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”THIS PAPER IS ELIGIBLE FOR THE STUDENT PAPER
AWARD” Abstract— We study the problem of computing the
rate-distortion function for sources with feed-forward and the
capacity for channels with feedback. The formulas (involving
directed information) for the optimal rate-distortion function
with feed-forward and channel capacity with feedback are multi-
letter expressions and cannot be computed easily in general.
In this work, we derive conditions under which these can be
computed for a large class of sources/channels with memory and
distortion/cost measures. Illustrative examples are also provided.

I. INTRODUCTION

Feedback is widely used in communication systems to
help combat the effect of noisy channels. It is well-known
that feedback does not increase the capacity of a discrete
memoryless channel [1]. However, feedback could increase
the capacity of a channel with memory. Recently, directed in-
formation has been used to elegantly characterize the capacity
of channels with feedback [2], [3], [4]. The source coding
counterpart to channel coding with feedback- source coding
with feed-forward- has recently been studied in [5], [6], [7],
[8]. The optimal rate-distortion function with feed-forward was
characterized using directed information in [6].

In this work, we study the problem of computing these rate-
distortion and capacity expressions. The formulas (involving
directed information) for the optimal rate-distortion function
with feed-forward [6] and channel capacity with feedback [4]
are multi-letter expressions and cannot be computed easily
in general. We derive conditions under which these can be
computed for a large class of sources (channels) with memory
and distortion (cost) measures. We also provide illustrative
examples. Throughout, we consider source feed-forward and
channel feedback with arbitrary delay. When the delay goes
to 0o, we obtain the case of no feed-forward/feedback.

II. SOURCE CODING WITH FEED-FORWARD

A. Problem Formulation

In simple terms, source coding with feed-forward is the
source coding problem in which the decoder gets to observe
some past source samples to help reconstruct the present
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sample. Consider a general discrete source X with alphabet
X and reconstruction alphabet X’. The source is characterized
by a sequence of distributions denoted by Px = {Pxn~}22 ;.
There is an associated sequence of distortion measures dy, :
X" x X" — R*. It is assumed that d,, (2™, 2") is normalized
with respect to n and is uniformly bounded in n. For exam-
ple d,(«™, &™) may be the average per-letter distortion, i.e.,
LS d(w;, ;) for some d : X x X — RY.

Definition 1: An (N, 2NE) source code with delay k feed-
forward of block length NV and rate R consists of an encoder
mapping e and a sequence of decoder mappings ¢;,¢ =
1,..., N, where

e: XN = {1,... 2N

gi {1, 2Ny x Xtk X i=1,... N.
The encoder maps each N-length source sequence to an index
in {1,...,2N%}, The decoder receives the index transmitted
by the encoder, and to reconstruct the ith sample, it has access
to the source samples until time (i — k). We want to minimize
R for a given distortion constraint.

Definition 2: (Probability of error criterion) R is an e-
achievable rate at probability-1 distortion D if for all suffi-
ciently large N, there exists an (INV,2V) source codebook
such that

Pyn (zV 1 dy(2N,2Y) > D) <,

where 2%V denotes the reconstruction of z'V.
R is an achievable rate at probability-1 distortion D if it is
e-achievable for every € > 0.

We now give a brief summary of the rate-distortion results
with feed-forward found in [6]. The rate-distortion function
with feed-forward (delay 1) is characterized by directed in-
formation, a quantity defined in [2]. The directed information
flowing from a random sequence X% to a random sequence
XN is defined as

N
I(XN = XN) =3 I(X"™ X, X" 7). (1)

n=1

When the feed-forward delay is k, the rate-distortion func-
tion is characterized by the k—delay version of the directed



information:
N
(XN — xN) = Z (XL X, X ()
When we do not make any assumption on the nature of the

joint process {X, X}, we need to use the information spectrum
version of (2). In particular, we will need the quantity’

- Pyn 5n
I (X — X) élimsup log =X ; 3
inprob T P)k(n‘Xﬂ 'PX"

where
HPX |X7, 1 X7, k-

It should be noted that (2) and (3) are the same when the joint
process {X, X} is stationary and ergodic.

Theorem 1: [6] For an arbitrary source X characterized
by a distribution Px, the rate-distortion function with feed-
forward, the infimum of all achievable rates at probability-1
distortion D, is given by

XIL‘X‘VL

Rss(D) = inf Te(X — X), )
77(D) P i ) <D k( )
where
(PX\X) £ limsup d, (z",2")
inprob (5)
= inf {h lim Pyn go ((2%,3") ¢ do(2",3") > h) = o} .

B. Evaluating the Rate-Distortion Function with Feed-forward

The rate-distortion formula in Theorem 1 is an optimization
of a multi-letter expression:

] PX",X”
og _,7,
Pk

I(X - X)4& limsup
Xn‘Xn : PXn

inprob T

This is an optimization over an infinite dimensional space
of conditional distributions P)”qx- Since this is a potentially
difficult optimization, we turn the problem on its head and
pose the following question:

Given a source X with distribution Px and a conditional
distribution PX|X’ for what sequence of distortion measures
does PX|X achieve the infimum in the rate-distortion formula

A similar approach is used in [9] (Problem 2 and 3, p.
147) to find optimizing distributions for discrete memoryless
channels and sources without feedback/feed-forward. It is also
used in [10] to study the optimality of transmitting uncoded
source data over channels and in [11] to study the duality
between source and channel coding.

Given a source X, suppose we have a hunch about the
structure of the optimal conditional distribution. The following
theorem (proof omitted) provides the distortion measures for
which our hunch is correct.

The lim SUP;pprob Of @ random sequence Ay is defined as the smallest
number a such that P(A,, > a4 ¢€) = 0 for all € > 0 and is denoted A.

Theorem 2: Suppose we are given a stationary, ergodic
source X characterized by Px = {Px~»}%2, with feed-
forward delay k. Let Pg x = {Pxn|x» }32 be a conditional
distribution such that the joint distribution is stationary and
ergodic. Then lex achieves the rate-distortion function if
for all sufficiently large n, the distortion measure satisfies

N 1 P N ”n(xn7i'n)
e, 3") = —c- log Zm=—r s do(a”), (6
PX?L‘XTL(Q: ‘x )
where
P)’%ann(.’i'ﬂwn) = HPXi‘Xifk’Xifl(iﬂxi_kuji_l)a

i=1

¢ is any positive number and dy(.) is an arbitrary function.

C. Markov Sources with Feed-forward

A stationary, ergodic mth order Markov source X is char-
acterized by a distribution Px = {Pxn } -, where

Pxn _HPX xicl, Vn. 7

i—m
i=1

Let the source have feed-forward with delay k. We first ask:
When is the optimal joint distribution also mth order Markov
in the following sense:

= HPXhXHXf:}n’ Vn. (8)

i=1

PX”,X"

In other words, when does the optimizing conditional distri-
bution have the form

Pinixn =

HPX xi s n. 9)
The answer, provided by Theorem 2, is stated below. In the
sequel, we drop the subscripts on the probabilities to keep the

notation clean.

Corollary 1: For an mth order Markov source (described
in (7)) with feed-forward delay k, an mth order conditional
distribution (described in (9)) achieves the optimum in the
rate-distortion function for a sequence of distortion measures

{d,} given by
+ do(xn)a

dn(z",2") = —c- 721
(10)

where ¢ is any positive number and do(.) is an arbitrary
function.
Proof: The proof involves substituting (7) and (9) in (6)
and performing a few manipulations.
In the following section, we provide two examples to
illustrate how Theorem 2 can be used to determine the rate-
distortion function of sources with feed-forward.

i— m)
i—k
1—k+1— m)

xl,xl|x
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Fig. 1. Markov chain representing the stock value
TABLE I
DISTORTION e (&;,%;—1 = j, ;)
2 V)
Ji+1 149 [ 45=-1
z; =0 0 0 1
T; = 1 1 0

III. EXAMPLES

A. Stock-market example

Suppose that we wish to observe the behavior of a particular
stock in the stock market over an N —day period. Assume that
the value of the stock can take k + 1 different values and is
modeled as a k + 1-state Markov chain, as shown in Fig. 1.
If on a particular day, the stock is in state 7, 1 < i < k, then
on the next day, one of the following can happen.

o The value increases to state ¢ + 1 with probability p;.
o The value drops to state ¢ — 1 with probability g;.
o The value remains the same with probability 1 —p; — g;.

When the stock-value is in state 0, the value cannot decrease.
Similarly, when in state &, the value cannot increase. Suppose
an investor invests in this stock over an N —day period and
desires to be forewarned whenever the value drops. Assume
that there is an insider (with a priori information about the
behavior of the stock) who can send information to the investor
at a finite rate.

The value of the stock is modeled as a Markov source X =
{X,}. The decision X,, of the investor is binary: X, =1
indicates that the price is going to drop from day n — 1 to n,
Xn = 0 means otherwise. Before day n, the investor knows
all the previous values of the stock X"~! and has to make
the decision X,,. Thus feed-forward is automatically built into
the problem.

The investor makes an error either when he fails to predict
a drop or when he falsely predicts a drop. The distortion is
modeled using a Hamming distortion criterion as follows.

dp (™, 3") = (11)

6(531',581'—1,%)7

n

S|

i=1
where e(.,.,.) is the per-letter distortion given Table I. The
minimum amount of information (in bits/sample) the insider

needs to convey to the investor so that he can predict drops in
value with distortion D is denoted Ry (D).

Proposition 1: For the stock-market problem described
above,

k-1
Rpp(D) = Zm (h(pisgi; 1 —pi — q;) — h(e,1 —€))
i=1

+ 7 (h(qr, 1 — qr) — h(e, 1 —€)),

where h() is the entropy function, [mg,7y, - -
stationary distribution of the Markov chain and € = —.

Proof: We will use Corollary 1 to verify that a first-order
Markov conditional distribution of the form

, 7] is the
D

= PXn‘XVManl,

vn (12)

PXnI)A(n_laXn

achieves the optimum.

Due to the structure of the distortion function in Table I, we
can guess the structure of P(x;|%;,x;—1) as follows. When
X,;—1 = 0, the decoder can always declare XZ = 0 - there is
no error irrespective of the value of X;. So we assign P(Xi =
Ol.’L‘ifl = vai = O) = P(XZ = 0|37i71 = O,.’L‘i = 1) = 1,
which gives

P(X;=0|zi-1=0,2; =0) =1 —p.

The event (X;_; = 0, X; = 1) has zero probability. Thus we
obtain the first two columns of Table II.

When (X;_; = j,X; = 0), 0 < j < k, an error occurs
when X; = j — 1. This is assigned a probability e. The
remaining probability 1 — e is split between P(X; = jlx;—1 =
J,&; =0) and P(X; = j + 1|a;—1 = j,4&; = 0) according to
their transition probabilities. In a similar fashion, we obtain
all the columns in Table II.

We now show that the distortion criterion (11) can be cast
in the form

n

“n 1 R
dn(xn, x ) = E ; <7clog2 P(le|xl, Ii_1)+d0($i_1, .T,)),
(13)
or equivalently
e(&y, w1, ;) = —clogy P(x4] 2, xi—1) + do(@i—1,2;),
(14)

thereby proving that the distribution in Table II is optimal.
This is done by substituting values from Tables I and II into
(14) to determine ¢ and dy(., .).

Since the process {X, X} is jointly stationary and ergodic,
the distortion constraint is equivalent to

Ele(Z2,x1,22)] < D.
To calculate the expected distortion

Ele(iy,x1,72)] = Y Pla1,x2)P(&a|11, 12)-€ (82, 21, 22),
:El,mg,fQ
5)
we need the (optimum achieving) conditional distribution
P(X3|z1,z2). This is found by substituting the values from
Tables I and II in the relation

P P4
P($2‘$17£2)— ($2‘$1) (x2‘x27x1)

- . 16
S, Plaolan) Plinfan, ) 0




TABLE 1T

THE DISTRIBUTION P (X;|z;—1, ;)

(Ti—1,24)

0,0 0,1 5,0 g1 k0 | k1

z; =0 1-p — - - - —

T = P - - - - -

S - - -

z, =5—1 — — € 1—e¢ — —

. 1—€)(1—p;—q; 1-p;—q;
@ = § _ _ ( e)(lin;J q;) e( 131% a;5) . _
) 1—e)p; ;
ri=j5+1 - — ( 1;35_7] lipéj - —
w=t | - |- - - -
r, =k—1 - — - - € 1—e€
z; =k — — — — 1—e¢ €
TABLE III
THE CONDITIONAL DISTRIBUTION P(Xi|oci,1,:ci)
(i1, x4)
070 0’1 .]7.]71 .7’.7 .77.]+1 k7k71 kzk
2 =0 1 1 e(I—gq;—¢) (I=e)(T—=q;—¢) I-e)(0-gqj—¢) e(I—qj—¢€) (I=e)(0-gj—¢)
v q;(1—2¢) (I—g;)(1—-2¢) (1—q;)(1—2¢) q;j(1—2¢) (I—q;)(1—2¢)
=1 0 0 (1=¢€)(gj—¢) e(a;—e) e(a;—e) (1=¢€)(gj—¢) e(g;—¢)

v q;(1—2¢) (1—q;)(1—2¢) (1—q;)(1—2¢) q;(1—2¢) (1—-gq;)(1—2¢)

Thus we obtain the conditional distribution P(Xy|z1, )

shown in Table III. Using this in (15), we get
Ele(Zg,21,22)] = (1 —mp)e < D an

We can now calculate the rate distortion function as

P(JJ2|.§C1, i‘g)

R (D) = P(.I‘l,xg,ig)log
o =2, * Pl s
= H(X,|X1) — H(X,|X5, X1)
to obtain the expression in Proposition 1. ]

B. Gauss-Markov Source

Consider a stationary, ergodic, first-order Gauss-Markov
source X with mean 0, correlation p and variance o2

X, = pXp_1+N,, Vn, (19)

where {N,,} are independent, identically distributed Gaussian
random variables with mean 0 and variance (1 — p?)o?2.
Assume the source has feed-forward with delay 1 and we want
to reconstruct at every time instant n the linear combination
aX,+bX, 1, for any constants a, b. We use the mean-squared
error distortion criterion:

N 1~ 2

dp(z™,3") = — Z (Z; — (ax; + bxi—1))

n <
i=1

(20)

The feed-forward distortion-rate function for this source with
average mean-squared error distortion was given in [5]. The
feed-forward rate-distortion function can also be obtained
using Theorem 2 (proof omitted):

o*(1—p?)

D/ 1)

1
Ryy(D) = 5 log

We must mention here that the rate-distortion function in the
first example cannot be computed using the techniques in [5].
IV. CHANNEL CODING WITH FEEDBACK

In this section, we consider channels with feedback and the
problem of evaluating their capacity. A channel is defined as
a sequence of probability distributions:

Pdix = {PY xn yn1}or- (22)

In the above, X, and Y,, are the channel input and output sym-
bols at time n, respectively. The channel is assumed to have
k—delay feedback (1 < k < oo). This means at time instant
n, the encoder has perfect knowledge of the channel outputs
until time n—k to produce the input x,,. The input distribution
to the channel is denoted by Py y = {Px, [xn-1 yn+}nly-
In the sequel, we will need the following product quantities
corresponding to the channel and the input.

B o 2 [ Prixoyior,
=1 (23)

n

= A

PanYn = HPXilxi—l’Yi—k-.
i=1

The joint distribution of the system is given by Pxy =
{Pxn yn}22,, where

Pxnyn = Pujyn - P xn. (24)

Definition 3: An (N, 2N%) channel code with delay k feed-

forward of block length N and rate R consists of a sequence
of encoder mappings e;,1 =1,..., N and a decoder g, where

ei i {1,.... 2Ny x yiTF ¥ i=1,...,N
g: YN = {1,...,2N %



Thus it is desired to transmit one of 2% messages over the
channel in V units of time. There is an associated cost function
for using the channel given by cy (XY, Y™). For example,
this could be the average power of the input symbols.

If W is the message that was transmitted, then the proba-
bility of error is

P, = Pr(g(Y™) #W).

Definition 4: R is an (e, d)-achievable rate at probability-1
cost C' if for all sufficiently large N, there exists an (NN, 2VE)
channel code such that

P, <e,
Prien(XN, YY) >0) <6

R is an achievable rate at probability-1 cost C' if it is (¢, d)-
achievable for every ¢, > 0.

Theorem 3: [6], [4] For an arbitrary channel P@"‘X , the
capacity with k—delay feedback, the infimum of all achievable
rates at probability-1 cost C, is given by

Crpp(C) = sup I(X =Y), (25)
P)qu o( X|Y)<C
where? .
I(X—Y)= hmlnf—lo i _Xeixe
- inprob M & P Pyn
and
p(P)’E‘Y) 2 limsup c, (X™,Y™)
inprob
=inf{h: lim Pxnyn ((z",y") : cu(z™,y") > h)} =

In the above, we note that

Pyn _ZPXH v _ZP niyn peh

yn|xn:
X’Vl

A. Evaluating the Channel Capacity with Feedback

The capacity formula in Theorem 3 is a multi-letter ex-
pression involving optimizing the function I(X — Y) over
an infinite dimensional space of input distributions P)qu‘
Just like we did with sources, we can pose the following
question: Given a channel PC‘X and an input distribution
P;“qy, for what sequence of cost measures does PX|Y achieve
the supremum in the capacity formula ?

The following theorem (proof omitted) provides an answer.

Theorem 4: Suppose we are given a channel P@’TX with
k—delay feedback and an input distribution P)qu such that the
joint process Px y given by (24) is stationary, ergodic. Then
the input distribution P)’ZY achieves the k—delay feedback
capacity of the channel if for all sufficiently large n, the cost
measure satisfies

1. Pz
cp(x™y") =X —log—————
(z",y") %8 B )

where ) is any positive number and d is an arbitrary constant.

+ do, (26)

2The lim inf;y,prop Of a random sequence A, is defined as the largest
number « such that P(A, < a —¢€) =0 for all € > 0 and is denoted A .

B. Markov channels with feedback

The problem of evaluating the capacity of finite state
machine channels was studied recently in [12] and [13]. In
[12], it was shown that the capacity of such a channel is
achieved by a feedback dependent Markov source, i.e. , the
optimal input distribution is of the form {Px |x, ,y»-1},
i.e., Markov in X but depends on all the past Y symbols.

We consider a simple Markov channel with feedback delay
1 and the problem of evaluating its capacity. The channel we
study is characterized by

_ ch
PP yn-r = Plix v,y @n

Let the channel have feedback with delay 1. We are interested
in finding cost measures for which the capacity of the channel
in (27) is easily evaluated. We first ask: When is the optimal
Jjoint distribution first order Markov in the following sense:

n
PXn7YTL = HPX'th‘Yi—l’ vn.

i=1

(28)

In other words, when does the optimizing input distribution to

have the form
n

PXn|Yn = HPXi|Y£—17 Vn.

i=1

(29)

From Theorem 4, it is seen that this happens when the cost-
function has the form:

Zl

Y |X1,Y1 1 (yllxza Yi—1 )

+ dy.
PYz‘|Yi—1(yi‘yi—1)

(30)

e (2™, y")
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