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”THIS PAPER IS ELIGIBLE FOR THE STUDENT PAPER
AWARD” Abstract— We study the problem of computing the
rate-distortion function for sources with feed-forward and the
capacity for channels with feedback. The formulas (involving
directed information) for the optimal rate-distortion function
with feed-forward and channel capacity with feedback are multi-
letter expressions and cannot be computed easily in general.
In this work, we derive conditions under which these can be
computed for a large class of sources/channels with memory and
distortion/cost measures. Illustrative examples are also provided.

I. INTRODUCTION

Feedback is widely used in communication systems to
help combat the effect of noisy channels. It is well-known
that feedback does not increase the capacity of a discrete
memoryless channel [1]. However, feedback could increase
the capacity of a channel with memory. Recently, directed in-
formation has been used to elegantly characterize the capacity
of channels with feedback [2], [3], [4]. The source coding
counterpart to channel coding with feedback- source coding
with feed-forward- has recently been studied in [5], [6], [7],
[8]. The optimal rate-distortion function with feed-forward was
characterized using directed information in [6].

In this work, we study the problem of computing these rate-
distortion and capacity expressions. The formulas (involving
directed information) for the optimal rate-distortion function
with feed-forward [6] and channel capacity with feedback [4]
are multi-letter expressions and cannot be computed easily
in general. We derive conditions under which these can be
computed for a large class of sources (channels) with memory
and distortion (cost) measures. We also provide illustrative
examples. Throughout, we consider source feed-forward and
channel feedback with arbitrary delay. When the delay goes
to ∞, we obtain the case of no feed-forward/feedback.

II. SOURCE CODING WITH FEED-FORWARD

A. Problem Formulation

In simple terms, source coding with feed-forward is the
source coding problem in which the decoder gets to observe
some past source samples to help reconstruct the present
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sample. Consider a general discrete source X with alphabet
X and reconstruction alphabet X̂ . The source is characterized
by a sequence of distributions denoted by PX = {PXn}∞n=1.
There is an associated sequence of distortion measures dn :
Xn×X̂n → R+. It is assumed that dn(xn, x̂n) is normalized
with respect to n and is uniformly bounded in n. For exam-
ple dn(xn, x̂n) may be the average per-letter distortion, i.e.,
1
n

∑n
i=1 d(xi, x̂i) for some d : X × X̂ → R+.

Definition 1: An (N, 2NR) source code with delay k feed-
forward of block length N and rate R consists of an encoder
mapping e and a sequence of decoder mappings gi, i =
1, . . . , N , where

e : XN → {1, . . . , 2NR}
gi : {1, . . . , 2NR} × X i−k → X̂ , i = 1, . . . , N.

The encoder maps each N -length source sequence to an index
in {1, . . . , 2NR}. The decoder receives the index transmitted
by the encoder, and to reconstruct the ith sample, it has access
to the source samples until time (i−k). We want to minimize
R for a given distortion constraint.

Definition 2: (Probability of error criterion) R is an ε-
achievable rate at probability-1 distortion D if for all suffi-
ciently large N , there exists an (N, 2NR) source codebook
such that

PXN

(
xN : dN (xN , x̂N ) > D

)
< ε,

where x̂N denotes the reconstruction of xN .
R is an achievable rate at probability-1 distortion D if it is
ε-achievable for every ε > 0.

We now give a brief summary of the rate-distortion results
with feed-forward found in [6]. The rate-distortion function
with feed-forward (delay 1) is characterized by directed in-
formation, a quantity defined in [2]. The directed information
flowing from a random sequence X̂N to a random sequence
XN is defined as

I(X̂N → XN ) =
N∑

n=1

I(X̂n;Xn|Xn−1). (1)

When the feed-forward delay is k, the rate-distortion func-
tion is characterized by the k−delay version of the directed



information:

Ik(X̂N → XN ) =
N∑

n=1

I(X̂n+k−1;Xn|Xn−1). (2)

When we do not make any assumption on the nature of the
joint process {X, X̂}, we need to use the information spectrum
version of (2). In particular, we will need the quantity1

Ik(X̂ → X) , lim sup
inprob

1
n

log
PXn,X̂n

~P k
X̂n|Xn

· PXn

, (3)

where
~P k

X̂n|Xn =
n∏

i=1

PX̂i|X̂i−1,Xi−k .

It should be noted that (2) and (3) are the same when the joint
process {X, X̂} is stationary and ergodic.

Theorem 1: [6] For an arbitrary source X characterized
by a distribution PX, the rate-distortion function with feed-
forward, the infimum of all achievable rates at probability-1
distortion D, is given by

Rff (D) = inf
PX̂|X:ρ(PX̂|X)≤D

Ik(X̂ → X), (4)

where

ρ(PX̂|X) , lim sup
inprob

dn(xn, x̂n)

= inf
n

h : lim
n→∞

PXn,X̂n ((xn, x̂n) : dn(xn, x̂n) > h) = 0
o

.
(5)

B. Evaluating the Rate-Distortion Function with Feed-forward

The rate-distortion formula in Theorem 1 is an optimization
of a multi-letter expression:

Ik(X̂ → X) , lim sup
inprob

1
n

log
PXn,X̂n

~P k
X̂n|Xn

· PXn

,

This is an optimization over an infinite dimensional space
of conditional distributions PX̂|X. Since this is a potentially
difficult optimization, we turn the problem on its head and
pose the following question:

Given a source X with distribution PX and a conditional
distribution PX̂|X, for what sequence of distortion measures
does PX̂|X achieve the infimum in the rate-distortion formula
?

A similar approach is used in [9] (Problem 2 and 3, p.
147) to find optimizing distributions for discrete memoryless
channels and sources without feedback/feed-forward. It is also
used in [10] to study the optimality of transmitting uncoded
source data over channels and in [11] to study the duality
between source and channel coding.

Given a source X , suppose we have a hunch about the
structure of the optimal conditional distribution. The following
theorem (proof omitted) provides the distortion measures for
which our hunch is correct.

1The lim supinprob of a random sequence An is defined as the smallest
number α such that P (An ≥ α + ε) = 0 for all ε > 0 and is denoted A.

Theorem 2: Suppose we are given a stationary, ergodic
source X characterized by PX = {PXn}∞n=1 with feed-
forward delay k. Let PX̂|X = {PXn|Xn}∞n=1 be a conditional
distribution such that the joint distribution is stationary and
ergodic. Then PX̂|X achieves the rate-distortion function if
for all sufficiently large n, the distortion measure satisfies

dn(xn, x̂n) = −c · 1
n

log
PXn,X̂n(xn, x̂n)
~P k

X̂n|Xn
(x̂n|xn)

+ d0(xn), (6)

where

~P k
X̂n|Xn(x̂n|xn) =

n∏
i=1

PX̂i|Xi−k,X̂i−1(x̂i|xi−k, x̂i−1),

c is any positive number and d0(.) is an arbitrary function.

C. Markov Sources with Feed-forward

A stationary, ergodic mth order Markov source X is char-
acterized by a distribution PX = {PXn}∞n=1 where

PXn =
n∏

i=1

PXi|Xi−1
i−m

, ∀n. (7)

Let the source have feed-forward with delay k. We first ask:
When is the optimal joint distribution also mth order Markov
in the following sense:

PXn,X̂n =
n∏

i=1

PXi,X̂i|Xi−1
i−m

, ∀n. (8)

In other words, when does the optimizing conditional distri-
bution have the form

PX̂n|Xn =
n∏

i=1

PX̂i|Xi
i−m

, ∀n. (9)

The answer, provided by Theorem 2, is stated below. In the
sequel, we drop the subscripts on the probabilities to keep the
notation clean.

Corollary 1: For an mth order Markov source (described
in (7)) with feed-forward delay k, an mth order conditional
distribution (described in (9)) achieves the optimum in the
rate-distortion function for a sequence of distortion measures
{dn} given by

dn(xn, x̂n) = −c · 1

n

nX
i=1

log
P (xi, x̂i|xi−1

i−m)

P (x̂i|x̂i−1
i−k+1, x

i−k
i−k+1−m)

+ d0(x
n),

(10)
where c is any positive number and d0(.) is an arbitrary
function.

Proof: The proof involves substituting (7) and (9) in (6)
and performing a few manipulations.

In the following section, we provide two examples to
illustrate how Theorem 2 can be used to determine the rate-
distortion function of sources with feed-forward.
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Fig. 1. Markov chain representing the stock value

TABLE I
DISTORTION e (x̂i, xi−1 = j, xi)

(xi−1, xi)
j, j + 1 j, j j, j − 1

x̂i = 0 0 0 1
x̂i = 1 1 1 0

III. EXAMPLES

A. Stock-market example

Suppose that we wish to observe the behavior of a particular
stock in the stock market over an N−day period. Assume that
the value of the stock can take k + 1 different values and is
modeled as a k + 1-state Markov chain, as shown in Fig. 1.
If on a particular day, the stock is in state i, 1 ≤ i < k, then
on the next day, one of the following can happen.
• The value increases to state i + 1 with probability pi.
• The value drops to state i− 1 with probability qi.
• The value remains the same with probability 1− pi − qi.

When the stock-value is in state 0, the value cannot decrease.
Similarly, when in state k, the value cannot increase. Suppose
an investor invests in this stock over an N−day period and
desires to be forewarned whenever the value drops. Assume
that there is an insider (with a priori information about the
behavior of the stock) who can send information to the investor
at a finite rate.

The value of the stock is modeled as a Markov source X =
{Xn}. The decision X̂n of the investor is binary: X̂n = 1
indicates that the price is going to drop from day n− 1 to n,
X̂n = 0 means otherwise. Before day n, the investor knows
all the previous values of the stock Xn−1 and has to make
the decision X̂n. Thus feed-forward is automatically built into
the problem.

The investor makes an error either when he fails to predict
a drop or when he falsely predicts a drop. The distortion is
modeled using a Hamming distortion criterion as follows.

dn(xn, x̂n) =
1
n

n∑
i=1

e(x̂i, xi−1, xi), (11)

where e(., ., .) is the per-letter distortion given Table I. The
minimum amount of information (in bits/sample) the insider
needs to convey to the investor so that he can predict drops in
value with distortion D is denoted Rff (D).

Proposition 1: For the stock-market problem described
above,

Rff (D) =
k−1∑
i=1

πi (h(pi, qi, 1− pi − qi)− h(ε, 1− ε))

+ πk (h(qk, 1− qk)− h(ε, 1− ε)) ,

where h() is the entropy function, [π0, π1, · · · , πk] is the
stationary distribution of the Markov chain and ε = D

1−π0
.

Proof: We will use Corollary 1 to verify that a first-order
Markov conditional distribution of the form

PX̂n|X̂n−1,Xn = PX̂n|Xn,Xn−1
, ∀n (12)

achieves the optimum.
Due to the structure of the distortion function in Table I, we

can guess the structure of P (xi|x̂i, xi−1) as follows. When
Xi−1 = 0, the decoder can always declare X̂i = 0 - there is
no error irrespective of the value of Xi. So we assign P (X̂i =
0|xi−1 = 0, xi = 0) = P (X̂i = 0|xi−1 = 0, xi = 1) = 1,
which gives

P (Xi = 0|xi−1 = 0, x̂i = 0) = 1− p.

The event (Xi−1 = 0, X̂i = 1) has zero probability. Thus we
obtain the first two columns of Table II.

When (Xi−1 = j, X̂i = 0), 0 < j < k, an error occurs
when Xi = j − 1. This is assigned a probability ε. The
remaining probability 1−ε is split between P (Xi = j|xi−1 =
j, x̂i = 0) and P (Xi = j + 1|xi−1 = j, x̂i = 0) according to
their transition probabilities. In a similar fashion, we obtain
all the columns in Table II.

We now show that the distortion criterion (11) can be cast
in the form

dn(xn, x̂n) =
1
n

n∑
i=1

(
−c log2 P (xi|x̂i, xi−1)+d0(xi−1, xi)

)
,

(13)
or equivalently

e(x̂i, xi−1, xi) = −c log2 P (xi|x̂i, xi−1) + d0(xi−1, xi),
(14)

thereby proving that the distribution in Table II is optimal.
This is done by substituting values from Tables I and II into
(14) to determine c and d0(., .).

Since the process {X, X̂} is jointly stationary and ergodic,
the distortion constraint is equivalent to

E[e(x̂2, x1, x2)] ≤ D.

To calculate the expected distortion

E[e(x̂2, x1, x2)] =
∑

x1,x2,x̂2

P (x1, x2)P (x̂2|x1, x2)·e(x̂2, x1, x2),

(15)
we need the (optimum achieving) conditional distribution
P (X̂2|x1, x2). This is found by substituting the values from
Tables I and II in the relation

P (x2|x1, x̂2) =
P (x2|x1)P (x̂2|x2, x1)∑
x2

P (x2|x1)P (x̂2|x2, x1)
. (16)



TABLE II
THE DISTRIBUTION P (Xi|xi−1, x̂i)

(xi−1, x̂i)
0, 0 0, 1 · · · j, 0 j, 1 · · · k, 0 k, 1

xi = 0 1− p − · · · − − − − −
xi = 1 p − · · · − − − − −

xi =
... − −

. . . − − − − −
xi = j − 1 − − − ε 1− ε − − −

xi = j − − − (1−ε)(1−pj−qj)

1−qj

ε(1−pj−qj)

1−qj
− − −

xi = j + 1 − − − (1−ε)pj

1−qj

εpj

1−qj
− − −

xi =
... − − − − −

. . . − −
xi = k − 1 − − · · · − − − ε 1− ε

xi = k − − · · · − − − 1− ε ε

TABLE III
THE CONDITIONAL DISTRIBUTION P (X̂i|xi−1, xi)

(xi−1, xi)
0, 0 0, 1 · · · j, j − 1 j, j j, j + 1 · · · k, k − 1 k, k

x̂i = 0 1 1 · · · ε(1−qj−ε)

qj(1−2ε)

(1−ε)(1−qj−ε)

(1−qj)(1−2ε)

(1−ε)(1−qj−ε)

(1−qj)(1−2ε)
· · · ε(1−qj−ε)

qj(1−2ε)

(1−ε)(1−qj−ε)

(1−qj)(1−2ε)

x̂i = 1 0 0 · · · (1−ε)(qj−ε)

qj(1−2ε)

ε(qj−ε)

(1−qj)(1−2ε)

ε(qj−ε)

(1−qj)(1−2ε)
· · · (1−ε)(qj−ε)

qj(1−2ε)

ε(qj−ε)

(1−qj)(1−2ε)

Thus we obtain the conditional distribution P (X̂2|x1, x2)
shown in Table III. Using this in (15), we get

E[e(x̂2, x1, x2)] = (1− π0)ε ≤ D (17)

We can now calculate the rate distortion function as

Rff (D) =
∑

x1,x2,x̂2

P (x1, x2, x̂2) log2

P (x2|x1, x̂2)
P (x2|x1)

= H(X2|X1)−H(X2|X̂2, X1)

(18)

to obtain the expression in Proposition 1.

B. Gauss-Markov Source

Consider a stationary, ergodic, first-order Gauss-Markov
source X with mean 0, correlation ρ and variance σ2:

Xn = ρXn−1 + Nn, ∀n, (19)

where {Nn} are independent, identically distributed Gaussian
random variables with mean 0 and variance (1 − ρ2)σ2.
Assume the source has feed-forward with delay 1 and we want
to reconstruct at every time instant n the linear combination
aXn+bXn−1, for any constants a, b. We use the mean-squared
error distortion criterion:

dn(xn, x̂n) =
1
n

n∑
i=1

(x̂i − (axi + bxi−1))
2
. (20)

The feed-forward distortion-rate function for this source with
average mean-squared error distortion was given in [5]. The
feed-forward rate-distortion function can also be obtained
using Theorem 2 (proof omitted):

Rff (D) =
1
2

log
σ2(1− ρ2)

D/a2
. (21)

We must mention here that the rate-distortion function in the
first example cannot be computed using the techniques in [5].

IV. CHANNEL CODING WITH FEEDBACK

In this section, we consider channels with feedback and the
problem of evaluating their capacity. A channel is defined as
a sequence of probability distributions:

P ch
Y|X = {P ch

Yn|Xn,Y n−1}∞n=1. (22)

In the above, Xn and Yn are the channel input and output sym-
bols at time n, respectively. The channel is assumed to have
k−delay feedback (1 ≤ k < ∞). This means at time instant
n, the encoder has perfect knowledge of the channel outputs
until time n−k to produce the input xn. The input distribution
to the channel is denoted by P k

X|Y = {PXn|Xn−1,Y n−k}∞n=1.
In the sequel, we will need the following product quantities
corresponding to the channel and the input.

~P ch
Y n|Xn ,

n∏
i=1

PYi|Xi,Y i−1 ,

~P k
Xn|Y n ,

n∏
i=1

PXi|Xi−1,Y i−k .

(23)

The joint distribution of the system is given by PX,Y =
{PXn,Y n}∞n=1, where

PXn,Y n = ~P k
Xn|Y n · ~P ch

Y n|Xn . (24)

Definition 3: An (N, 2NR) channel code with delay k feed-
forward of block length N and rate R consists of a sequence
of encoder mappings ei, ı = 1, . . . , N and a decoder g, where

ei : {1, . . . , 2NR} × Yi−k → X , i = 1, . . . , N

g : YN → {1, . . . , 2NR}



Thus it is desired to transmit one of 2NR messages over the
channel in N units of time. There is an associated cost function
for using the channel given by cN (XN , Y N ). For example,
this could be the average power of the input symbols.

If W is the message that was transmitted, then the proba-
bility of error is

Pe = Pr(g(Y N ) 6= W ).

Definition 4: R is an (ε, δ)-achievable rate at probability-1
cost C if for all sufficiently large N , there exists an (N, 2NR)
channel code such that

Pe < ε,

Pr(cN (XN , Y N ) > C) < δ

R is an achievable rate at probability-1 cost C if it is (ε, δ)-
achievable for every ε, δ > 0.

Theorem 3: [6], [4] For an arbitrary channel P ch
Y|X , the

capacity with k−delay feedback, the infimum of all achievable
rates at probability-1 cost C, is given by

Cfb(C) = sup
P k
X|Y :ρ(P k

X|Y)≤C

I(X → Y ), (25)

where2

I(X → Y ) , lim inf
inprob

1
n

log
~P ch

Y n|Xn

PY n

and

ρ(P k
X|Y) , lim sup

inprob
cn(Xn, Y n)

= inf{h : lim
n→∞

PXnY n ((xn, yn) : cn(xn, yn) > h)} = 0.

In the above, we note that

PY n =
∑
Xn

PXn,Y n =
∑
Xn

~P k
Xn|Y n · ~P ch

Y n|Xn .

A. Evaluating the Channel Capacity with Feedback

The capacity formula in Theorem 3 is a multi-letter ex-
pression involving optimizing the function I(X → Y ) over
an infinite dimensional space of input distributions P k

X|Y.
Just like we did with sources, we can pose the following
question: Given a channel P ch

Y|X and an input distribution
P k

X|Y, for what sequence of cost measures does P k
X|Y achieve

the supremum in the capacity formula ?
The following theorem (proof omitted) provides an answer.
Theorem 4: Suppose we are given a channel P ch

Y|X with
k−delay feedback and an input distribution P k

X|Y such that the
joint process PX,Y given by (24) is stationary, ergodic. Then
the input distribution P k

X|Y achieves the k−delay feedback
capacity of the channel if for all sufficiently large n, the cost
measure satisfies

cn(xn, yn) = λ · 1
n

log
~P ch

Y n|Xn(yn|xn)

PY n(yn)
+ d0, (26)

where λ is any positive number and d0 is an arbitrary constant.

2The lim infinprob of a random sequence An is defined as the largest
number α such that P (An ≤ α− ε) = 0 for all ε > 0 and is denoted A .

B. Markov channels with feedback
The problem of evaluating the capacity of finite state

machine channels was studied recently in [12] and [13]. In
[12], it was shown that the capacity of such a channel is
achieved by a feedback dependent Markov source, i.e. , the
optimal input distribution is of the form {PXn|Xn−1,Y n−1},
i.e., Markov in X but depends on all the past Y symbols.

We consider a simple Markov channel with feedback delay
1 and the problem of evaluating its capacity. The channel we
study is characterized by

P ch
Yn|Xn,Y n−1 = P ch

Yn|Xn,Yn−1
. (27)

Let the channel have feedback with delay 1. We are interested
in finding cost measures for which the capacity of the channel
in (27) is easily evaluated. We first ask: When is the optimal
joint distribution first order Markov in the following sense:

PXn,Y n =
n∏

i=1

PXi,Yi|Yi−1 , ∀n. (28)

In other words, when does the optimizing input distribution to
have the form

~PXn|Y n =
n∏

i=1

PXi|Yi−1 , ∀n. (29)

From Theorem 4, it is seen that this happens when the cost-
function has the form:

cn(xn, yn) = λ · 1
n

n∑
i=1

log
~P ch

Yi|Xi,Yi−1
(yi|xi, yi−1)

PYi|Yi−1(yi|yi−1)
+ d0.

(30)
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