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I. Introduction

With the recent emergence of applications related to sensor
networks, efficient encoding of information signals in the pres-
ence of side information has received special attention. In such
situations, the underlying information field may be traveling
over space from the encoder to the decoder, for example, a
seismic wave traveling in the direction of the receiver from
the encoder. The side information at the receiver is a noisy
and/or delayed version of the signal observed at the encoder.
Motivated by this application, we consider the following source
representation problem. Consider a stationary discrete memo-
ryless source X with a probability distribution p(x) with some
alphabet X , and a reconstruction alphabet X̂ . Associated
with the source, there is a distortion measure d : X×X̂ → R+.
The encoder is a mapping from the l-product source alphabet
to an index set: f : X l → {1, 2, . . . , M}, where l denotes
the block-length in encoding and 1

l
log M denotes the rate in

bits/sample. The distortion measure for a pair of sequences
of length l is the average of the distortions of l samples. To
reconstruct any source sample, the decoder has access to all
the past source samples. Thus the decoder is a sequence of
mappings gi : {1, 2, . . . , M}×X i−1 → X̂ for i = 1, 2, . . . , l. Let
g(x) denote the l-length vector reconstruction of the l-length
source vector x. The goal is to minimize E [d (X,g(X))] for
a given rate R = (1/l) log M . We refer to this problem as
source coding with feedforward. Let Rff (D) denotes the infi-
mum of R over all encoder-decoder pairs such that Ed ≤ D for
some D > 0. It can be shown that for stationary memoryless
sources, Rff (D) = R(D), where R(D) denotes the optimal
Shannon rate-distortion function. For sources with memory,
Rff (D) ≤ R(D). Although the author arrived at this problem
from the applications of sensor networks, and its duality with
channel coding with feedback, as pointed out by one of the
anonymous referees, this problem has also been considered in
an independent work [3] in a different context of competitive
prediction.

II. Main Results

In this paper we consider the case of stationary memoryless
Gaussian source with zero-mean and variance σ2, and with
mean squared error as the distortion measure, where we give a
deterministic scheme that achieves the optimal rate-distortion
bound using simple uniform scalar quantizers.

Let Y = −
∑l

k=2

√
β2 − 1β−(k+1)Xk−β−1X1, where β > 1

be some constant, The encoder quantizes Y using a uniform
scalar quantizer bounded between −∆/2 and ∆/2 with M lev-
els, where ∆ will be determined later. The index of the cell
containing it is sent to the decoder. Let Ŷ denotes the quan-
tized version of Y , where the set of mid-points of quantization
cells denote the alphabet of Ŷ . The decoder reconstruction is
given by: X̂i = βX̂i−1− (β2− 1)β−1Xi−1, for i = 3, . . . , l and
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X̂1 = −βŶ , X̂2 =
√

β2 − 1(X̂1 −X1). Let Q = Ŷ − Y , and
D′ = EQ2. It can be shown that

1

l

l∑
i=1

E(Xi − X̂i)
2 =

D′β2l

l
+

σ2(lβ2 − β2)

lβ4
. (1)

Let D = 1
l

∑l
i=1 E(Xi − X̂i)

2, and M = βl(1+ε′) for some
ε′ > 0. It was shown in [2] that for any continuous source U ,
the mean squared error DΓ obtained in using an unbounded
uniform scalar quantizer with step size Γ with mid-point as

reconstruction satisfies: DΓ = Γ2

12
+ o(Γ2), where o(x) refers

to a function such that o(x)/x → 0 as x → 0. Let E denote
the event that |Y | > ∆/2, and let D′′ = E(Q2|Ec). Using the
above identities, given the event Ec, we have

D′′ =
∆2

12M2
(1 + τ) =

∆2

12(β2lβ2lε′)
(1 + τ). (2)

Now choose ∆ = βlε′
√

β2+1
β4 . which results in D′′ =

(β2+1)

12β4β2l (1 + τ). Since β > 1, one can make τ arbitrar-

ily small by choosing sufficiently large l. Note that D′ ≤
P (Ec)D′′ + P (E)V ar(Y ) ≤ D′′ + P (E)σ2(1+β2)

β4 .

In sequel we will show that P (E) can be made to de-
cay faster than 1/β2l. Noting that Rff (D) = R(D) =
(1/2) log(σ2/D), we have

R =
1

2
log

[
σ2

D

]
+ ε, (3)

where liml→∞ limε′→0 ε(ε′, l) = 0.
Now let us analyze the probability that the absolute value

of Y is greater than ∆/2, i.e., the probability of the event
E. We have the following doubly exponential decay of this
probability:

P (E) ≤ 2erfc

[
βlε′ 1

4σ

]
≤ c1e

−c2elc3
, (4)

where

c1 =
8σ

a
√

2πe
lRε′

(1+ε′)

, c2 =
1

8σ2
and c3 =

2Rε′

(1 + ε′)
. (5)

This method is related to a similar deterministic approach of
[1] for coding for certain channels with feedback.
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