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Abstract—For most discrete memoryless channels, there does
not exist a linear code which uses all of the channel’s input
symbols. Therefore, linearity of the code for such channels is
a very restrictive condition and there should be a loosening of
the algebraic structure of the code to a degree that the code
can admit any channel input alphabet. For any channel input
alphabet size, there always exists an Abelian group structure
defined on the alphabet. We investigate the capacity of Abelian
group codes over discrete memoryless channels and provide lower
and upper bounds on the capacity.

I. INTRODUCTION

Approaching information theoretic performance limits of
communication systems using structured codes has been an
area of great interest in recent years [2], [5], [6], [8], [11],
[14]. The earlier attempts to design fast encoding and decoding
algorithms resulted in injection of algebraic structures to the
coding scheme so that the channel input alphabets are replaced
with algebraic fields and encoders are replaced with matrices.
It is well-known that binary linear codes achieve the capacity
of binary symmetric channels [7]. More generally, it has also
been shown that q-ary linear codes can achieve the capacity
of symmetric channels [6] and linear codes can be used
to compress a source losslessly down to its entropy [10].
Optimality of linear codes for certain communication problems
motivates the study of structured codes in general.

In 1979, Korner-Marton showed that for multiterminal com-
munication problems, the asymptotic average performance of
linear code ensembles can be superior to that of the standard
code ensembles traditionally used in information theory. In
the recent past, such gains have been shown for a wide class
of problems [11]–[13]. Hence information-theoretic character-
izations of performance of such structured code ensembles for
various communication problems have become important.

The algebraic structure of the code, however, imposes
certain restrictions on the encoder. Linear codes are highly
structured and for certain communication problems such codes
cannot be optimal. Moreover, they can only be constructed
on alphabets of certain size (prime power). Group codes are
a class of algebraic-structured codes that are more general
because we can construct such codes over any alphabet, and
they have been shown to outperform unstructured codes in
certain communication settings [11]. Group codes were first
studied by Slepian [16] for the Gaussian channel. In [1], the
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capacity of group codes for certain classes of channels has
been computed. Further results on the capacity of group codes
were established in [2], [3]. The capacity of group codes over
a class of channels exhibiting symmetries with respect to the
action of a finite Abelian group has been investigated in [5].

In this work, we focus on the point-to-point channel coding
problem over general discrete memoryless channels. The chan-
nel input alphabet is equipped with the structure of an Abelian
group. We characterize the performance of asymptotically
good Abelian group codes over general discrete memoryless
channels. In particular, we derive lower and upper bounds
on the capacity of Abelian group codes for communication
over such channels. We use a combination of algebraic and
information-theoretic tools for this task.

The paper is organized as follows. In section II, we in-
troduce our notation and develop the required background.
Section III presents the lower and upper bound on the ca-
pacity of Abelian group codes. In section IV we present two
special cases, namely, linear codes over arbitrary channels and
arbitrary Abelian group codes over symmetric channels where
the two bounds match.

II. DEFINITIONS AND NOTATION

1) Group Codes: Given a group G, a group code C over G
with block length n is any subgroup of Gn [4], [8]. A shifted
group code over G, C+ v is a translation of a group code C
by a fixed vector v ∈ Gn.

2) Source and Channel Models: We consider discrete mem-
oryless and stationary channels used without feedback. We
associate two finite sets X and Y with the channel as the
channel input and output alphabets. These channels can be
characterized by a conditional probability law W (y|x) for
x ∈ X and y ∈ Y . The set X admits the structure of
a finite Abelian group G of the same size. The channel is
specified by (G,Y,W ). Assuming a perfect source coding
block applied prior to the channel coding, the source of
information generates messages over the set {1, 2, . . . ,M}
uniformly.

3) Achievability and Capacity: A transmission system with
parameters (n,M, τ) for reliable communication over a given
channel (G,Y,W ) consists of an encoding mapping and a
decoding mapping e : {1, 2, . . . ,M} → Gn, f : Gn →
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{1, 2, . . . ,M} such that for all m = 1, 2, . . . ,M ,

1

M

M∑
m=1

Wn (f(Y n) 6= m|Xn = e(m)) ≤ τ

Given a channel (G,Y,W ), the rate R is said to be achievable
if for all ε > 0 and for all sufficiently large n, there
exists a transmission system for reliable communication with
parameters (n,M, τ) such that 1

n logM ≥ R− ε, τ ≤ ε.
If there is no constraint on the encoder, the maximum achiev-
able rate is called the (Shannon) capacity of the channel
and is denoted by C|G| which is known to be equal to
maxpX I(X;Y ). |G| denotes the cardinality (size) of the set
G. We use this notation since only the size and not the
structure of the channel input alphabet determines the quantity
C|G|. In this paper, the encoder is constrained to be affine
and therefore the code is a shifted group code. We denote
the maximum achievable rate of such codes by CG. If the
distribution of X is confined to be uniform over G, we define
CU|G| = I(X;Y ). The capacity of shifted group codes over H
which is itself a subgroup of a larger group G is denoted by
CH,G.

4) Typicality: Consider two random variables X and Y
with joint probability density function pX,Y (x, y) over X ×Y .
Let n be an integer and ε be a positive real number. The
sequence pair (xn, yn) belonging to Xn × Yn is said to be
jointly ε-typical with respect to pX,Y (x, y) if

∀a ∈ X , ∀b ∈ Y :

∣∣∣∣ 1nN (a, b|xn, yn)− pX,Y (a, b)
∣∣∣∣ ≤ ε

|X ||Y|

and none of the pairs (a, b) with pX,Y (a, b) = 0 occurs in
(xn, yn). Here, N(a, b|xn, yn) counts the number of occur-
rences of the pair (a, b) in the sequence pair (xn, yn). We
denote the set of all jointly ε-typical sequence pairs in Xn×Yn
by Anε (X,Y ).
Given a sequence xn ∈ Xn, the set of conditionally ε-typical
sequences Anε (Y |xn) is defined as

Anε (Y |xn) = {yn ∈ Yn |(xn, yn) ∈ Anε (X,Y )} (1)

In our notation, O(ε) is any function of ε such that
limε→0O(ε) = 0.

III. BOUNDS ON THE CAPACITY OF ABELIAN GROUP
CODES

It is a standard fact (see [9] and [4] for example) that any
Abelian group G can be decomposed into Zpr groups in the
form G ∼=

⊕I
i=1Zpiri for some integers ri and primes pi for

i = 1, 2, · · · , I with the possibility of repetitions. Define Ri =
Zpiri to get G ∼=

⊕I
i=1Ri. This means that any element g in

the group G can be represented by an I-tuple (g1, g2, · · · , gI)
where gi ∈ Ri = {0, 1, · · · , prii − 1} and this representation
preserves the group structure of G. For a subgroup H ≤ G,
the set of all cosets of H in G is denoted by C(G,H).

A. Lower bound

Theorem III.1. A lower bound on the Capacity of group
codes over the group G ∼=

⊕I
i=1Ri for a discrete memoryless

channel (G,Y,W ) is given by:

CG ≥ max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑
S∈C(G,H)

|H|
|G|

CU|S|

wH

where wH =
∑I
i=1

ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri and CU|S| is

the mutual information between the channel input and output
when the input distribution is uniform over the subset S of G.

Proof: We construct an ensemble of homomorphic encoders
over G with block length n and put a uniform distribution
over the ensemble. Then we calculate the expected average
probability of error over the ensemble and observe that for
rates less than CG, the average probability of error can be
made arbitrarily small by increasing the block length.

1) Construction of the ensemble of codes: Let wi, i =
1, 2, · · · , I be a set of nonnegative rational weights assigned
to each module Ri such that

∑I
i=1 wi = 1 and let k be a

nonnegative integer such that wik is integer for all i. For each
set of weights, we define an ensemble of codes by taking
into account all homomorphisms ϕ :

⊕I
i=1R

wik
i → Gn. It

is known that the image of a homomorphism is a subgroup
of the target group [9]; Therefore any such homomorphism
defines a group code C over G. We add a random dither v to
the code to construct a random shifted group code.

Let m = 1, 2, · · · ,M be the set of messages. Let k be
large enough so that a unique message representative u(m)
from the set

⊕I
i=1R

wik
i can be assigned to each message m.

The encoding rule is given by e(m) = ϕ(u(m)) + v where ϕ
is an arbitrary homomorphism from

⊕I
i=1R

wik
i to Gn and v

is a random vector in Gn.

At the decoder, after receiving the channel output y, decode
it to the message m if m is the unique message such that
u(m) and y are jointly ε-typical. Otherwise declare error.

The standard generator of the ring Ri = Zprii is the multi-
plicative identity of Ri. Define eiK to be the generator for the
Kth Ri in

⊕I
i=1R

wik
i for i = 1, · · · , I and K = 1, · · · , wik.

Any element a ∈
⊕I

i=1R
wik
i can be represented uniquely as

a =
∑
i,K aiKeiK where aiK ∈ Ri. This decomposition will

help us characterizing homomorphisms from
⊕I

i=1R
wik
i to

Gn.

Lemma III.2. Any homomorphism ϕ :
⊕I

i=1R
wik
i → Gn

can be represented as ϕ = (ϕ1, ϕ2, · · · , ϕn) where each ϕN ,
N = 1, · · · , n is given by:

φN (a) =
∑
i,K

aiKg
N
iK

for some gNiK’s, i = 1, · · · , I , K = 1, · · · , wik in G.

Proof: Follows from standard algebraic arguments.
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The lemma above facilitates the construction of the ensem-
ble of codes as follows: Take random elements gNiK from the
group G for n = 1, · · · , N , i = 1, · · · , I and k = 1, · · · , wiK
and construct the homomorphism ϕ as mentioned in the
lemma. Also take a random vector v from Gn and use the
encoding rule e(m) = ϕ(u(m)) + v.
The rate of the codes in this ensemble is given by:

R =
k

n

I∑
i=1

wi log |Ri| =
k

n

I∑
i=1

wiri log pi

2) Error Analysis: The expected value of the average
probability of word error is given by:

E {Pavg(err)} =
M∑
m=1

1

M

∑
x∈Gn

P (e(m) = x)

M∑
m̃=1
m̃ 6=m

∑
y∈Anε (Y |x)∑

x̃∈Anε (X|y)

P (e(m̃) = x̃, Y n = y|e(m) = x)Wn(y|x) +O(ε)

We need two lemmas to proceed.

Lemma III.3. For arbitrary messages m and m̃ and arbitrary
vectors x, x̃ ∈ Gn, define a = u(m)− u(m̃) and h = x− x̃.
Define θ(m, m̃) = (θ1, θ2, · · · , θI) where θi is the smallest
number in {0, 1, · · · , ri − 1} such that there exists an index
K ∈ {1, 2, · · · , wik} with the property aiK ∈ pθii Ri\p

θi+1
i Ri.

If such an index does not exist, let θi = ri. Then,

P (e(m̃) = x̃|e(m) = x) ={ ∏I
i=1

1

p
n(ri−θi)
i

if x̃ ∈ x+
[⊕I

i=1 p
θi
i Ri

]n
;

0 otherwise.

Moreover, for a fixed m, let Tθ(m) be the set of all m̃ with
θ(m, m̃) = (θ1, θ2, · · · , θI), then

|Tθ(m)| ≤
I∏
i=1

[
(pri−θii )wik

]
Proof: Provided in a more complete version [15].

Lemma III.4. Let y ∈ Yn be an arbitrary channel output
sequence. For any x ∈ Anε (X|y), we have∣∣∣∣∣

(
x+

[
I⊕
i=1

pθii Ri

]n)
∩Anε (y)

∣∣∣∣∣
≤

I∏
i=1

2n[H(Xi|Y )−H([Xi]θi |Y )+O(ε)]

where Xi is the ith component of the channel input random
variable X . i.e. X ←→ (X1, X2, · · · , XI) where Xi ∈ Ri
and the random variable [Xi]θi takes values from the set of
cosets of pθii Ri in Ri.

Proof: Provided in a more complete version [15].
The following lemma presents an upper bound on the

average probability of error.

Lemma III.5. The average probability of error over the
ensemble is bounded above by:

E {Pavg(err)} ≤
∑
θ

exp2

{
−n

I∑
i=1

[(ri − θi) log pi

−wik
n

(ri − θi) log pi −H(Xi|Y ) +H([Xi]θi |Y )

]}

Proof: Provided in a more complete version [15].
Each random variable Xi can be represented by a tuple

([Xi]θi , [X̂i]θi) where [Xi]θi indicates the coset selection and
[X̂i]θi the value selection in the subgroup pθii Ri of Ri. Note
that [Xi]θi and [X̂i]θi are independent. We get,

E {Pavg(err)} ≤
∑
θ

exp2

{
−n

I∑
i=1

[(ri − θi) log pi

−wik
n

(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )

]}

Therefore, the probability of error can be made arbitrarily
small if for all θ,
I∑
i=1

wik

n
(ri − θi) log pi

≤
I∑
i=1

(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )

Let X be a uniform random variable over G and let H be the
subgroup of G isomorphic to

⊕I
i=1 p

θi
i Ri. The variable X can

be thought of as a uniform variable over a random coset of
H in G. Random selection of the coset is due to the random
dither and we prove in Lemma III.7 that the uniformity of
the distribution over the coset is due to the group structure of
the code. The variable X can be represented by two random
variables [X̂]H and [X]H where [X̂]H is uniform over H
and [X]H has a uniform distribution over cosets of H in G
and represents the coset selection. The variable [X̂]H itself
can be represented by a tuple ([X̂1]θ1 , · · · , [X̂I ]θI ) where for
each i the random variable [X̂i]θi is a uniform variable over
pθii Ri and [X̂i]θi ’s are independent from each other and from
[X]H . Similarly, the random variable [X]H can be represented
by a tuple ([X1]θ1 , · · · , [XI ]θI ) where for each i the random
variable [Xi]θi is a uniform variable over cosets of pθii Ri in
Ri and [Xi]θi ’s are independent from each other and from
[X̂]H .

I([X̂]H ;Y |[X]H)

= I
(
[X̂1]θ1 , · · · , [X̂θI ];Y |[X1]θ1 , · · · , [XθI ]

)
=

I∑
i=1

I([X̂i]θi , Y |[Xi]θi)

=

I∑
i=1

(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )
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Therefore, the achievability condition is equivalent to
I∑
i=1

wik

n
(ri − θi) log pi ≤ I([X̂]H ;Y |[X]H)

The rate of the code is given by R = k
n

∑I
i=1 wiri log pi.

Therefore, this condition is equivalent to

R ·
∑I
i=1 wi(ri − θi) log pi∑I

i=1 wiri log pi
≤ I([X̂]H ;Y |[X]H)

Define wH =
∑I
i=1 wi(ri−θi) log pi∑I

i=1 wiri log pi
to get

R ≤ 1

wH
I([X̂]H ;Y |[X]H)

Note that

I([X̂]H ;Y |[X]H)

=
∑

S∈C(G,H)

p([X]H = S)I([X̂]H ;Y |[X]H = S)

=
∑

S∈C(G,H)

|H|
|G|

CUS

Since this condition must be satisfied for every subgroup H
and the weights wi are arbitrary, we conclude that the rate

R∗ = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑
S∈C(G,H)

|H|
|G|

CUS
wH

is achievable. The weights wi can be represented as
wi =

∑I
i=1 kwi(ri−θi) log pi

logM =
∑I
i=1

ri−θi
ri

w′i where w′i =
kwi log |Ri|

logM . Since
∑I
i=1 w

′
i = 1, we have:

R∗ = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑
S∈C(G,H)

|H|
|G|

CUS
wH

where wH =
∑I
i=1

ri−θi
ri

wi. Here we have replaced w′i’s with
wi’s for simplicity of notation.

B. Upper bound
Definition III.1. The coset S of H that achieves the maximum
value of CU|S|, is called the optimal subchannel corresponding
to the subgroup H and is denoted by H∗.

Definition III.2. A subgroup H of G is called maximal for
the channel (G,Y,W ) if for all subgroups K of H , CU|H∗| ≥
CU|K∗|. We denote this by H � G.

Theorem III.6. An upper bound on the capacity of group
codes over the group G ∼=

⊕I
i=1Ri for a memoryless channel

(G,Y,W ) is given by:

CG ≤ max
w1,··· ,wI

w1+···+wI=1

min
H�G

max
S∈C(G,H)

CU|S|

wH

where wH =
∑I
i=1

ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri and CU|S| is

the mutual information between the channel input and output
when the input distribution is uniform over the subset S of G.

Proof:

1) Converse channel coding theorem: Shannon’s inverse
channel coding theorem asserts that for rates R > I(X;Y )
lossless communication is not possible. For i = 1, 2, · · · , n,
let Xi be the random variable representing the N th component
of the codewords and Yi be the corresponding channel output.
The rate is bounded above by R < 1

n

∑n
i=1 I(Xi, Yi).

This theorem admits the generalization to the case where the
single letter distribution of X is constrained by the structure of
the code. For the case of shifted group codes, the single letter
distribution of X can only be uniform on cosets of subgroups
of the underlying group.

2) Uniform single letter distribution over cosets: In the case
of linear codes, the single letter distribution over the channel
input symbols is confined to be uniform. This holds for group
codes also; However, for group codes, it can be uniform over
any subgroup of the channel input alphabet.

Lemma III.7. For any group code C ≤ Gn where G is an
arbitrary group, uniform multiletter distribution over messages
induces a uniform single letter distribution over subgroups
of G. i.e. the components of the channel input sequence are
uniformly distributed over some subgroup of G which may
vary for different components.

Proof: Without loss of generality we prove that the
nth components of the codewords form a subgroup H of
G and the uniform distribution over codewords induces a
uniform distribution over H . Let {c1, c2, · · · , cM} be the set
of codewords and let P[n,n](C) = {c1n, c2n, · · · , cMn} be the
set of the nth components of the codewords. It has been shown
in [8] that P[n,n](C) is a subgroup of G. Set H = P[n,n](C)
to conclude the first part of the claim.
Next, we need to show that the single letter distribution over
H is uniform. Let H = {h1 = 0, h2, · · · , h|H|}; then the
lemma claims that the number of occurrences of each hi in
the sequence c1n, c2n, · · · , cMn is the same. Let C[1,n−1] be
the set of all codewords that are zero at the nth component.
It is known that C[1,n−1] forms a normal subgroup of C and
C/C[0,n−1] ∼= P[n,n](C) = H [8]. Therefore, |C|

|C[1,n−1]|
= |H|.

The number of occurrences of h1 = 0 in the sequence
c1n, c2n, · · · , cMn is equal to |C[1,n−1]|. For each h∗ ∈ H ,
there exists a codeword c∗ ∈ C ending with h∗, and since
C is a group code, it is closed under addition and therefore
c∗+C[1,n−1] is a subset of C. Since the codewords are distinct,
the set c∗+C[1,n−1] contains |C[1,n−1]| codewords ending with
h∗. We conclude that for each h∗ ∈ H the existence of at
least |C[1,n−1]| codewords ending with h∗ is guaranteed. The
equality |C|

|C[1,n−1]|
= |H| imposes the number of occurrences

of each h∗ to be equal to |C[1,n−1]|. i.e. the single letter
distribution over H is uniform in the nth position.

Lemma III.8. For any shifted group code C+ v over G, uni-
form multiletter distribution over messages induces a uniform
single letter distribution over cosets of subgroups of G.

Proof: Immediate from the previous lemma.
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3) Converse coding appplied to subchannels: Let G ∼=⊕I
i=1Ri be an Abelian group and let H ∼=

⊕I
i=1 p

θi
i Ri

be a subgroup of G and let S be the corresponding optimal
subchannel. Using standard arguments we can show that for
any shifted group code C+ v where C ∼=

⊕I
i=1R

ki
i and v is

an optimal coset selection vector, we have

CS = (C ∩Hn) + v = v +

I⊕
i=1

pθii R
ki
i

RCS =
1

n
log |C ∩Hn| = 1

n

I∑
i=1

(ri − θi)ki log pi

Define wi = riki log pi
logM then we get RCS =

∑I
i=1

ri−θi
ri

wiR.

Lemma III.9. For a maximal subchannel H of the channel
(G,Y,W ), CH,G ≤ CUH∗

Proof: Shannon’s converse coding theorem implies

R <
1

n

n∑
i=1

I(Xi, Yi)

where Xi’s have uniform distributions over cosets of sub-
groups of H . Since H is maximal, all of these distributions
result in a mutual information less than CU|H∗|. Therefore, the
average is also less than CUH∗ . Conclude that R < CUH∗ .

The lemma implies

RCS =

I∑
i=1

ri − θi
ri

wiR < CU|H∗|

Therefore, for all maximal subchannels H , R <
CU|H∗|∑I

i=1
ri−θi
ri

wi
.

This proves the theorem.

IV. SPECIAL CASES

A. Linear Codes

The capacity of linear codes has been studied in [2]. We
show that for the case of linear codes over Fq , the upper and
lower bounds are tight and are equal to the capacity given
in [2]. Let C be a group code over the field Fq for some
prime number q. Since the only subgroups of Fq are the trivial
subgroup and the group Fq itself, the lower bound reduces to
CU|Fq|; And since Fq is maximal in itself, the upper bound
also reduces to CU|Fq|. Therefore the capacity of linear codes
over Fq is given by CFq = CU|Fq| = I(X;Y ) where X has a
uniform distribution over the input alphabet.

B. Symmetric Channels

For a symmetric channel, uniform input distribution over
cosets of an arbitrary subgroup H of G results in the same
mutual information with the channel output; This means all of
the cosets of H are optimal and we can pick H∗ = H . The
lower bound reduces to

CG ≥ max
w1,··· ,wI

w1+···+wI=1

min
H≤G

CU|H|

wH

Since all of the subgroups are maximal for a symmetric
channel, the lower bound also reduces to the same expression.
i.e. the capacity of group codes over symmetric channels is
given by:

CG = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

CU|H|

wH

where wH =
∑I
i=1

ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri. The

capacity of Abelian group codes over symmetric channels
given in [5] coincides with the new result.

V. CONCLUSION

In this paper, we investigated the performance limits of
Abelian group codes over discrete memoryless channels. Up-
per and lower bounds on the capacity of such codes have
been computed and we presented two special cases where
the bounds match. Our results unify the known results on the
capacity of structured codes for the point to point channel cod-
ing problem and states the information theoretic performance
limits of structured codes based on the algebraic structure of
the underlying group.
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