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Abstract—The problem of bounding the reliability function of
a multiple-access channel (MAC) is studied. An upper bound on
the minimum Bhattacharyya distance between codeword pairs is
derived. For a certain large class of two-user discrete memoryless
(DM) MAC, a lower bound on the maximal probability of
decoding error is derived as a consequence of the upper bound on
Bhattacharyya distance. Further, an upper bound on the average
probability of decoding error is studied. It is shown that the
corresponding upper and lower bounds have a similar structure.
Using a conjecture about the structure of the multi-user code,
a tighter lower bound for the maximal probability of decoding
error is derived and is shown to be tight at zero rates.

I. INTRODUCTION

An interesting problem in network information theory is
to determine the minimum probability of error which can
be achieved on a discrete memoryless (DM), multiple-access
channel (MAC). Ahlswede [1] and Liao [2] studied the capac-
ity region for MAC. Later, stronger versions of their coding
theorem, giving exponential upper and lower bounds on the er-
ror probability, have been derived by numerous other authors.
Slepian and Wolf [3], Dyachkov [4], Gallager [5], Pokorny and
Wallmeier [6], Liu and Hughes [7], and Nazari [8] have all
studied upper bounds on the average probability of decoding
error. Haroutunian [9] derived a lower bound on the optimal
average error probability. Nazari et al. [10] derived a tighter
lower bound that explicitly captures the separation of the
encoders in the MAC. However, the bound in [10] is only
valid for the maximal and not the average error probability.

In this paper, we derive a new lower bound on the max-
imal error probability for MAC. This bound is derived by
establishing a link between minimum Bhattacharyya distance
and maximal probability of decoding error; then, the upper
bound on Bhattacharyya distance is used to infer the lower
bound on probability of decoding error. Also, by the method
of expurgation [8], an upper bound on the average probability
of decoding error is derived. At zero rate pair, the upper and
lower bounds have similar structure, however, they may not be
equal. By using a conjecture about the structure of the code,
we derive another bound on the Bhattacharrya distance, which
results in a tighter lower bound on the maximal probability of
decoding error. At zero rate pair, this bound is tight, i.e., it is
asymptotically equal to the upper bound.
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The paper is organized as follows. Some preliminaries are
introduced in section II. The main result of the paper, which
is an upper bound on the reliability function of the channel,
is obtained in section III. In section IV, a lower bound on the
reliability function is developed and compared with the result
of section III. Finally, in section V, a conjecture about the
structure of all possible codes is proposed, and based on the
conjecture, another upper bound on the reliability function of
the channel is obtained. It is shown that this bound is always
asymptotically tight at zero rate pair.

II. PRELIMINARIES

For any alphabet X , P(X ) denotes the set of all probability
distributions on X . The type of a sequence x = (x1, ..., xn) ∈
Xn is the distributions Px, on X , defined by:

Px(x) ,
1
n

N(x|x), x ∈ X , (1)

where N(x|x) denotes the number of occurrences of x in x.
Let Pn(X ) denote the set of all types in Xn, and define the
set of all sequences in Xn of type P as

TP , {x ∈ Xn : Px = P}. (2)

The joint type of a pair (x,y) ∈ Xn × Yn is the probability
distribution Px,y on X × Y defined by:

Px,y(x, y) ,
1
n

N(x, y|x,y), (x, y) ∈ X × Y, (3)

where N(x, y|x,y) is the number of occurrences of (x, y) in
(x,y).

Definition 1. An (n, M, N) multi-user code is a set
{(xi,yj , Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} with
• xi ∈ Xn, yj ∈ Yn, Dij ⊂ Zn

• Dij ∩Di′j′ = ∅ for (i, j) 6= (i′, j′).
The average error probability of this code for the MAC, W :
X × Y → Z , is defined as

e(C,W ) ,
1

MN

M∑
i=1

N∑
j=1

Wn(Di,j |xi,yj). (4)

Similarly, the maximal error probability of this code for W is
defined as

em(C,W ) , max
(i,j)

Wn(Di,j |xi,yj). (5)



Definition 2. For the MAC, W : X×Y → Z , the average and
maximal error reliability functions, at rate pair (RX , RY ), are
defined as:

E∗
av(RX , RY ) , lim

n→∞
max
C

1
n

log e(C,W ) (6)

E∗
m(RX , RY ) , lim

n→∞
max
C

1
n

log em(C,W ), (7)

where the maximum is over all codes of length n and rate pair
(RX , RY ).

Definition 3. A code CX = {xi ∈ TPX
: i = 1, ...,MX}, for

some PX , is called a bad codebook, if

∃ (i, j), i 6= j xi = xj (8)

A codebook which is not bad, is called a good one.

Definition 4. A multi user code C = CX × CY is called a
good multi user code, if both individual codebooks CX , CY

are good codes.

Definition 5. For a good multi user code C = CX × CY , and
for a particular type PXY ∈ Pn(X × Y), we define

R(C, PXY ) ,
1
n

log |C ∩ TPXY
| (9)

For a specified channel W , the Bhattacharyya distance
between the channel input letter pairs (x, y), and (x̃, ỹ) is
defined by

dB

(
(x, y), (x̃, ỹ)

)
, − log

( ∑
z∈Z

√
W (z|x, y)W (z|x̃, ỹ)

)
In this paper, we assume dB

(
(x, y), (x̃, ỹ)

)
6= ∞ for all

(x, y) and (x̃, ỹ). A channel with this property is call as
an indivisible channel. An indivisible channels for which the
matrix A(i,j),(k,l) = 2sdB

(
(i,j),(k,l)

)
is nonnegative-definite for

all s > 0 is called a nonnegative-definite channel.
For a block channel Wn, the normalized Bhattacharyya

distance between two channel input block pairs (x, y), and
(x̃, ỹ) is given by:

dB

(
(x, y), (x̃, ỹ)

)
= − 1

n
log

( ∑
z∈Zn

√
W (z|x, y)W (z|x̃, ỹ)

)
If W is a memoryless channel, it can be easily shown that the
Bhattacharyya distance between two pairs of codewords (x, y)
and (x̃, ỹ), with joint empirical density PXY X̃Ỹ , is

dB

(
(x, y), (x̃, ỹ)

)
=

∑
x,x̃∈X
y,ỹ∈Y

PXY X̃Ỹ (x, y, x̃, ỹ)dB

(
(x, y), (x̃, ỹ)

)
As we see here, for a fixed channel, the Bhattacharyya distance
between two pairs of words depends only on their joint
composition. The minimum Bhattacharyya distance for a code
C is defined as:

dB(C) , min
(x,y),(x̃,ỹ)∈C
(x,y) 6=(x̃,ỹ)

dB

(
(x, y), (x̃, ỹ)

)
. (10)

Let us define

d∗B
(
RX , RY , n

)
, max

C
dB(C) (11)

Where the maximum is over all good codes of rate (RX , RY ),
and blocklength n. Finally, we define

d∗B(RX , RY ) , lim
n→∞

d∗B
(
RX , RY , n

)
(12)

Note that, since any bad code has at least two identical
codewords, we can conclude that the minimum distance of
the code is equal to zero. Therefore, in order to find an upper
bound for the best possible minimum distance, d∗B(RX , RY ),
we only need to consider good codes (codes without any
repetitions).

Now, consider any joint type PXY ∈ Pn(X ×Y). Using the
structure of Bhattacharyya distance function, we can define
spheres in TPXY

. For any (x, y) ∈ TPXY
, the sphere about

(x, y), of radius r, is given by

S , {(x̃, ỹ) : dB

(
(x, y), (x̃, ỹ)

)
≤ r}

Every point, (x, y) ∈ TPXY
, is surrounded by a set consisting

of all pairs with which it shares some given joint type VXY X̃Ỹ .
Basically, any pair of sequences, (x̃, ỹ) ∈ TPXY

, sharing a
common joint type with some given pair of sequences, (x, y) ∈
TPXY

, belongs to the surface of a sphere with center (x, y) and
radius r = dB

(
(x, y), (x̃, ỹ)

)
. The set of these pairs is called

a spherical collection about (x, y) defined by Px,y,x̃,ỹ.

III. MINIMUM DISTANCE UPPER BOUND

Suppose the number of messages of the first source is
MX = 2nRX , and the number of messages of the second
source is MY = 2nRY . Suppose all the messages of any
source are equiprobable and the sources are sending data
independently. With these assumptions, all MXMY pairs are
occuring with the same probability. Thus, at the input of the
channel, we can see all possible 2n(RX+RY ) (an exponentially
increasing function of n) pairs of input sequences. However,
we also know that the number of possible types is a polynomial
function of n. Thus, for at least one joint type, the number of
pairs of sequences in the multi user code which have that
particular type, should be an exponential function of n with
the rate arbitrary close to the rate of the multi user code. We
will look at these pairs of sequences as a subcode, and then
try to find an upper bound for the minimum distance of this
subcode. Clearly, this bound is still a valid upper bound for
the minimum distance of the original multi user code.

Lemma 1. For any δ > 0, and for any good multi user code C
with rate pair (RX ,RY ), as defined above, there exists PXY ∈
Pn(X × Y) such that

R(C, PXY ) ≥ RX + RY − δ for sufficiently large n

Proof: The proof is provided in a more complete ver-
sion [11].

Definition 6. For a sequence of joint types Pn
XY ∈ Pn(X×Y),

with marginal types Pn
X and Pn

Y , the sequence of type graphs,



Gn, is defined as follows. For every n, Gn is a bipartite graph,
with its left vertices consisting of all xn ∈ TP n

X
and the right

vertices consisting of all yn ∈ TP n
Y

. A vertex on the left (say
x̃n) is connected to a vertex on the right (say ỹn) if and only
if (x̃n, ỹn) ∈ TP n

XY
.

Lemma 2. For all sequences of nearly complete subgraphs
of a particular type graph TPXY

, the rates of the subgraph
(RX , RY ) must satisfy

RX ≤ H(X|U), RY ≤ H(Y |U) (13)

for some PU |XY such that X − U − Y .

Proof: The proof is provided in a more complete ver-
sion [11].

Consider any multiuser codebook C = CX × CY with
dominant type PXY . Consider any joint composition VXY X̃Ỹ

with marginal distributions VXY = VX̃Ỹ = PXY . In the
following lemma, we find the average number of pairs of
codewords in a spherical collection defined by joint type
VXY X̃Ỹ about an arbitrary pair of sequences (x, y) ∈ TPXY

.
For such (x, y), which is not necessarily a pair of codewords,
let us define the following sets:
• AX(x, y) , {(x, ỹ) ∈ C : (x, y, x, ỹ) ∈ TVXY X̃Ỹ

}
• AY (x, y) , {(x̃, y) ∈ C : (x, y, x̃, y) ∈ TVXY X̃Ỹ

}
• AXY (x, y) , {(x̃, ỹ) ∈ C : (x, y, x̃, ỹ) ∈ TVXY X̃Ỹ

}
Note that, if x /∈ CX or X 6= X̃ , the first set would be empty.
Similarly, if y /∈ CY or Y 6= Ỹ , the second one would be an
empty set.

Lemma 3. Consider the multi-user code, C, described above
with dominant joint type PXY . Additionally, consider any dis-
tribution VXY X̃Ỹ ∈ P

(
(X ×Y)2

)
, satisfying VXY = VX̃Ỹ =

PXY . Then, there exists a pair of sequences (x, y) ∈ TPXY

such that

|AXY (x, y)| ≥ exp{n[RX + RY − I(X̃Ỹ ∧XY )]}. (14)

Also, for any distribution VXY X̃ ∈ P
(
X ×Y ×X

)
satisfying

VXY = VX̃Y = PXY , and any y ∈ CY ∩ TPY
, there exists

some x ∈ TPX
, such that (x, y) ∈ TPXY

, and

|AY (x, y)| ≥ exp{n[RX − I(X̃ ∧X|Y )]}, . (15)

Similarly, for any distribution VXY Ỹ ∈ P
(
X × Y × Y

)
satisfying VXY = VXỸ = PXY , and any x ∈ CX ∩ TPX

,
there exist some y ∈ TPY

such that (x, y) ∈ TPXY
, and

|AX(x, y)| ≥ exp{n[RY − I(Ỹ ∧ Y |X)]}. (16)

Proof: The proof is provided in a more complete ver-
sion [11].

Lemma 4. Fix ε > 0. Let W be a nonnegative-definite chan-
nel. Let C = CX × CY be any multi-user code with dominant
composition nPXY and rate pair (RX , RY ). Consider any
distribution VXY X̃Ỹ ∈ P(X × Y × X × Y) satisfying the
following constraints:
• VXY = VX̃Ỹ = PXY

• IV (XY ∧ X̃Ỹ ) ≤ RX + RY − ε.

Then, C has two pairs of codewords, (x̃, ỹ) and (x̂, ŷ), such
that

dB

(
(x̃, ỹ), (x̂, ŷ)

)
≤ (1 + ε)EdB

(
(X̃, Ỹ ), (X̂, Ŷ ))

)
(17)

where the expectation is calculated based on VXY X̃Ỹ X̂Ŷ ∈
P((X × Y)3) satisfying

• VXY = VX̃Ỹ = VX̂Ŷ = PXY

• X̃Ỹ −XY − X̂Ŷ
• VX̃Ỹ |XY = VX̂Ŷ |XY

• IV (XY ∧ X̃Ỹ ) ≤ RX + RY − ε.

For any VXY X̃ ∈ P(X × Y × X ) satisfying the following
constraints:

• VXY = VX̃Y = PXY

• IV (X ∧ X̃|Y ) ≤ RX − ε.

C has two pairs of codewords, (x̃, y) and (x̂, y), such that

dB

(
(x̃, y), (x̂, y)

)
≤ (1 + ε)EdB

(
(X̃, Y ), (X̂, Y ))

)
(18)

where the expectation is calculated based on VXY X̃X̂ ∈
P(X × Y × X × X ) satisfying

• VXY = VX̃Y = VX̂Y = PUXY

• X̃ −XY − X̂
• VX̃|XY = VX̂|XY

• IV (X ∧ X̃|Y ) ≤ RX − ε.

Similarly, for any VXY Ỹ ∈ P(X × Y × Y) satisfying the
following constraints:

• VXY = VỸ = PXY

• IV (Y ∧ Ỹ |X) ≤ RY − ε.

C has two pairs of codewords, (x, ỹ) and (x, ŷ), such that

dB

(
(x, ỹ), (x, ŷ)

)
≤ (1 + ε)EdB

(
(X, Ỹ ), (X, Ŷ ))

)
(19)

where the expectation is calculated based on VXY Ỹ Ŷ ∈
P(X × Y × Y × Y) satisfying

• VXY = VXỸ = VXŶ = PXY

• Ỹ −XY − Ŷ
• VỸ |XY = VŶ |XY

• IV (Y ∧ Ỹ |X) ≤ RY − ε.

Proof: The proof is provided in a more complete ver-
sion [11].

Noting that the minimum distance between codeword pairs
in C is smaller than the minimum distance of any subset of C,
we conclude the following result.

Theorem 1. For any nonnegative-definite channel, W , the
minimum distance of any multiuser code, C, with rate pair
(RX , RY ) satisfies

dB(C) ≤ EU (RX , RY ,W ) (20)

where EU (RX , RY ,W ) is defined as

max
PUXY

min
β=X,Y,XY

Eβ
U (RX , RY ,W, PXY U ) (21)



The maximum is taken over all PUXY ∈ P(U ×X ×Y) such
that X − U − Y , and RX ≤ H(X|U) and RY ≤ H(Y |U).
The functions Eβ

U (RX , RY ,W, PXY U ) are defined as follows:

EX
U (RX , RY ,W, PXY U ) , min

VXX̃X̂Y ∈VU
X

EdW

(
(X̂, Y ), (X̃, Y )

)
EY

U (RX , RY ,W, PXY U ) , min
VXY Ỹ Ŷ ∈VU

Y

EdW

(
(X, Ŷ ), (X, Ỹ )

)
EXY

U (RX , RY ,W, PXY U ) , min
VXY X̃Ỹ X̂Ŷ

∈VU
XY

EdW

(
(X̂, Ŷ ), (X̃, Ỹ )

)
where

VU
X ,

{
VXX̃X̂Y : VX̃Y = VX̂Y = VXY = PXY

X̂ −XY − X̃

VX̃|XY = VX̂|XY

I(X ∧ X̃|Y ) = I(X ∧ X̂|Y ) ≤ RX

}
(22)

VU
Y ,

{
VXY Ỹ Ŷ : VXỸ = VXŶ = VXY = PXY

Ŷ −XY − Ỹ

VỸ |XY = VŶ |XY

I(Y ∧ Ỹ |X) = I(Y ∧ Ŷ |X) ≤ RY

}
(23)

VU
XY ,

{
VXY X̃Ỹ X̂Ŷ : VX̃Ỹ = VX̂Ŷ = VXY = PXY

X̂Ŷ −XY − X̃Ỹ

VX̃Ỹ |XY = VX̂Ŷ |XY

I(XY ∧ X̃Ỹ ) = I(XY ∧ X̂Ŷ ) ≤ RX + RY

}
(24)

Theorem 2. For any indivisible channel

E∗
m(RX , RY ) ≤ d∗B(RX , RY ) (25)

where E∗
m(RX , RY ) is the maximal error channel-rate relia-

bility function at rate pair (RX , RY ).

Proof: The proof is very similar to [12].
Therefore, by combining the result of theorem 1 and theo-

rem 2, we can conclude the following result.

Theorem 3. For any indivisible nonnegative-definite channel,
W , the maximal error reliability function, E∗

m(RX , RY ), must
satisfy

E∗
m(RX , RY ) ≤ EU (RX , RY ,W ) (26)

The following observation will be used in section IV and V
to compare the lower bound on the average error reliability
function with the upper bounds on the maximal error reliability
function at RX = RY = 0.

Lemma 5. If min{RX , RY } = 0, i.e., RX = 0 or RY = 0,

E∗
m(RX , RY ) = E∗

av(RX , RY ) (27)

IV. AN EXPURGATED LOWER BOUND

Theorem 4. For every δ > 0, RX ≥ 0, RY ≥ 0 , every finite
set U , every type PXY U ∈ Pn(X × Y × U), X − U − Y ,
satisfying H(X|U) ≥ RX and H(Y |U) ≥ RY , and u ∈ Tn

PU
,

there exists a multi-user code

C = {(xi, yj , Dij) : i = 1, ...M∗
X , j = 1, ...M∗

Y } (28)

with xi ∈ TPX|U (u), yj ∈ TPY |U (u) for all i and j, M∗
X ≥

2n(RX−δ), and M∗
Y ≥ 2n(RY −δ), such that for every MAC

W : X × Y → Z

e(C,W ) ≤ 2−n[EL(RX ,RY ,W,PXY U )−δ] (29)

whenever n ≥ n1(|Z|, |X |, |Y|, |U|, δ), where

EL(RX , RY ,W, PXY U )
, min

β=X,Y,XY
Eβ

L(RX , RY ,W, PXY U )(30)

and Eβ
L(RX , RY ,W, PXY U ), β = X, Y,XY are defined

respectively by

EX
L (RX , RY ,W, PXY U ) ,

min
VUXY X̃∈VX

EdW

(
(X, Y ), (X̃, Y )

)
+ IV (X ∧ Y |U)

+ I(X̃ ∧X|Y U) + IV (X̃ ∧ Y |U)−RX (31)

EY
L (RX , RY ,W, PXY U ) ,

min
VUXY Ỹ ∈VY

EdW

(
(X, Y ), (X, Ỹ )

)
+ IV (X ∧ Y |U)

+ I(Ỹ ∧ Y |XU) + IV (X ∧ Ỹ |U)−RY (32)

EXY
L (RX , RY ,W, PXY U ) ,

min
VUXY X̃Ỹ ∈VXY

EdW

(
(X, Y ), (X̃, Ỹ )

)
+ IV (X ∧ Y |U)

+ I(X̃Ỹ ∧XY |U) + IV (X̃ ∧ Ỹ |U)−RX −RY (33)

where

VX , {VUXY X̃ : VXU = VX̃U = PXU , VY U = PY U

IV (X ∧ Y |U), IV (X̃ ∧ Y |U) ≤ min{RX , RY }+ 3δ

IV (X ∧ Y |U) + IV (X̃ ∧ Y |U) + IV (X̃ ∧X|UY )
≤ RX + min{RX , RY }+ 4δ} (34)

VY , {VUXY Ỹ : VXU = PXU , VY U = VỸ U = PY U

IV (X ∧ Y |U), IV (X ∧ Ỹ |U) ≤ min{RX , RY }+ 3δ

IV (X ∧ Y |U) + IV (X ∧ Ỹ |U) + IV (Ỹ ∧ Y |UX)
≤ RY + min{RX , RY }+ 4δ} (35)

VXY ,
{
VUXY X̃Ỹ :

VUXY X̃ satisfies all conditions in (34)
VUXY Ỹ satisfies all conditions in (35)

IV (X ∧ Ỹ |U) + IV (X̃ ∧ Ỹ |U) + IV (X̃ ∧X|UỸ )
≤ RX + min{RX , RY }+ 4δ

IV (X̃ ∧ Y |U) + IV (X̃ ∧ Ỹ |U) + IV (Ỹ ∧ Y |UX̃)
≤ RY + min{RX , RY }+ 4δ

IV (X ∧ Y |U) + IV (X̃ ∧ Ỹ |U) + IV (X̃Ỹ ∧XY |U)
≤ RX + RY + min{RX , RY

}
+ 5δ

IV (X̃ ∧ Y |U) + IV (X ∧ Ỹ |U) + IV (XỸ ∧ X̃Y |U)
≤ RX + RY + min{RX , RY }+ 4δ} (36)

Proof: Using the code whose existence is asserted in [8,
lemma 3], we can conclude the result [11].



Let us focus on the case where both codebooks have rate
zero, RX = RY = 0. One can easily show that,

EX
L (0, 0, PXY U ) = EdW

(
(X, Y ), (X̃, Y )

)
(37)

EY
L (0, 0, PXY U ) = EdW

(
(X, Y ), (X, Ỹ )

)
(38)

EXY
L (0, 0, PXY U ) = EdW

(
(X, Y ), (X̃, Ỹ )

)
(39)

where all the expectations in (37)-(39) are calculated based on

PUXY X̃Ỹ (u, x, y, x̃, ỹ)
= PU (u)PX|U (x|u)PY |U (y|u)PX|U (x̃|u)PY |U (ỹ|u). (40)

Similarly, at zero rate, EX
U , EY

U , and EXY
U would be equal to

EX
U (0, 0, PXY U ) = EdW

(
(X̂, Y ), (X̃, Y )

)
(41)

EY
U (0, 0, PXY U ) = EdW

(
(X, Ŷ ), (X, Ỹ )

)
(42)

EXY
U (0, 0, PXY U ) = EdW

(
(X̂, Ŷ ), (X̃, Ỹ )

)
(43)

where all the expectations in (41)- (43) are respectively
calculated based on

PX̂X̃Y (x̂, x̃, y) = PX|Y (x̂|y)PX|Y (x̃|y)PY (y) (44)
PXŶ Ỹ (x, ŷ, ỹ) = PX(x)PY |X(ŷ|x)PY |X(ỹ|x) (45)
PX̂Ŷ X̃Ỹ (x̂, ŷ, x̃, ỹ) = PXY (x̂, ŷ)PXY (x̃, ỹ). (46)

V. A CONJECTURED TIGHTER UPPER BOUND

Conjecture 1. For all sequences of nearly complete subgraphs
of a particular type graph TPXY

, the rates of the subgraph
(RX , RY ) satisfy

RX ≤ H(X|U), RY ≤ H(Y |U) (47)

for some PU |XY such that X −U −Y . Moreover, there exists
u ∈ TPU

such that the intersection of the fully connected
subgraph with TPXY |U (u) has the rate (RX , RY ).

Based on the result of previous lemma, and by following a
similar argument as we did in lemma 3 and lemma 4, we can
conclude the following result:

Theorem 5. For any nonnegative-definite channel, W , the
minimum distance of any multiuser code, C, with rate pair
(RX , RY ) satisfies

dB(C) ≤ EC(RX , RY ,W ) (48)

where EC(RX , RY ,W ) is defined as

max
PUXY

min
β=X,Y,XY

Eβ
C(RX , RY ,W, PXY U ) (49)

The maximum is taken over all PUXY ∈ P(U ×X ×Y) such
that X − U − Y , and RX ≤ H(X|U) and RY ≤ H(Y |U).
The functions Eβ

C(RX , RY ,W, PXY U ) are defined as follows:

EX
C (RX , RY ,W, PXY U ) , min

VUXX̃X̂Y ∈VC
X

EdW

(
(X̂, Y ), (X̃, Y )

)
EY

C (RX , RY ,W, PXY U ) , min
VUXY Ỹ Ŷ ∈VC

Y

EdW

(
(X, Ŷ ), (X, Ỹ )

)
EXY

C (RX , RY ,W, PXY U ) , min
VUXY X̃Ỹ X̂Ŷ

∈VC
XY

EdW

(
(X̂, Ŷ ), (X̃, Ỹ )

)

where

VC
X ,

{
VUXX̃X̂Y : VUX̃Y = VUX̂Y = VUXY = PUXY

X̂ − UXY − X̃

VX̃|XY U = VX̂|XY U

I(X ∧ X̃|Y U) = I(X ∧ X̂|Y U) ≤ RX

}
(50)

VC
Y ,

{
VUXY Ỹ Ŷ : VUXỸ = VUXŶ = VUXY = PUXY

Ŷ − UXY − Ỹ

VỸ |XY U = VŶ |XY U

I(Y ∧ Ỹ |UX) = I(Y ∧ Ŷ |UX) ≤ RY

}
(51)

VC
XY ,

{
VUXY X̃Ỹ X̂Ŷ : VUX̃Ỹ = VUX̂Ŷ = VUXY = PUXY

X̂Ŷ − UXY − X̃Ỹ

VX̃Ỹ |UXY = VX̂Ŷ |UXY

I(XY ∧ X̃Ỹ |U) = I(XY ∧ X̂Ŷ |U) ≤ RX + RY

}
(52)

Proof: The proof is provided in a more complete ver-
sion [11].

Theorem 6. At rate RX = RY = 0,

Eβ
C(0, 0, PXY U ) = Eβ

L(0, 0, PXY U ) (53)

for β = X, Y,XY , and therefore EC = EL.
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