1

M

M∑

i=1

E(Yi − Ŷi)
2 =

1

M

M∑

i=1

λi

λi

φN
+ 1

, (8)

where λi denotes the ith eigenvalue of K. Now let us evalu-
ate the average rate for this choice of distribution. By choos-
ing Ri = I(Yi; Ui|U i−1

1 ), it can be seen that the bound,
given by 1

M
I(Y M

1 ; UM
1 ), is indeed the biting constraint among

the constraints in the Berger-Tung inner bound. In other



words, by choosing the rates in this way, one can satisfy all
of the (2M −1) constraints given in the Berger-Tung bound.
Hence

1

M

M∑

i=1

Ri =
1

M
I(Y1, . . . , YM ; U1, . . . , UM ) (9)

=
1

2M
log

M∏

i=1

(
λi

φN

+ 1

)
(10)

where the last equality is one that can also be shown. Hence
the following average rate of transmission and average dis-
tortion are achievable:

R(N,M)(φN ) =
1

2M

M∑

i=1

log

(
λi

φN

+ 1

)
(11)

D(N,M)(φN ) =
1

M

M∑

i=1

λi

λi

φN

+ 1
. (12)

Using the Grenander-Szego [7] eigenvalue distribution the-
orem, as M → ∞, the following average rate of transmis-
sion and average distortions are achievable:

R(N,∞)(φN ) =
1

4π

∫ π

−π

log

(
ΦN (w)

φN

+ 1

)
dw,

D(N,∞)(φN ) =
1

2π

∫ π

−π

(
ΦN (w)

ΦN (w)
φN

+ 1

)
dw,

where ΦN (w) is the discrete-space power spectral density
of the process which is obtained by sampling the original
Xt process with space-sampling interval τ = 1/N .

Note that now we have a parametric formula, with pa-
rameter 0 ≤ φN < ∞, for an achievable rate-distortion
pair for the discrete-space random process. Since the space-
sampling frequency is N sensors/unit distance, the achiev-
able rate in terms of bits per unit distance is given by NR(N,∞).
Further, note that the distortion D(N,∞) is the mean squared
error for the discrete-space process, i.e. for the continuous-
space process at the sampling locations. By taking the limit
as N → ∞ we get the following upper-bound on the opti-
mal rate-distortion function of the original continuous-space
discrete-time process in the distributed setting.

Theorem An upper bound on the optimal rate-distortion
function in the distributed setting is given by the parametric
formula: for any θ > 0

R(θ) =
1

4π

∫
∞

−∞

log

(
S(Ω)

θ
+ 1

)
dΩ (13)

D(θ) =
1

2π

∫
∞

−∞

(
S(Ω)

S(Ω)
θ

+ 1

)
dΩ (14)

4. PROOF OF THEOREM

We follow the techniques used in [10] to represent the achiev-
able rate-distortion pairs in terms of the continuous-space
power spectral density. First let us consider the expression
for the achievable rate using the Berger-Tung method de-
scribed in the previous section. As mentioned there, for any
N and φN > 0, rate NRN,∞(φN ) bits per unit distance is
achievable. With the goal of having this rate approach a fi-
nite constant as N → ∞, we choose φN to be proportional
to N . That is, for some θ > 0, we let φN = θN . We now
have the following sequence of equalities:

R(θ) ∆
= lim

N→∞

NR(N,∞)(Nθ)

= lim
N→∞

N

4π

∫ π

−π

log

(
ΦN (w)

Nθ
+ 1

)
dw

= lim
N→∞

1

4π

∫ πN

−πN

log

(
ΦN

(
Ω
N

)

Nθ
+ 1

)
dΩ

= lim
N→∞

1

4π

∫
∞

−∞

IN (Ω) log

(
ΦN

(
Ω
N

)

Nθ
+ 1

)
dΩ

=
1

4π

∫
∞

−∞

lim
N→∞

IN (Ω) log

(
ΦN

(
Ω
N

)

Nθ
+ 1

)
dΩ

=
1

4π

∫
∞

−∞

log

(
S(Ω)

θ
+ 1

)
dΩ, (15)

where IN (Ω) equals one if |Ω| ≤ πN and zero if not, where
the fifth equality uses the bounded convergence theorem
[11], while assuming that 1

N
ΦN (Ω/N) is bounded almost

everywhere, and where the sixth uses the fact that 1
N

ΦN (Ω/
N) converges to S(Ω) [10].

Next, we consider distortion. Using the method given
above, it can be similarly shown that

D′(θ) ∆
= lim

N→∞

D(N,∞)(Nθ)

=
1

2π

∫
∞

−∞

(
S(Ω)

S(Ω)
θ

+ 1

)
dΩ. (16)

Note that although D′(θ) is the limit of the MSE in the re-
construction of the discrete-space random process, as men-
tioned earlier, it can be shown that there exists a sequence
(indexed by N ) of methods of reconstructing the original
continuous-space random process from the quantized sam-
ples of the corresponding discrete-space random process (ob-
tained with sampling frequency N ) such that limit D(θ) of
the MSE for the continuous-space process equals D′(θ).
This finishes the proof that (R(θ), D(θ)) is an achievable
rate-distortion pair, and the theorem follows.

5. EXAMPLE

Let us consider the case that for each t, X t(s) is a Gauss-
Markov source with continuous-space power spectral den-



sity given by S(Ω) = 2/(1 + Ω2). Using the following
identity that for any a, b > 0,

∫
log(a+bx2)dx = x log

[
(a + bx2)

e2

]
+

2
√

a√
b

tan−1

(√
bx√
a

)

(17)
we can evaluate the upper bound, derived in the previous
section, on the optimal rate-distortion function for the dis-
tributed setting as given in the following. The parametric
form of the rate-distortion function is given by

R(θ) =
1

2

[√
θ + 2√

θ
− 1

]
nats, (18)

D(θ) =

√
θ√

θ + 2
, (19)

for 0 ≤ θ < ∞. Hence the upper bound on the optimal rate-
distortion function for the case of Gauss-Markov source is
given by

R(D) =
1

2

[
1

D
− 1

]
. (20)

It is interesting to note that at D = 0.1 the upper bound
is 4.5, which is approximately half the value found of the
upper bound found in [5]. It is also interesting to compare
the distortion profile obtained in this setting with that ob-
tained in optimum centralized source coding (inverse water
pouring). Both of these are plotted in Figure 1 for the case
when D = 1/3 and R = 1 bit/unit distance.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−14

−12

−10

−8

−6

−4

−2

0

2

4

Continuous−space frequency

M
ag

ni
tu

de
 in

 d
B

Fig. 1. Gauss-Markov source: The solid curve denotes the
continuous-space power spectral density, the dashed curve denotes
the distortion profile obtained in distributed source coding, and the
dash-dotted curve denotes the distortion profile obtained in the op-
timum centralized source coding (inverse water pouring).

6. CONCLUSIONS

By exploiting the Berger-Tung inner bound for distributed
coding and the Grenander-Szego asymptotic eigenvalue the-
ory, a new upper bound to the rate of ideal distributed lossy

source coding of densely sampled data has been found. The
results suggest that this bound is substantially tighter than
the previous bound of [5]. On the other hand, the latter
bound applies to a fixed finite value of the number of sam-
ples M , whereas the new bound applies to the limiting case
that M is large.
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