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Abstract—In this work, a new lower bound for the maxi-
mal error probability of a two-user discrete memoryless (DM)
multiple-access channel (MAC) is derived. This is the first bound
of this type that explicitly imposes independence of the users’
input distributions (conditioned on the time-sharing auxiliary
variable) and thus results in a tighter sphere-packing exponent
when compared to the tightest known exponent derived by
Haroutunian.

I. INTRODUCTION

An interesting problem in network information theory is
to determine the minimum probability of error which can
be achieved on a discrete memoryless (DM), multiple-access
channel (MAC). More specifically, a two-user DM-MAC is
defined by a stochastic matrix1 W : X × Y → Z , where the
input alphabets, X ,Y , and the output alphabet, Z , are finite
sets. The channel transition probability for sequences of length
n is given by

Wn(z|x, y) ,
n∏

i=1

W (zi|xi, yi) (1)

where

x , (x1, ..., xn) ∈ Xn, y , (y1, ..., yn) ∈ Yn

and

z , (z1, ..., zn) ∈ Zn.

It is known [1], that for any (RX , RY ) in the interior of a
certain set C, and for all sufficiently large n, there exists a
multiuser code with an arbitrary small average probability of
error. Conversely, for any (RX , RY ) outside of C, the average
probability of error is bounded away from 0. The set C, which
is called capacity region for W , is the closure of the set of all
rate pairs (RX , RY ) satisfying [2]

0 ≤ RX ≤ I(X ∧ Z|Y, Q) (2a)
0 ≤ RY ≤ I(Y ∧ Z|X, Q) (2b)
0 ≤ RX + RY ≤ I(XY ∧ Z|Q), (2c)

1We use the following notation throughout this work. Script capitals U , X ,
Y , Z ,. . . denote finite, nonempty sets. To show the cardinality of a set X ,
we use |X |. We also use the letters P , Q,. . . for probability distributions on
finite sets, and U , X , Y ,. . . for random variables.

for all choices of joint distributions over the random vari-
ables Q, X, Y, Z of the form P (q)P (x|q)P (y|q)W (z|x, y)
with Q ∈ Q and |Q| ≤ 4.

Haroutunian [3] derived a lower bound on the opti-
mal average error probability for W . This result asserts
that the average probability of error is bounded below by
exp{−nEsp(RX , RY ,W )}, where

Esp(RX , RY ,W ) , max
PXY

min
VZ|XY

D(VZ|XY ||W |PXY ). (3)

Here, the maximum is taken over all possible joint distri-
butions over the random variables X, Y , and the minimum
over all test channels VZ|XY which satisfy at least one of the
following conditions

IV (X ∧ Z|Y ) ≤ RX (4a)
IV (Y ∧ Z|X) ≤ RY (4b)
IV (XY ∧ Z) ≤ RX + RY (4c)

where V , VZ|XY × PXY . This bound tends to be
somewhat loose because it does not take into account the
separation of the two encoders in the MAC.

In this paper, we derive a new lower bound that explicitly
captures the separation of the encoders in the MAC and thus
is tighter than the one provided by Haroutunian. However, this
bound is only valid for the maximal and not the average error
probability. Nevertheless, we believe that the techniques used
in this derivation can be extended to provide lower bounds for
the average error probability as well.

The paper is organized as follows. First, some preliminaries
are introduced in section II. Then in section III, we state and
prove the main result. The proof hinges upon a strong converse
theorem which is also stated in the same Section and proved
in the Appendix.

II. PRELIMINARIES

For any alphabet X , P(X ) denotes the set of all probability
distributions on X . The type of a sequence x = (x1, ..., xn) ∈
Xn is the distributions Px on X defined by

Px(x) ,
1
n

N(x|x), x ∈ X , (5)



where N(x|x) denotes the number of occurrences of x in x.
Let Pn(X ) denote the set of all types in Xn, and define the
set of all sequences in Xn of type P as

TP , {x ∈ Xn : Px = P}. (6)

The joint type of a pair (x,y) ∈ Xn × Yn is the probability
distribution Px,y on X × Y defined by

Px,y(x, y) ,
1
n

N(x, y|x,y), (x, y) ∈ X × Y, (7)

where N(x, y|x,y) is the number of occurrences of (x, y)
in (x,y). The relative entropy or Kullback Leibler distance
between two probability distribution P,Q ∈ P(X ) is defined
as

D(P ||Q) ,
∑
x∈X

P (x) log
P (x)
Q(x)

. (8)

Let W(Y|X ) denote the set of all stochastic matrices with
input alphabet X and output alphabet Y . Then, given stochastic
matrices V, W ∈ W(Y|X ), the conditional I-divergence is
defined by

D(V ||W |P ) ,
∑
x∈X

P (x)D(V (·|x)||W (·|x)). (9)

An (n, M, λ) code for W : X → Z , is a system {(ui, Di) :
1 ≤ i ≤ M} with
• ui ∈ Xn, Di ⊂ Zn

• Di ∩Di′ = ∅ for i 6= i′

• Wn(Di|ui) ≥ 1− λ, for 1 ≤ i ≤ M .

Finally, an (n, M, N) Multi user code is a set
{(ui,vj , Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} with
• ui ∈ Xn, vj ∈ Yn, Dij ⊂ Zn

• Dij ∩Di′j′ = ∅ for (i, j) 6= (i′, j′).

Moreover, an (n, M, N, λ) code for the MAC, W , is an
(n, M, N) code with

1
MN

M∑
i=1

N∑
j=1

Wn(Di,j |ui,vj) ≥ 1− λ (10)

III. MAIN RESULT

The main result of this paper is a lower bound, sphere
packing bound, for the maximal error probability for a MAC.
However, to state the sphere packing theorem, we need to
state another theorem, which will be proved completely in the
Appendix.

Definition 1. For any DM-MAC, W , for any joint distribution
P ∈ P(X ×Y), any 0 ≤ λ < 1, and any (n, M, N) code, C,
define

EW (P, λ) , {(ui, vj) ∈ C : W (Dij |ui, vj) ≥
1− λ

2
,

(ui, vj) ∈ TP }
(11)

Theorem 1. Consider any (n, M, N) code C. For ev-
ery Pn

XY ∈ Pn(X × Y), such that |EW (Pn
XY , λ)| ≥

1
(n+1)|X||Y| (1 − 2λ

1+λ )MN , the rate pair must satisfy the
following inequality:

(
1
n

log M,
1
n

log N) ∈ Cn
W (Pn

XY ) (12)

where Cn
W (P ) is defined as the closure of the set of all

(R1, R2) pairs satisfying

R1 ≤ I(X̄ ∧ Z̄|Ȳ , Q) + εn (13a)
R2 ≤ I(Ȳ ∧ Z̄|X̄,Q) + εn (13b)

R1 + R2 ≤ I(X̄ ∧ Z̄|Ȳ , Q) + εn (13c)

for some choice of random variables Q defined on
{1, 2, 3, 4}, and joint distribution p(q)p(x|q)p(y|q)w(z|x, y),
with marginal distribution P (x, y). Here, εn → 0 an n →∞.

Define CW (P ) as the closure of the set of all (R1, R2) pairs
satisfying

R1 ≤ I(X̄ ∧ Z̄|Ȳ , Q) (14a)
R2 ≤ I(Ȳ ∧ Z̄|X̄,Q) (14b)

R1 + R2 ≤ I(X̄ ∧ Z̄|Ȳ , Q) (14c)

for some choice of random variables Q defined on
{1, 2, 3, 4}, and joint distribution p(q)p(x|q)p(y|q)w(z|x, y),
with marginal distribution P (x, y).

Theorem 2. (Sphere Packing Bound). For any RX , RY > 0,
δ > 0 and any DM-MAC, W : X×Y → Z , every (n, M, N, λ)
code, C with

1
n

log M ≥ RX + δ (15a)

1
n

log N ≥ RY + δ, (15b)

has maximum probability of error

Pm
e ≥ 1

2
exp

(
− nEsp(RX , RY ,W )(1 + δ)

)
, (16)

where

Esp(RX , RY ,W ) , max
PXY ∈P(X×Y)

min
V :(RX ,RY )
/∈CV (PXY )

D(V ||W |PXY ).

(17)

Proof: If λ = 1, the result is trivial. Assume λ < 1.
Let’s choose λ′ such that max{1 − δ, λ} < λ′ < 1. Since
λ′ > λ, every (n, M, N, λ) code is also an (n, M, N, λ′) code.
Using the same argument as [4, pp. 189], we conclude that
there exist at least one dominant type Pn ∈ Pn(X ×Y), such
that |EW (Pn, λ′)| ≥ 1

(n+1)|X||Y| (1 − 2λ′

1+λ′ )MN . Consider an
arbitrary DM-MAC V : X × Y → Z , such that (RX , RY ) /∈
Cn

V (Pn). By Theorem 1, there exist at least one pair (ui, vj)
with joint type Pn

XY such that

V n(Dc
ij |ui, vj) >

1 + λ′

2
> 1− δ

2
(18)



Using the same method as Csiszar in [5, pp. 167], we have

Wn(Dc
ij |ui, vj) ≥ exp

{
−

D(V ||W |Pn) + h(1− δ
2 )

1− δ
2

}
≥ 1

2
exp {−nD(V ||W |Pn)(1 + δ)} (19)

If δ satisfies h(1− δ
2 ) < 1− δ

2 . By maximizing the result over
the arbitrary channel V , we get

Pm
e ≥ max

V :(RX ,RY )
/∈Cn

V (P n)

1
2

exp
{
− nD(V ||W |Pn)(1 + δ)

}
=

1
2

exp
{
− n min

V :(RX ,RY )
/∈Cn

V (P n)

D(V ||W |Pn)(1 + δ)
}

≥ min
P n∈

Pn(X×Y)

1
2

exp
{
− n min

V :(RX ,RY )
/∈Cn

V (P n)

D(V ||W |Pn)(1 + δ)
}

≥ min
P∈

P(X×Y)

1
2

exp
{
− n min

V :(RX ,RY )
/∈Cn

V (P )

D(V ||W |P )(1 + δ)
}

(20)

Using the continuous property of conditional mutual informa-
tion and I-divergence, we conclude

Pm
e ≥ min

P∈
P(X×Y)

1
2

exp
{
− n

(
min

V :(RX ,RY )
/∈CV (P )

D(V ||W |P )(1 + δ) + αn

)}
(21)

where αn → 0 as εn → 0.

IV. APPENDIX

The basic idea of the proof is wringing technique which
was used for the first time, by Ahlswede [6].

Consider any Pn
XY ∈ Pn(X × Y), such that

|EW (Pn
XY , λ)| ≥ 1

(n+1)|X||Y| (1 − 2λ
1+λ )MN . let’s define

A , {(i, j) : W (Dij |ui, vj) ≥ 1−λ
2 , (ui, vj) ∈ TP n

XY
}. Since

|A| = |EW (Pn
XY , λ)|, we conclude that

|A| ≥ 1
(n + 1)|X ||Y|

(1− 2λ

1 + λ
)MN (22)

Define,

C(i) = {(i, j) : (i, j) ∈ A, 1 ≤ j ≤ N} (23a)
B(j) = {(i, j) : (i, j) ∈ A, 1 ≤ i ≤ M} (23b)

Consider the subcode {(ui, vj , Dij) : (i, j) ∈ A} and define
random variables Xn, Y n

Pr((Xn, Y n) = (ui, vj)) =
1
|A|

if (i, j) ∈ A (24)

Lemma 1. For random variables Xn, Y n defined in (24), the
mutual information satisfies the following inequality:

I(Xn ∧ Y n) ≤ − log(1− 2λ

1 + λ
) + |X ||Y| log(n + 1) (25)

Proof: This is a generalization of the proof by Dueck
in [4]Observe that

H(Y n|Xn) =
∑

ui

Pr(Xn = ui)H(Y n|ui) (26)

However, by the definition of the variables Xn, Y n we have

H(Y n|ui) = log |{j : (i, j) ∈ A}| (27)

and

Pr(Xn = ui) = |A|−1.|{j : (i, j) ∈ A}| (28)

Hence,

H(Y n|Xn)

= |A|−1
M∑
i=1

|{j : (i, j) ∈ A}| log |{j : (i, j) ∈ A}| (29)

In the right hand side of (29), the summands are of the form
m log m. This function of m is increasing and convex in m.
Thus,

H(Y n|Xn) ≥

|A|−1(
M∑
i=1

|{j : (i, j) ∈ A}|). log(M−1
M∑
i=1

|{j : (i, j) ∈ A}|)

Since
M∑
i=1

|{j : (i, j) ∈ A}| = |A| (30)

Therefore

H(Y n|Xn) ≥ log(M−1|A|) (31)

By (22) , we conclude that

H(Y n|Xn) ≥

log N + log(1− 2λ

1 + λ
)− |X ||Y| log(n + 1) (32)

Finally,

I(Xn ∧ Y n) = H(Y n)−H(Y n|Xn) (33)
≤ log N −H(Y n|Xn) (34)

and hence,

I(Xn ∧ Y n) ≤ − log(1− 2λ

1 + λ
) + |X ||Y| log(n + 1) (35)

Lemma 2. [7] Let Xn, Y n be RV’s with values in Xn, Yn

resp. and assume that

I(Xn ∧ Y n) ≤ σ (36)

Then, for any 0 < δ < σ there exist t1, t2, ..., tk ∈ {1, ..., n}
where 0 ≤ k < 2σ

δ such that for some
x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk

, ȳtk

I(Xt∧Yt|Xt1 = x̄t1 , Yt1 = ȳt1 , ..., Xtk
= x̄tk

, Ytk
= ȳtk

) ≤ δ

for t = 1, 2, ..., n (37)



and

Pr(Xt1 = x̄t1 , Yt1 =ȳt1 , ..., Xtk
= x̄tk

, Ytk
= ȳtk

)

≥ (
δ

|X ||Y|(2σ − δ)
)k (38)

Consider the subcode {(ui, vj , Dij) : (i, j) ∈ Ā}, where

Ā , {(i, j) ∈ A : uitl
= x̄tl

, vjtl
= ȳtl

1 ≤ l ≤ k} (39)

and define

C̄(i) = {(i, j) : (i, j) ∈ Ā, 1 ≤ j ≤ N} (40a)
B̄(j) = {(i, j) : (i, j) ∈ Ā, 1 ≤ i ≤ M} (40b)

Lemma 3. The subcode {(ui, vj , Dij) : (i, j) ∈ Ā}, is a
subcode with maximal error probability 1+λ

2 , and

|Ā| ≥ (
δ

|X ||Y|(2σ − δ)
)k|A| (41)

Moreover,∑
x,y

|Pr(Xt = x, Yt = y)− Pr(Xt = x)Pr(Yt = y)| ≤ 2δ1/2

(42)

where Xn = (X1, ..., Xn), Y n = (Y1, ..., Yn) are dis-
tributed according to the Fano-distribution of the subcode
{(ui, vj , Dij) : (i, j) ∈ Ā}.

Proof: Since Ā ⊂ A, the maximal probability of error
for this subcode is at most 1+λ

2 . The second part of Lemma 2,
yields immediately (41). On the other hand,

PA(Xt = x, Yt = y|x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk
, ȳtk

)

=
PA(Xt = x, Yt = y, x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk

, ȳtk
)

PA(x̄t1 ,ȳt1 ,x̄t2 ,ȳt2 ,...,x̄tk
,ȳtk

)

=
NA(Xt = x, Yt = y, x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk

, ȳtk
)

NA(x̄t1 ,ȳt1 ,x̄t2 ,ȳt2 ,...,x̄tk
,ȳtk

)

=
NĀ(Xt = x, Yt = y)

|Ā|
= PĀ(Xt = x, Yt = y) (43)

Therefore, by the first part of Lemma 2, we conclude that

I(Xt ∧ Yt) ≤ δ for 1 ≤ t ≤ n (44)

Since I(Xt ∧ Yt) is an I-divergence, Pinsker’s inequality
implies [8]∑
x,y

|Pr(Xt = x, Yt = y)− Pr(Xt = x)Pr(Yt = y)| ≤ 2δ1/2

(45)

Lemma 4. ( [9]): For a (n, M, λ) code {(ui, Di) : 1 ≤ i ≤
M} for the non-stationary DMC (Wt)∞t=1

log M <
n∑

t=1

I(Xt ∧ Zt) +
3

1− λ
|X |n1/2 (46)

where the distribution of the RV’s are determined by the Fano-
distribution on the codewords.

Define random variables X̄n, Ȳ n on Xn resp. Yn by

Pr((X̄n, Ȳ n) = (ui, vj)) =
1
|Ā|

if (i, j) ∈ Ā (47)

Lemma 5. For any 0 ≤ λ < 1, any (n, M, N) code C ,
{(ui, vj , Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} for the any MAC, W ,
and for any Pn

XY ∈ Pn(X × Y), such that |EW (Pn
XY , λ)| ≥

1
(n+1)|X||Y| (1− 2λ

1+λ )MN

log M ≤
n∑

t=1

I(X̄t ∧ Z̄t|Ȳt) + c1(λ)n1/2 + c1k log(
2σ

δ
)

log N ≤
n∑

t=1

I(Ȳt ∧ Z̄t|X̄t) + c2(λ)n1/2 + c2k log(
2σ

δ
)

log MN ≤
n∑

t=1

I(X̄tȲt ∧ Z̄t) + c3(λ)n1/2 + c3k log(
2σ

δ
)

where the distributions of the RV’s are determined by the Fano-
distribution on the codewords {(ui, vj) : (i, j) ∈ Ā}. Here,
ci(λ) and ci are suitable functions of λ.

Proof: For any fixed j, consider (n, |B̄(j)|) code
{(ui, Dij) : (i, j) ∈ B̄(j)}. Any pair of codewords in this
code has probability of error at most equal to 1+λ

2 . Let’s define
λ′ , 1+λ

2 . It follows from Lemma 4 that

log |B̄(j)| ≤
n∑

t=1

I(X̄t ∧ Z̄t|Ȳt = vjt) +
3

1− λ′
|X |n1/2

(48)
Similarly,

log |C̄(i)| ≤
n∑

t=1

I(Ȳt ∧ Z̄t|X̄t = uit) +
3

1− λ′
|Y|n1/2 (49)

log |Ā| ≤
n∑

t=1

I(X̄t, Ȳt ∧ Z̄t) +
3

1− λ′
|X ||Y|n1/2 (50)

Since Pr(Ȳt = y)=|Ā|−1
∑

(i,j)∈Ā 1{vjt,y},

|Ā|−1
∑

(i,j)∈Ā

log |B̄(j)|

≤
∑

(i,j)∈Ā

n∑
t=1

I(X̄t ∧ Z̄t|Ȳt = vjt)

∑
y 1{vjt,y}

|Ā|

+
3

1− λ′
|X |n1/2

=
n∑

t=1

I(X̄t ∧ Z̄t|Ȳt) +
3

1− λ′
|X |n1/2 (51)

Define λ∗ , 2λ
1+λ , and

B∗ ,
1− λ∗

n

M

(n + 1)|X ||Y|
(

δ

|X ||Y|(2σ − δ)
)k (52)



Therefore,

|Ā|−1
∑

(i,j)∈Ā

log |B̄(j)|

= |Ā|−1
∑

j

|B̄(j)| log |B̄(j)|

≥ |Ā|−1
∑

j:|B̄(j)|≥B∗

|B̄(j)| log |B̄(j)|

≥ |Ā|−1 log(B∗)
∑

j:|B̄(j)|≥B∗

|B̄(j)|

≥ |Ā|−1 log(B∗)(|Ā| −NB∗) (53)

By lemma 3, (22), and definition of B∗,

NB∗ ≤ 1
n
|Ā| (54)

Therefore,

|Ā|−1
∑

(i,j)∈Ā

log |B̄(j)|

≥ |Ā|−1 log(B∗)(|Ā| − 1
n
|Ā|)

= (1− 1
n

) log(
1− λ∗

n

M

(n + 1)|X ||Y|
(

δ

|X ||Y|(2σ − δ)
)k)

(55)

By (51),(55)

log M ≤ (1 +
2
n

)(
n∑

t=1

I(X̄t ∧ Z̄t|Ȳt) +
3

1− λ′
|X |n1/2)

− log(1− λ∗) + log n + |X ||Y| log(n + 1)

+ k log(
|X ||Y|2σ

δ
) (56)

≤
n∑

t=1

I(X̄t ∧ Z̄t|Ȳt) + c1(λ′)n1/2 + c1k log(
2σ

δ
)

+ 2|Z| (57)
Analogously,

log N ≤
n∑

t=1

I(Ȳt ∧ Z̄t|X̄t) + c2(λ′)n1/2 + c2k log(
2σ

δ
)

+ 2|Z| (58)

To find an upper bound for log MN , we first try to find a
lower bound on the log |Ā|. By Lemma 3

log |Ā| ≥ log |A|+ k log(
δ

|X ||Y|(2σ − δ)
)

≥ log |A|+ k log(
δ

|X ||Y|2σ
)

= log |A| − k log(
2σ

δ
)− k log(|X ||Y|) (59)

≥ log(MN)− |X ||Y| log(n + 1) + log(1− 2λ

1 + λ
)

− k log(
2σ

δ
)− k log(|X ||Y|) (60)

Therefore,

log(MN) ≤ log |Ā|+ c3k log(
2σ

δ
) (61)

Using (50),

log MN ≤
n∑

t=1

I(X̄tȲt∧Z̄t)+c3(λ′)n1/2+c3k log(
2σ

δ
) (62)

Note that, in general X̄t and Ȳt are not independent. In the
following, we prove that they are nearly independent.

Now, we combine (35) and lemma 3. For an (n, M, N)
code {(ui, vj , Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} which has the
particular property mentioned in theorem 1, define A, Ā as
defined before. Apply lemma 3 with parameter δ = n−1/2.
Using σ = − log(1− 2λ

1+λ ) + |X ||Y| log(n + 1), we conclude
that

k ≤ 2σ

δ
= 2

√
n(− log(1− 2λ

1 + λ
) + |X ||Y| log(n + 1))

∼ O(
√

n log n) (63)

|Pr(X̄t = x, Ȳt = y)− Pr(X̄t = x)Pr(Ȳt = y)| ≤ 2n−1/4

(64)
for any x ∈ X , y ∈ Y , and t = 1, ..., n. We can write the
above equations as follows

1
n

log M ≤ 1
n

n∑
t=1

I(X̄t ∧ Z̄t|Ȳt) + C(λ)
o(n)
n

(65a)

1
n

log N ≤ 1
n

n∑
t=1

I(Ȳt ∧ Z̄t|X̄t) + C(λ)
o(n)
n

(65b)

1
n

log MN ≤ 1
n

n∑
t=1

I(X̄tȲt ∧ Z̄t) + C(λ)
o(n)
n

(65c)

The expressions in (65a)-(65c) are the averages of the mu-
tual informations calculated at the empirical distributions in
the column t of the mentioned subcode. We can rewrite
these equations with the new variable Q, where Q = q ∈
{1, 2, ..., n} with probability 1

n . Using the same method as
Cover [1, pp. 402], we obtain the result. The only thing
remained to be found is the distribution under which we
calculate the mutual informations. However, by (64) Using
the same method as Cover [1, pp. 402], we obtain the result.
The only thing remained to be found is the distribution under
which we calculate the mutual informations. However, by (64)

|P (X̄ = x, Ȳ = y|Q = q)− P (X̄ = x|Q = q)P (Ȳ = y|Q = q)|
= |Pr(X̄q = x, Ȳq = y)− Pr(X̄q = x)Pr(Ȳq = y)|

≤ 2n−1/4 (66)

Using the continuity of conditional mutual information with
respect to distributions, using the same idea of [10, pp. 722],
we conclude that, if two distributions are close, the conditional
Mutual informations, calculated based on them, cannot be too



far. More precisely, we can say that there exists a sequence of
{δn}∞n=1 which goes to zero as n →∞, such that,

1
n

log M ≤ I(X̄t ∧ Z̄t|Ȳt, Q) + C(λ)
o(n)
n

+ δn

1
n

log N ≤ I(Ȳt ∧ Z̄t|X̄t, Q) + C(λ)
o(n)
n

+ δn

1
n

log MN ≤ I(X̄tȲt ∧ Z̄t, Q) + C(λ)
o(n)
n

+ δn (67)

Here, the mutual informations calculated based on
p(q)p(x|q)p(y|q)w(z|x, y), with marginal distribution
Pn

XY (x, y). On the other hand, the joint probability
distribution of X̄ and Ȳ is

P (X̄ = x, Ȳ = y)

=
∑

(i,j)∈Ā

P (X̄(W1) = x, Ȳ (W2) = y, W1 = i, W2 = j)

=
∑

(i,j)∈Ā

P (X̄(i) = x, Ȳ (j) = y)P (i, j)

=
1
|Ā|

∑
(i,j)∈Ā

P (X̄(i) = x, Ȳ (j) = y)

=
1
|Ā|

∑
(i,j)∈Ā

1
n

n∑
q=1

1{X̄q(i) = x, Ȳq(j) = y} (68)

However, all codewords have the same joint type Pn
XY ,

therefore,
n∑

q=1

1{X̄q(i) = x, Ȳq(j) = y} = nPn
XY (x, y) (69)

(68) and (69) result in

P (X̄ = x, Ȳ = y) = Pn
XY (x, y) (70)

Finally, we can conclude that

P (Q = q, X̄ = x,Ȳ = y, Z̄ = z)
= p(q)p(x, y|q)W (z|x, y) (71)

in which the marginal distribution of X̄ and Ȳ is Pn
XY (x, y),

and p(x, y|q) ∼ p(x|q)p(y|q).
The cardinality bound on the time-sharing random variable,

Q, is the consequence of Carathéodory’s theorem on the
convex set [11], [12], [1].
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