On Evaluating the Rate-Distortion Function of Sources with Feed-Forward and the Capacity of Channels with Feedback.

Ramji Venkataramanan and S. Sandeep Pradhan Department of EECS, University of Michigan, Ann Arbor, MI 48105 rvenkata@umich.edu, pradhanv@eecs.umich.edu

"THIS PAPER IS ELIGIBLE FOR THE STUDENT PAPER AWARD" *Abstract*—We study the problem of computing the rate-distortion function for sources with feed-forward and the capacity for channels with feedback. The formulas (involving directed information) for the optimal rate-distortion function with feed-forward and channel capacity with feedback are multiletter expressions and cannot be computed easily in general. In this work, we derive conditions under which these can be computed for a large class of sources/channels with memory and distortion/cost measures. Illustrative examples are also provided.

I. INTRODUCTION

Feedback is widely used in communication systems to help combat the effect of noisy channels. It is well-known that feedback does not increase the capacity of a discrete memoryless channel [1]. However, feedback could increase the capacity of a channel with memory. Recently, directed information has been used to elegantly characterize the capacity of channels with feedback [2], [3], [4]. The source coding counterpart to channel coding with feedback- source coding with feed-forward- has recently been studied in [5], [6], [7], [8]. The optimal rate-distortion function with feed-forward was characterized using directed information in [6].

In this work, we study the problem of computing these ratedistortion and capacity expressions. The formulas (involving directed information) for the optimal rate-distortion function with feed-forward [6] and channel capacity with feedback [4] are multi-letter expressions and cannot be computed easily in general. We derive conditions under which these can be computed for a large class of sources (channels) with memory and distortion (cost) measures. We also provide illustrative examples. Throughout, we consider source feed-forward and channel feedback with arbitrary delay. When the delay goes to ∞ , we obtain the case of no feed-forward/feedback.

II. SOURCE CODING WITH FEED-FORWARD

A. Problem Formulation

In simple terms, source coding with feed-forward is the source coding problem in which the decoder gets to observe some past source samples to help reconstruct the present

This work was supported by NSF Grant ITR-0427385 and Grant (CAREER) CCF-0448115.

sample. Consider a general discrete source X with alphabet \mathcal{X} and reconstruction alphabet $\hat{\mathcal{X}}$. The source is characterized by a sequence of distributions denoted by $\mathbf{P}_{\mathbf{X}} = \{P_{X^n}\}_{n=1}^{\infty}$. There is an associated sequence of distortion measures $d_n : \mathcal{X}^n \times \hat{\mathcal{X}}^n \to \mathbb{R}^+$. It is assumed that $d_n(x^n, \hat{x}^n)$ is normalized with respect to n and is uniformly bounded in n. For example $d_n(x^n, \hat{x}^n)$ may be the average per-letter distortion, i.e., $\frac{1}{n} \sum_{i=1}^{n} d(x_i, \hat{x}_i)$ for some $d : \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}^+$.

Definition 1: An $(N, 2^{NR})$ source code with delay k feedforward of block length N and rate R consists of an encoder mapping e and a sequence of decoder mappings $g_i, i = 1, \ldots, N$, where

$$e: \mathcal{X}^N \to \{1, \dots, 2^{NR}\}$$
$$\dots, 2^{NR}\} \times \mathcal{X}^{i-k} \to \widehat{\mathcal{X}}, \quad i = 1, \dots, N.$$

 $g_i : \{1, \ldots, 2^{NR}\} \times \mathcal{X}^{i-k} \to \mathcal{X}, \quad i = 1, \ldots, N.$ The encoder maps each N-length source sequence to an index in $\{1, \ldots, 2^{NR}\}$. The decoder receives the index transmitted by the encoder, and to reconstruct the *i*th sample, it has access to the source samples until time (i - k). We want to minimize R for a given distortion constraint.

Definition 2: (Probability of error criterion) R is an ϵ -achievable rate at probability-1 distortion D if for all sufficiently large N, there exists an $(N, 2^{NR})$ source codebook such that

$$P_{X^N}\left(x^N: d_N(x^N, \hat{x}^N) > D\right) < \epsilon,$$

where \hat{x}^N denotes the reconstruction of x^N . R is an achievable rate at probability-1 distortion D if it is ϵ -achievable for every $\epsilon > 0$.

We now give a brief summary of the rate-distortion results with feed-forward found in [6]. The rate-distortion function with feed-forward (delay 1) is characterized by directed information, a quantity defined in [2]. The directed information flowing from a random sequence \hat{X}^N to a random sequence X^N is defined as

$$I(\hat{X}^N \to X^N) = \sum_{n=1}^N I(\hat{X}^n; X_n | X^{n-1}).$$
(1)

When the feed-forward delay is k, the rate-distortion function is characterized by the k-delay version of the directed information:

$$I_k(\hat{X}^N \to X^N) = \sum_{n=1}^N I(\hat{X}^{n+k-1}; X_n | X^{n-1}).$$
 (2)

When we do not make any assumption on the nature of the joint process $\{\mathbf{X}, \hat{\mathbf{X}}\}$, we need to use the information spectrum version of (2). In particular, we will need the quantity¹

$$\overline{I}_k(\hat{X} \to X) \triangleq \limsup_{inprob} \frac{1}{n} \log \frac{P_{X^n, \hat{X}^n}}{\overline{P}_{\hat{X}^n \mid X^n} \cdot P_{X^n}}, \qquad (3)$$

where

$$\vec{P}^{k}_{\hat{X}^{n}|X^{n}} = \prod_{i=1}^{n} P_{\hat{X}_{i}|\hat{X}^{i-1}, X^{i-k}}.$$

It should be noted that (2) and (3) are the same when the joint process $\{\mathbf{X}, \hat{\mathbf{X}}\}$ is stationary and ergodic.

Theorem 1: [6] For an arbitrary source X characterized by a distribution $\mathbf{P}_{\mathbf{X}}$, the rate-distortion function with feedforward, the infimum of all achievable rates at probability-1 distortion D, is given by

$$R_{ff}(D) = \inf_{\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}:\rho(\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}) \le D} \overline{I}_k(\hat{X} \to X), \tag{4}$$

where

$$\rho(\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}) \triangleq \limsup_{inprob} d_n(x^n, \hat{x}^n) \\
= \inf \left\{ h : \lim_{n \to \infty} P_{X^n, \hat{X}^n}\left((x^n, \hat{x}^n) : d_n(x^n, \hat{x}^n) > h \right) = 0 \right\}.$$
⁽⁵⁾

B. Evaluating the Rate-Distortion Function with Feed-forward

The rate-distortion formula in Theorem 1 is an optimization of a multi-letter expression:

$$\overline{I}_k(\hat{X} \to X) \triangleq \limsup_{inprob} \frac{1}{n} \log \frac{P_{X^n, \hat{X}^n}}{\overline{P}_{\hat{X}^n | X^n}^k \cdot P_{X^n}},$$

This is an optimization over an infinite dimensional space of conditional distributions $P_{\hat{\mathbf{X}}|\mathbf{X}}$. Since this is a potentially difficult optimization, we turn the problem on its head and pose the following question:

Given a source X with distribution $\mathbf{P}_{\mathbf{X}}$ and a conditional distribution $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$, for what sequence of distortion measures does $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ achieve the infimum in the rate-distortion formula ?

A similar approach is used in [9] (Problem 2 and 3, p. 147) to find optimizing distributions for discrete memoryless channels and sources without feedback/feed-forward. It is also used in [10] to study the optimality of transmitting uncoded source data over channels and in [11] to study the duality between source and channel coding.

Given a source X, suppose we have a hunch about the structure of the optimal conditional distribution. The following theorem (proof omitted) provides the distortion measures for which our hunch is correct.

¹The lim sup_{inprob} of a random sequence A_n is defined as the smallest number α such that $P(A_n \ge \alpha + \epsilon) = 0$ for all $\epsilon > 0$ and is denoted \overline{A} .

Theorem 2: Suppose we are given a stationary, ergodic source X characterized by $\mathbf{P}_{\mathbf{X}} = \{P_{X^n}\}_{n=1}^{\infty}$ with feedforward delay k. Let $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{X^n|X^n}\}_{n=1}^{\infty}$ be a conditional distribution such that the joint distribution is stationary and ergodic. Then $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ achieves the rate-distortion function if for all sufficiently large n, the distortion measure satisfies

$$d_n(x^n, \hat{x}^n) = -c \cdot \frac{1}{n} \log \frac{P_{X^n, \hat{X}^n}(x^n, \hat{x}^n)}{\vec{P}^k_{\hat{X}^n | X^n}(\hat{x}^n | x^n)} + d_0(x^n), \quad (6)$$

where

$$\vec{P}^{k}_{\hat{X}^{n}|X^{n}}(\hat{x}^{n}|x^{n}) = \prod_{i=1}^{n} P_{\hat{X}_{i}|X^{i-k},\hat{X}^{i-1}}(\hat{x}_{i}|x^{i-k},\hat{x}^{i-1}),$$

c is any positive number and $d_0(.)$ is an arbitrary function.

C. Markov Sources with Feed-forward

A stationary, ergodic *m*th order Markov source X is characterized by a distribution $\mathbf{P}_{\mathbf{X}} = \{P_{X^n}\}_{n=1}^{\infty}$ where

$$P_{X^n} = \prod_{i=1}^n P_{X_i | X_{i-m}^{i-1}}, \quad \forall n.$$
(7)

Let the source have feed-forward with delay k. We first ask: When is the optimal joint distribution also mth order Markov in the following sense:

$$P_{X^{n},\hat{X}^{n}} = \prod_{i=1}^{n} P_{X_{i},\hat{X}_{i}|X_{i-m}^{i-1}}, \quad \forall n.$$
(8)

In other words, when does the optimizing conditional distribution have the form

$$P_{\hat{X}^{n}|X^{n}} = \prod_{i=1}^{n} P_{\hat{X}_{i}|X_{i-m}^{i}}, \quad \forall n.$$
(9)

The answer, provided by Theorem 2, is stated below. In the sequel, we drop the subscripts on the probabilities to keep the notation clean.

Corollary 1: For an *m*th order Markov source (described in (7)) with feed-forward delay k, an *m*th order conditional distribution (described in (9)) achieves the optimum in the rate-distortion function for a sequence of distortion measures $\{d_n\}$ given by

$$d_n(x^n, \hat{x}^n) = -c \cdot \frac{1}{n} \sum_{i=1}^n \log \frac{P(x_i, \hat{x}_i | x_{i-m}^{i-1})}{P(\hat{x}_i | \hat{x}_{i-k+1}^{i-1}, x_{i-k+1-m}^{i-k})} + d_0(x^n),$$
(10)

where c is any positive number and $d_0(.)$ is an arbitrary function.

Proof: The proof involves substituting (7) and (9) in (6) and performing a few manipulations.

In the following section, we provide two examples to illustrate how Theorem 2 can be used to determine the ratedistortion function of sources with feed-forward.

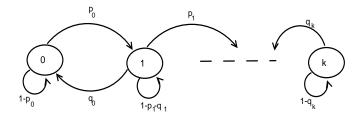


Fig. 1. Markov chain representing the stock value

TABLE I DISTORTION $e(\hat{x}_i, x_{i-1} = j, x_i)$

(x_{i-1}, x_i)							
	j, j + 1	j, j	j, j-1				
$\hat{x}_i = 0$	0	0	1				
$\hat{x}_i = 1$	1	1	0				

III. EXAMPLES

A. Stock-market example

Suppose that we wish to observe the behavior of a particular stock in the stock market over an N-day period. Assume that the value of the stock can take k + 1 different values and is modeled as a k + 1-state Markov chain, as shown in Fig. 1. If on a particular day, the stock is in state i, $1 \le i < k$, then on the next day, one of the following can happen.

- The value increases to state i + 1 with probability p_i .
- The value drops to state i 1 with probability q_i .
- The value remains the same with probability $1 p_i q_i$.

When the stock-value is in state 0, the value cannot decrease. Similarly, when in state k, the value cannot increase. Suppose an investor invests in this stock over an N-day period and desires to be forewarned whenever the value drops. Assume that there is an insider (with a priori information about the behavior of the stock) who can send information to the investor at a finite rate.

The value of the stock is modeled as a Markov source $\mathbf{X} = \{X_n\}$. The decision \hat{X}_n of the investor is binary: $\hat{X}_n = 1$ indicates that the price is going to drop from day n - 1 to n, $\hat{X}_n = 0$ means otherwise. Before day n, the investor knows all the previous values of the stock X^{n-1} and has to make the decision \hat{X}_n . Thus feed-forward is automatically built into the problem.

The investor makes an error either when he fails to predict a drop or when he falsely predicts a drop. The distortion is modeled using a Hamming distortion criterion as follows.

$$d_n(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n e(\hat{x}_i, x_{i-1}, x_i),$$
(11)

where e(.,.,.) is the *per-letter* distortion given Table I. The minimum amount of information (in bits/sample) the insider needs to convey to the investor so that he can predict drops in value with distortion D is denoted $R_{ff}(D)$.

Proposition 1: For the stock-market problem described above,

$$R_{ff}(D) = \sum_{i=1}^{k-1} \pi_i \left(h(p_i, q_i, 1 - p_i - q_i) - h(\epsilon, 1 - \epsilon) \right) \\ + \pi_k \left(h(q_k, 1 - q_k) - h(\epsilon, 1 - \epsilon) \right),$$

where h() is the entropy function, $[\pi_0, \pi_1, \dots, \pi_k]$ is the stationary distribution of the Markov chain and $\epsilon = \frac{D}{1-\pi_0}$.

Proof: We will use Corollary 1 to verify that a first-order Markov conditional distribution of the form

$$P_{\hat{X}_n|\hat{X}^{n-1},X^n} = P_{\hat{X}_n|X_n,X_{n-1}}, \quad \forall n$$
(12)

achieves the optimum.

Due to the structure of the distortion function in Table I, we can guess the structure of $P(x_i|\hat{x}_i, x_{i-1})$ as follows. When $X_{i-1} = 0$, the decoder can always declare $\hat{X}_i = 0$ - there is no error irrespective of the value of X_i . So we assign $P(\hat{X}_i = 0|x_{i-1} = 0, x_i = 0) = P(\hat{X}_i = 0|x_{i-1} = 0, x_i = 1) = 1$, which gives

$$P(X_i = 0 | x_{i-1} = 0, \hat{x}_i = 0) = 1 - p.$$

The event $(X_{i-1} = 0, \hat{X}_i = 1)$ has zero probability. Thus we obtain the first two columns of Table II.

When $(X_{i-1} = j, \hat{X}_i = 0), 0 < j < k$, an error occurs when $X_i = j - 1$. This is assigned a probability ϵ . The remaining probability $1 - \epsilon$ is split between $P(X_i = j | x_{i-1} = j, \hat{x}_i = 0)$ and $P(X_i = j + 1 | x_{i-1} = j, \hat{x}_i = 0)$ according to their transition probabilities. In a similar fashion, we obtain all the columns in Table II.

We now show that the distortion criterion (11) can be cast in the form

$$d_n(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \left(-c \log_2 P(x_i | \hat{x}_i, x_{i-1}) + d_0(x_{i-1}, x_i) \right),$$
(13)

or equivalently

$$e(\hat{x}_i, x_{i-1}, x_i) = -c \log_2 P(x_i | \hat{x}_i, x_{i-1}) + d_0(x_{i-1}, x_i),$$
(14)

thereby proving that the distribution in Table II is optimal. This is done by substituting values from Tables I and II into (14) to determine c and $d_0(.,.)$.

Since the process $\{\mathbf{X}, \hat{\mathbf{X}}\}$ is jointly stationary and ergodic, the distortion constraint is equivalent to

$$E[e(\hat{x}_2, x_1, x_2)] \le D.$$

To calculate the expected distortion

$$E[e(\hat{x}_2, x_1, x_2)] = \sum_{x_1, x_2, \hat{x}_2} P(x_1, x_2) P(\hat{x}_2 | x_1, x_2) \cdot e(\hat{x}_2, x_1, x_2) \cdot e(\hat{x$$

we need the (optimum achieving) conditional distribution $P(\hat{X}_2|x_1, x_2)$. This is found by substituting the values from Tables I and II in the relation

$$P(x_2|x_1, \hat{x}_2) = \frac{P(x_2|x_1)P(\hat{x}_2|x_2, x_1)}{\sum_{x_2} P(x_2|x_1)P(\hat{x}_2|x_2, x_1)}.$$
 (16)

TABLE II The distribution $P(X_i|x_{i-1}, \hat{x}_i)$

	(x_{i-1},\hat{x}_i)								
Г		0, 0	0, 1		j, 0	j, 1		k, 0	k, 1
Г	$x_i = 0$	1 - p	-		_	_	-	-	-
	$x_i = 1$	p	-		-	_	-	_	—
	$x_i = \dot{\vdots}$	_	_	·	_	_	_	_	_
	$x_i = j - 1$	-	_	-	ϵ	$1 - \epsilon$	-	-	—
	$x_i = j$	-	-	-	$\frac{(1-\epsilon)(1-p_j-q_j)}{1-q_j}$	$\frac{\epsilon(1-p_j-q_j)}{1-q_j}$	_	-	_
	$x_i = j + 1$	_	_	-	$\frac{(1\!-\!\epsilon)p_j}{1\!-\!q_j}$	$\frac{1-q_j}{\frac{\epsilon p_j}{1-q_j}}$	_	_	—
	$x_i = \dot{\vdots}$	_	_	_	_	_	•.	_	_
	$x_i = k - 1$	—	—		_	_	—	ϵ	$1 - \epsilon$
	$x_i = k$	—	_		_	_	—	$1-\epsilon$	ϵ

TABLE III The conditional distribution $P(\hat{X}_i | x_{i-1}, x_i)$

(x_{i-1},x_i)									
	0, 0	0, 1	• • •	j, j-1	j, j	j, j+1		k, k-1	k,k
$\hat{x}_i = 0$	1	1		$\frac{\epsilon(1-q_j-\epsilon)}{q_j(1-2\epsilon)}$	$\frac{(1-\epsilon)(1-q_j-\epsilon)}{(1-q_j)(1-2\epsilon)}$	$\frac{(1-\epsilon)(1-q_j-\epsilon)}{(1-q_j)(1-2\epsilon)}$		$\frac{\epsilon(1-q_j-\epsilon)}{q_j(1-2\epsilon)}$	$\frac{(1-\epsilon)(1-q_j-\epsilon)}{(1-q_j)(1-2\epsilon)}$
$\hat{x}_i = 1$	0	0	•••	$\frac{(1-\epsilon)(q_j-\epsilon)}{q_j(1-2\epsilon)}$	$\frac{\epsilon(\mathbf{q}_j - \epsilon)}{(1 - q_j)(1 - 2\epsilon)}$	$\frac{\epsilon(\mathbf{q}_j - \epsilon)}{(1 - q_j)(1 - 2\epsilon)}$		$\frac{(1-\epsilon)(q_j-\epsilon)}{q_j(1-2\epsilon)}$	$\frac{\epsilon(q_j-\epsilon)}{(1-q_j)(1-2\epsilon)}$

Thus we obtain the conditional distribution $P(\hat{X}_2|x_1, x_2)$ shown in Table III. Using this in (15), we get

$$E[e(\hat{x}_2, x_1, x_2)] = (1 - \pi_0)\epsilon \le D \tag{17}$$

We can now calculate the rate distortion function as

$$R_{ff}(D) = \sum_{x_1, x_2, \hat{x}_2} P(x_1, x_2, \hat{x}_2) \log_2 \frac{P(x_2 | x_1, \hat{x}_2)}{P(x_2 | x_1)}$$

$$= H(X_2 | X_1) - H(X_2 | \hat{X}_2, X_1)$$
(18)

to obtain the expression in Proposition 1.

B. Gauss-Markov Source

Consider a stationary, ergodic, first-order Gauss-Markov source X with mean 0, correlation ρ and variance σ^2 :

$$X_n = \rho X_{n-1} + N_n, \quad \forall n, \tag{19}$$

where $\{N_n\}$ are independent, identically distributed Gaussian random variables with mean 0 and variance $(1 - \rho^2)\sigma^2$. Assume the source has feed-forward with delay 1 and we want to reconstruct at every time instant *n* the linear combination aX_n+bX_{n-1} , for any constants *a*, *b*. We use the mean-squared error distortion criterion:

$$d_n(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \left(\hat{x}_i - (ax_i + bx_{i-1}) \right)^2.$$
 (20)

The feed-forward distortion-rate function for this source with average mean-squared error distortion was given in [5]. The feed-forward rate-distortion function can also be obtained using Theorem 2 (proof omitted):

$$R_{ff}(D) = \frac{1}{2} \log \frac{\sigma^2 (1 - \rho^2)}{D/a^2}.$$
 (21)

We must mention here that the rate-distortion function in the first example cannot be computed using the techniques in [5].

IV. CHANNEL CODING WITH FEEDBACK

In this section, we consider channels with feedback and the problem of evaluating their capacity. A channel is defined as a sequence of probability distributions:

$$P_{\mathbf{Y}|\mathbf{X}}^{ch} = \{P_{Y_n|X^n,Y^{n-1}}^{ch}\}_{n=1}^{\infty}.$$
 (22)

In the above, X_n and Y_n are the channel input and output symbols at time n, respectively. The channel is assumed to have k-delay feedback $(1 \le k < \infty)$. This means at time instant n, the encoder has perfect knowledge of the channel outputs until time n-k to produce the input x_n . The input distribution to the channel is denoted by $P_{\mathbf{X}|\mathbf{Y}}^k = \{P_{X_n|X^{n-1},Y^{n-k}}\}_{n=1}^{\infty}$. In the sequel, we will need the following product quantities corresponding to the channel and the input.

$$\vec{P}_{Y^{n}|X^{n}}^{ch} \triangleq \prod_{i=1}^{n} P_{Y_{i}|X^{i},Y^{i-1}},$$

$$\vec{P}_{X^{n}|Y^{n}}^{k} \triangleq \prod_{i=1}^{n} P_{X_{i}|X^{i-1},Y^{i-k}}.$$
(23)

The joint distribution of the system is given by $P_{\mathbf{X},\mathbf{Y}} = \{P_{X^n,Y^n}\}_{n=1}^{\infty}$, where

$$P_{X^{n},Y^{n}} = \vec{P}_{X^{n}|Y^{n}}^{k} \cdot \vec{P}_{Y^{n}|X^{n}}^{ch}.$$
 (24)

Definition 3: An $(N, 2^{NR})$ channel code with delay k feedforward of block length N and rate R consists of a sequence of encoder mappings $e_{i,1} = 1, \ldots, N$ and a decoder q, where

$$e_i: \{1, \dots, 2^{NR}\} \times \mathcal{Y}^{i-k} \to \mathcal{X}, \quad i = 1, \dots, N$$
$$g: \mathcal{Y}^N \to \{1, \dots, 2^{NR}\}$$

Thus it is desired to transmit one of 2^{NR} messages over the channel in N units of time. There is an associated cost function for using the channel given by $c_N(X^N, Y^N)$. For example, this could be the average power of the input symbols.

If W is the message that was transmitted, then the probability of error is

$$P_e = Pr(g(Y^N) \neq W)$$

Definition 4: R is an (ϵ, δ) -achievable rate at probability-1 cost C if for all sufficiently large N, there exists an $(N, 2^{NR})$ channel code such that

$$P_e < \epsilon,$$

 $Pr(c_N(X^N, Y^N) > C) < \delta$

R is an achievable rate at probability-1 cost C if it is (ϵ, δ) -achievable for every $\epsilon, \delta > 0$.

Theorem 3: [6], [4] For an arbitrary channel $P_{\mathbf{Y}|\mathbf{X}}^{ch}$, the capacity with k-delay feedback, the infimum of all achievable rates at probability-1 cost C, is given by

$$C_{fb}(C) = \sup_{\substack{P_{\mathbf{X}|\mathbf{Y}}^k: \rho(P_{\mathbf{X}|\mathbf{Y}}^k) \le C}} \underline{I}(X \to Y),$$
(25)

where²

$$\underline{I}(X \to Y) \triangleq \liminf_{inprob} \frac{1}{n} \log \frac{P_{Y^n|X^n}^{ch}}{P_{Y^n}}$$

and

$$\rho(P_{\mathbf{X}|\mathbf{Y}}^{k}) \triangleq \limsup_{inprob} c_{n}(X^{n}, Y^{n})$$

= $\inf\{h : \lim_{n \to \infty} P_{X^{n}Y^{n}}((x^{n}, y^{n}) : c_{n}(x^{n}, y^{n}) > h)\} = 0.$

In the above, we note that

$$P_{Y^n} = \sum_{X^n} P_{X^n, Y^n} = \sum_{X^n} \vec{P}^k_{X^n | Y^n} \cdot \vec{P}^{ch}_{Y^n | X^n}.$$

A. Evaluating the Channel Capacity with Feedback

The capacity formula in Theorem 3 is a multi-letter expression involving optimizing the function $\underline{I}(X \to Y)$ over an infinite dimensional space of input distributions $P_{\mathbf{X}|\mathbf{Y}}^{k}$. Just like we did with sources, we can pose the following question: Given a channel $P_{\mathbf{Y}|\mathbf{X}}^{ch}$ and an input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$, for what sequence of cost measures does $P_{\mathbf{X}|\mathbf{Y}}^{k}$ achieve the supremum in the capacity formula ?

The following theorem (proof omitted) provides an answer. Theorem 4: Suppose we are given a channel $P_{\mathbf{Y}|\mathbf{X}}^{ch}$ with k-delay feedback and an input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ such that the joint process $P_{\mathbf{X},\mathbf{Y}}$ given by (24) is stationary, ergodic. Then the input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ achieves the k-delay feedback capacity of the channel if for all sufficiently large n, the cost measure satisfies

$$c_n(x^n, y^n) = \lambda \cdot \frac{1}{n} \log \frac{P_{Y^n|X^n}^{ch}(y^n|x^n)}{P_{Y^n}(y^n)} + d_0, \qquad (26)$$

where λ is any positive number and d_0 is an arbitrary constant.

²The \liminf_{inprob} of a random sequence A_n is defined as the largest number α such that $P(A_n \leq \alpha - \epsilon) = 0$ for all $\epsilon > 0$ and is denoted <u>A</u>.

B. Markov channels with feedback

The problem of evaluating the capacity of finite state machine channels was studied recently in [12] and [13]. In [12], it was shown that the capacity of such a channel is achieved by a feedback dependent Markov source, i.e., the optimal input distribution is of the form $\{P_{X_n|X_{n-1},Y^{n-1}}\}$, i.e., Markov in X but depends on all the past Y symbols.

We consider a simple Markov channel with feedback delay 1 and the problem of evaluating its capacity. The channel we study is characterized by

$$P_{Y_n|X^n,Y^{n-1}}^{ch} = P_{Y_n|X_n,Y_{n-1}}^{ch}.$$
(27)

Let the channel have feedback with delay 1. We are interested in finding cost measures for which the capacity of the channel in (27) is easily evaluated. We first ask: *When is the optimal joint distribution first order Markov in the following sense:*

$$P_{X^{n},Y^{n}} = \prod_{i=1}^{n} P_{X_{i},Y_{i}|Y_{i-1}}, \quad \forall n.$$
(28)

In other words, when does the optimizing input distribution to have the form

$$\vec{\mathcal{P}}_{X^n|Y^n} = \prod_{i=1}^n P_{X_i|Y_{i-1}}, \quad \forall n.$$
 (29)

From Theorem 4, it is seen that this happens when the costfunction has the form:

$$c_n(x^n, y^n) = \lambda \cdot \frac{1}{n} \sum_{i=1}^n \log \frac{\vec{P}_{Y_i|X_i, Y_{i-1}}^{ch}(y_i|x_i, y_{i-1})}{P_{Y_i|Y_{i-1}}(y_i|y_{i-1})} + d_0.$$
(30)

REFERENCES

- [1] C. E. Shannon, "The zero-error capacity of a noisy channel," *IRE Trans. Inf. Theory*, vol. IT-2, pp. 8–19, 1956.
- [2] J. Massey, "Causality, Feedback and Directed Information," Proc. 1990 Symp. on Inf. Theory and Applications (ISITA-90), pp. 303–305, 1990.
- [3] G. Kramer, Directed Information for channels with Feedback. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1998.
- [4] S. Tatikonda, Control Under Communications Constraints. PhD thesis, Massachusetts Inst. of Technology, Cambridge, MA, September 2000.
- [5] T. Weissman and N. Merhav, "On competitive prediction and its relation to rate-distortion theory," *IEEE Trans. Inf. Theory*, vol. IT-49, pp. 3185– 3194, December 2003.
- [6] R. Venkataramanan and S. S. Pradhan, "Directed Information for Communication problems with Side-information and Feedback/Feedforward," Proc. 43rd Annual Allerton Conf. (Monticello, IL), 2005.
- [7] E. Martinian and G. W. Wornell, "Source Coding with Fixed Lag Side Information," Proc. 42nd Annual Allerton Conf. (Monticello, IL), 2004.
- [8] S. S. Pradhan, "Source coding with feedforward: Gaussian sources," in Proc. IEEE Int. Symp. on Inf. Theory, p. 212, June 2004.
- [9] I. Csisz'ar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic Press, 1981.
- [10] M. Gastpar, B. Rimoldi, and M. Vetterli, "To code, or not to code: lossy source-channel communication revisited.," *IEEE Trans. Inf. Theory*, vol. 49, no. 5, pp. 1147–1158, 2003.
- [11] S. S. Pradhan, J. Chou, and K. Ramchandran, "Duality between source coding and channel coding and its extension to the side-information case," *IEEE Trans. Inf. Theory*, vol. 49, pp. 1181–1203, May 2003.
- [12] S. Yang, A. Kavcic, and S. Tatikonda, "Feedback capacity of finite-state machine channels.," *IEEE Trans. Inf. Theory*, vol. 51, no. 3, pp. 799– 810, 2005.
- [13] J. Chen and T. Berger, "The capacity of finite-state markov channels with feedback.," *IEEE Trans. Inf. Theory*, vol. 51, no. 3, pp. 780–798, 2005.