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Abstract— With mean-squared error D as a goal, it is well
known that one may approach the rate-distortion function
R(D) of a nonbandlimited, continuous-time Gaussian source by
sampling at a sufficiently high rate, applying the Karhunen-Loeve
transform to sufficiently long blocks, and then independently
coding the transform coefficients of each type. Motivated by the
question of the efficiency of dense sensor networks for sampling,
encoding and reconstructing spatial random fields, this paper
studies the following three cases. In the first, we consider a
centralized encoding setup with a sample-transform-quantize
scheme where the quantization is assumed to be optimal. In the
second, we consider a distributed setup, where a spatio-temporal
source is sampled and distributively encoded to be reconstructed
at a receiver. We show that with ideal distributed lossy coding,
dense sensor networks can efficiently sense and convey a field,
in contrast to the negative result obtained by Marco et al. for
encoders based on time- and space-invariant scalar quantization
and ideal Slepian-Wolf distributed lossless coding. In the third,
we consider a centralized setup, with a sample-and-transform
coding scheme in which ideal coding of coefficients is replaced by
coding with some specified family of quantizers. It is shown that
when the sampling rate is large, the operational rate-distortion
function of such a scheme comes within a finite constant of that
of the first case.

I. INTRODUCTION

Suppose a spatially distributed random field is sampled by a
network of densely spaced sensors, and suppose these samples
must be encoded with some loss for transmission to a common
decoder where the field is approximately reconstructed. How
should the sensors compress their observations under various
constraints on (i) inter-sensor collaboration and (ii) the struc-
ture of encoding operation? What happens to the number of
encoded bits per unit area (scaling laws), i.e the encoding
rate, as sensor density increases, given a fixed limit on the
decoded reconstruction quality? On the one hand, as density
increases, more sensor values must be encoded. On the other
hand, adjacent values become more correlated, which might be
exploited, perhaps, to prevent the encoding rate from growing.
The answers to the above questions have broad implications to,
in addition to sensor network applications, the general theory
of oversampled quantization.

For concreteness, consider a stationary and ergodic spatio-
temporal jointly Gaussian random field X(t)(s), where the
spatial variable s is continuous, and, for simplicity, one-
dimensional, and the temporal variable t is discrete. Let us
suppose that we wish to reconstruct this field with respect to
a mean squared error (MSE) distortion criterion. We assume

that the process is correlated in space, but independent and
identically distributed (IID) in time. We also assume that the
random field is distributed over unbounded space and time.
One architecture for encoding (centralized or distributed) this
random field that has received attention has the following three
components: sampling, linear transformation and quantization.
This includes any distributed encoding setup by assuming that
the identity transform is used.

The original random field is first sampled spatially by
the sensors to obtain a discrete-space, discrete-time random
process. At every time t, a transform is applied spatially,
and the transformed samples are quantized in temporal blocks
and transmitted to a remote joint receiver. These operations
are inverted to obtain a joint reconstruction of the entire
field at the receiver. There are two performance measures of
interest associated with such a system: rate and MSE. The
rate measures the number of bits per unit time and unit space
required in the quantization operation, and distortion measures
the quality of the reconstruction. Assuming a system of this
form is optimized, the trade-off between rate and distortion is
known as the operational rate-distortion function of this type
of system (we will define these quantities formally in the next
section). Observe that this rate-distortion function depends on
the sampling rate.

For such a system, one can consider four scenarios based
on various alternative constraints on the transform and the
quantizer: (I) no spatial transform (distributed coding) with
only temporal scalar quantization, (II) no spatial transform
(distributed coding) with temporal vector quantization, (III)
spatial transform (centralized coding) with temporal scalar
quantization, and (IV) spatial transform (centralized coding)
with temporal vector quantization. We assume that the vector
quantization is done with arbitrarily high dimension. Note that
one can consider scalar and vector quantization with or without
entropy coding in these scenarios.

The rate-distortion function of systems when constraints are
put on both the transform and the quantizer (Case I) was
first studied by Marco and Neuhoff in [2]. They showed that
under some minimal conditions on the random field, as the
sampling rate grows unbounded, the rate-distortion function
becomes unbounded for every non-zero MSE distortion. Since
the output vector of a scalar quantizer applied componentwise
on the sampled continuous-space random process becomes
highly correlated as the sampling rate increases, the entropy-
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rate of the output of such a scalar quantizer tends to zero.
However, the product of entropy-rate and sampling rate, which
specifies the rate in bits per unit time per meter, was shown
to grow without bound as sampling rate increases [3], [2].

The operational rate-distortion function for a given sampling
rate of systems where no constraints are imposed on the
transform and the quantizer (Case IV) was first stated (without
proof) by Kolmogorov in 1959 [1]. It was stated, under
certain assumptions on the underlying random process, that
as sampling rate tends to a large number, the asymptotic
operational rate-distortion function remains finite for every
non-zero MSE distortion, and a parametric expression in terms
of the power spectral density was given. Kashyap et al. [4]
showed that the asymptotic operational rate-distortion function
remains finite in Case II. This problem has also been addressed
in different settings in [5], [6].

In [9], [10], we considered Case II and III and obtained a
characterization of the corresponding rate-distortion functions.
The precise conditions on the underlying random process
under which the said characterizations are valid, however, were
not given. In the present paper we provide a unified approach
to characterizing the rate-distortion functions for Cases II,
III and IV by giving precise conditions under which such
characterizations are valid. Specifically, we will work under
the assumption that the autocorrelation function of the random
process is bounded, square integrable (L2(R) ∩ L∞(R)) and
satisfies certain mild tail conditions. We first obtain the rate-
distortion function for Case IV in the L2(R) setting. This is
done with a sample-transform-quantize architecture. The rate-
distortion functions for Case IV have been obtained earlier
under stricter conditions on the underlying random processes
and using continuous-space Karhunen-Loeve transforms. We
then treat Case II by providing an upper bound on the
asymptotic operational rate-distortion function by exploiting
the fact that the random process is distributed over unbounded
space and time. We then address Case III and show that as
the sampling rate grows unbounded, the asymptotic opera-
tional rate-distortion function remains finite for every non-
zero distortion. This implies that the catastrophic performance
of Case IV is due to lack of either a transform or a vector
quantizer. In other words, one may conclude that it is the
scalar quantization, rather than distributed coding per se, that
caused the negative result of [3], [7].

II. SOURCE MODEL

To keep things simple, we consider a scenario like that
of [3], [7], in which a one-dimensional, continuous-space,
discrete-time spatially stationary, zero-mean Gaussian random
process X(t)(s) is encoded. The superscript denotes the time
variable (measured in time units), an integer, and the argument
in brackets denotes the space variable (measured in meters),
a real number. The process is independent and identically
distributed in time, in the sense that (X(1), X(2), . . .) is a
sequence of independent and identically distributed sample
functions. We assume that the spatial autocorrelation function

ρX(s) and power spectral density SX(Ω) of the process
X(t)(s) are known.

Since this process is going to be sampled spatially, and then
encoded, we assume that the process satisfies the following
three conditions.

(1) It is assumed that ρX(τ) ∈ L2(R), and bounded, where
L2(R) denotes the space of functions defined on the real
line R with finite power and Lebesgue measure. This
implies that SX(Ω) ∈ L1(R) ∩ L2(R).

(2) There exist constants p > 0, c1 > 0 and c2 > 0 such
that

lim sup
|τ |→∞

ρX(τ)
(√
|τ | logp |τ |

)
= c1, (1)

(3) and
lim sup
|Ω|→∞

SX(Ω) (|Ω| logp |Ω|) = c2. (2)

The first tail condition is used to show that that autocorrelation
function of the sampled discrete-space process belongs to
l2(Z). The second tail condition is used to show a well-known
fact that a spatially scaled version of the power spectral density
of the sampled process approaches the power spectral density
of the original process as sampling interval approaches 0. Let
X(t)(0 : α) denote the collection of random variables X(t)(s)
for s ∈ [0, α]. Let Ξ(α) for α > 0 denote the set of all
real-valued functions defined over the spatial interval [0, α].
All integrals are with respect to Lebesgue measure. For a set
A ⊂ R, |A| denotes its Lebesgue measure.

III. CENTRALIZED ENCODING WITH VECTOR
QUANTIZATION: CASE IV

For some sampling interval τ , at each time t, the process
X(t)(s) is spatially sampled at sites {kτ, k ∈ Z+}. Let the
kth sample at time t be denoted by X̄kt. A block of ML
samples of M sites are encoded into bits and are transmitted
to a central decoder, which outputs continuous-space repro-
ductions (X̂(1), . . . , X̂(L)) for the Mτ -length segments of the
L continuous-space sample functions.

Definition 1: A centralized coding system with pa-
rameters (M,L, τ,Θ) is1 composed of the following
mappings: e : RML → {1, 2, . . . ,Θ}, for i =
1, 2, . . . , L, fi : {1, 2, . . . ,Θ} → Ξ(Mτ) where
X̂(i) = fi[e(X̄11, X̄12, . . . , X̄1L, X̄21, X̄22, . . . , X̄2L, . . . ,
X̄M1, X̄M2, . . . , X̄ML)].
Let the rate of the system be given by

R =
1

MτL
log Θ bits/meter/time unit,

and the distortion of the system be given by the mean squared
error (MSE):

∆ =
1

MLτ

L∑
i=1

∫ Mτ

0

E
(
X(i)(s)− X̂(i)(s)

)2

ds (3)

The encoder maps ML samples of the process X(t)(s) into
bits. The decoder maps the bits into L waveforms, where each
is defined over the space interval [0,Mτ ].

1Kolmogorov considered the case where L = 1.
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Definition 2: A pair (ρ, δ) of non-negative real numbers is
said to be τ -achievable for (centralized coding) Case IV if for
all ε > 0, there exists for all sufficiently large M and L a
centralized coding system with parameters (M,L, τ,Θ) such
that the rate and distortion of the system satisfy the following
constraints: R ≤ ρ+ ε, ∆ ≤ δ + ε.

Let RCVτ (D) = inf ρ such that (ρ,D) is τ -achievable.
Let RCV (D) = lim infτ→0RCVτ (D) denote the asymptotic
operational rate-distortion function2 when sampling rate grows
unbounded.

Theorem 1: For a spatio-temporal random process X , with
autocorrelation function and power spectral satisfying Condi-
tions 1, 2 and 3, an information theoretic characterization of
RCV (D) is given in the parametric form by

R(θ) =
1

2π

∫ ∞
−∞

max
{

1
2

log2

SX(Ω)
θ

, 0
}
dΩ (4)

D(θ) =
1

2π

∫ ∞
−∞

min {SX(Ω), θ} dΩ, (5)

where θ is a free parameter with 0 ≤ θ ≤ ess supΩSX(Ω).
Proof Outline: This is known in the literature as the inverse
water-pouring formula. This is achieved by the following
approach. An (M,L, τ,Θ) transmission system is built by first
applying a spatial M ×M Karhunen-Loeve (KL) transform
on the sampled data at every time t and obtaining transformed
coefficients which are statistically independent within each
block of size M . Each type of coefficient is then block-coded
across time using vector quantizers of dimension L and an
appropriate rate. Each type corresponds roughly to a frequency
component. The bits obtained are transmitted to the receiver.
At the decoder, the quantized coefficients are recovered from
the bits, and the inverse KL transform is applied on the
decoded coefficients. Finally the decoder applies a simple
sample-and-hold spatial interpolation. The key feature of this
approach is that the distortion allocated to each frequency
component is held at a constant level, unless the variance of
the source corresponding to a frequency component is below
this level, given by the parameter θ (see (5)). In the latter case,
the corresponding frequency component is not coded. We use
an eigenvalue distribution theorem (Theorem 5.4 in [13] for
L1(R) ∩ L2(R)) to get the expressions in terms of SX(·)

This was first stated without proof in [1]. A proof of this
for the case of autoregressive processes was given by [14].
This is proved in [15] under the condition that SX(·) ∈
L1(R) ∩ L∞(R). This was done using the eigenvalue distri-
bution theorem of Kac-Murdock-Szego [12].

IV. DISTRIBUTED VECTOR QUANTIZATION: CASE II
A. Problem Statement

The source is sampled spatially by sensors, and they are
divided into spatial groups of size M . A block of L samples (in
time) at each site is encoded, independently of the samples at
other sites, for transmission to a common decoder over a noise-
less rate-constrained channel. The decoder, after receiving bits

2C stands for centralized and V stands for vector quantization.

from a group of M adjacent sites, outputs continuous-space
reproductions (X̂(1), . . . , X̂(L)) for the length Mτ segments
of the L continuous-space sample functions. Subject to a
constraint on MSE, we wish to find an upper bound to
the rate (in bits per unit distance) of an ideal distributed
lossy source code that operates by encoding spatial samples
X(t)(1/N), . . . , X(t)(M/N) (taken at intervals of τ = 1/N )
with a distributed code of the kind described in the previous
section and then reconstructing an approximate continuous-
space sample function.

Definition 3: A distributed coding system with parameters
(M,L, τ,Θ1, . . . ,ΘM ) is composed of the following map-
pings: for j = 1, 2, . . . ,M

ej : RL → {1, 2, . . . ,Θj}, (6)

for i = 1, 2, . . . , L,

fi : {1, 2, . . . ,Θ1} × . . .× {1, 2, . . . ,ΘM} → Ξ(Mτ). (7)

Let the rate of the system be given by

R =
1

MLτ
log [Θ1 . . .ΘM ] bits/meter/time unit (8)

and the distortion of the system be given by

∆ =
1

MLτ

L∑
i=1

∫ Mτ

0

E
(
Xi(s)− X̂i(s)

)2

ds (9)

where X̂i = fi(ej(X(1)(jτ), X(2)(jτ), . . . , X(L)(jτ)), j =
1, 2, . . . ,M).

Definition 4: A pair (ρ, δ) of non-negative real numbers
is said to be τ -achievable for (distributed coding) Case II
if for all ε > 0, there exists for all sufficiently large
M and L a distributed coding system with parameters
(M,L, τ,Θ1, . . . ,ΘM ) such that the rate and distortion of the
system satisfy the following conditions R ≤ ρ+ε, D ≤ δ+ε.

Let RDVτ (D) = inf ρ such that (ρ,D) is τ -achievable for
Case II. Let RDV (D) = lim infτ→0RDVτ (D) denote the
asymptotic operational rate-distortion function when sampling
rate grows unbounded.

B. Main Results

Let the ith sensor transmit at rate Ri bits per temporal
sample3. Then, (see (8)) the rate of the system in bits per
meter per time unit is given by 1

M

∑M
i=1Ri multiplied by

the sampling rate N (spatial samples or sensors per meter).
The decoder first reconstructs the L samples observed at each
sensor. Let Di denote the average distortion of L-length block
at the ith sensor for i = 1, 2, . . . ,M . For doing this we employ
a sequence (indexed by L) of Berger-Tung source codes that
achieve the tuple (R1, R2, . . . , RM , D1, . . . , DM ). Then we
let M becomes large, and then N becomes large.

Theorem 2: An upper bound on the asymptotic optimal
rate-distortion function RDV (D) in the setting of distributed

3The ith sensor encodes a block of L temporal samples with LRi bits.
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vector quantization is given by the parametric formula: for any
θ ∈ [0,∞)

RBT (θ) ,
1

4π

∫ ∞
−∞

log
(
S(Ω)
θ

+ 1
)
dΩ (10)

DBT (θ) ,
1

2π

∫ ∞
−∞

(
S(Ω)

S(Ω)
θ + 1

)
dΩ, (11)

where the autocorrelation function and the power spectral
density of the underlying spatio-temporal random process
satisfy Conditions 1, 2 and 3.
Proof: The proof is skipped due to lack of space.

V. SCALAR QUANTIZATION WITH TRANSFORMS

A. Problem Statement

We will use the source model considered in the previous
sections. The transformed coefficients are scalar quantized and
sent to a central decoder. The scalar quantized coefficients of a
given type may be coded losslessly across time. For example
if one uses entropy-constrained scalar quantization, then to
achieve a specified rate of the quantizer, several quantized
coefficients coming from a scalar quantizer at different time
instants have to be coded jointly. In contrast, if one uses a
fixed-rate scalar quantizer, then coding of scalar quantized
coefficients across time may not be not necessary.

The encoder has two components. The first component
involves an M ×M orthogonal linear transform T N,M that
maps RM → RM . The encoder applies this transform to the
set of M samples given by (X(t)(1/N), . . . , X(t)(M/N))
to obtain M random variables (Z(t)(1), . . . , Z(t)(M)). The
second component involves scalar quantization with a struc-
ture described in the sequel. The decoder first reconstructs
an approximation (inverse of quantization) to the M -length
vector (Z(t)(1), . . . , Z(t)(M)), applies the inverse transform,
and then uses sample-and-hold to get an approximation to
the continuous-time sample function. Since for every t, the
encoder and decoder perform an identical set of operations,
in the following we drop the superscript that captures the
dependence of random variables on t.

Definition 5: A collection Q of scalar quantizers is called a
family if for every 0 < D < 1, there exists a scalar quantizer
Q in the collection such that the mean squared error of Q
when operating on a unit variance discrete-time IID Gaussian
process is at most D.

The rate of a quantizer Q in Q is given by the average
number of bits per sample produced by the quantizer when
operating on a unit variance IID Gaussian source.

Definition 6: With a family of quantizers Q, one can asso-
ciate a function R∗Q(D), called the operational rate-distortion
function, which specifies the minimum rate of all the quantiz-
ers in Q with distortion D or less when operating on a unit
variance IID Gaussian source.

Definition 7: A family Q of scalar quantizers is said to be
good if it satisfies the following conditions. The rate-distortion
function R∗Q(D) of the family is finite except at D = 0 and is

zero for D ≥ 1. Let R̃Q(D) denote the lower convex envelope
of R∗Q(D).

Definition 8: Given a random process X(s) and a good
family of scalar quantizers, we can now define the operational
rate-distortion function RQ(M,N,D) of transform coding
with family Q as the minimum rate in bits/meter required
to attain distortion D or less using a decoder that applies the
inverse transform on the quantized coefficients and then a sub-
sequent sample-and-hold operation, where the minimization
is over TN,M and target distortions {DN,M

i }Mi=1. Further, we
define the asymptotic operational rate-distortion

RQ(D) = lim inf
N→∞

lim
M→∞

RQ(M,N,D) .

B. Main Result

We pursue an upper bound to RQ(D) by letting T N,M
be the Karhunen-Loeve transform corresponding to the ran-
dom vector (X(1/N), . . . , X(M/N)). This results in the
collection of independent random variables {Z(i)}Mi=1, where
the variance of Z(i) is equal to the ith eigenvalue λN,Mi of
the covariance matrix of the random vector (X(1/N), . . . ,
X(M/N)). This results in the following average rate (in bits
per sample) and average distortion pair:

RN,M =
1
M

M∑
i=1

R∗Q

(
DN,M
i

λN,Mi

)
, DN,M =

1
M

M∑
i=1

DN,M
i .

By optimizing this pair over the allocation of distortions DN,M
i

to different components Yi, with a slight abuse of notation,
we can get a compact parametric solution to the following
function:

RN,M (D) , min
{DN,Mi : 1

M

PM
i=1D

N,M
i =D}

[
1
M

M∑
i=1

R∗Q

(
DN,M
i

λN,Mi

)]
.

Theorem 3: This rate-distortion function RN,M (D) is char-
acterized as follows:

RN,M (β, θ) =
1
M

M∑
i=1

R̃Q(ψβ(θλi),

DN,M (β, θ) =
1
M

M∑
i=1

λiψβ(θλi),

for β ∈ [0, 1] and θ ∈ (−∞, 0], where

ψ(θ) = {d ∈ (0, 1] : R̃−Q(d) ≤ θ ≤ R̃+
Q(d) and d < 1,

or R̃−Q(d) ≤ θ and d = 1},

R̃−Q(d) and R̃+
Q(d) are left-sided and right-sided derivative,

respectively, of R̃Q(d), ψl(θ) and ψu(θ) are the lower and
upper end points, respectively, of ψ(θ), and ψβ(θ) = (1 −
β)ψl(θ) + βψu(θ).

Now using the eigenvalue distribution theorem in L2(T)
[13, Theorem 5.1], as M → ∞ (following sub-additivity of
the rate-distortion function), we get the following achievable
rate-distortion pair:
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RN,∞Q (β, θ) =
1

2π

∫ π

−π
R̃Q (ψβ(θΦN (w))) dw (12)

DN,∞
Q (β, θ) =

1
2π

∫ π

−π
ΦN (w)ψβ (θΦN (w)) dw, (13)

for β ∈ [0, 1] and θ ∈ (−∞, 0], where, as before, ΦN (w) de-
notes the discrete-space power spectral density of the process
that is obtained by sampling the original process with sampling
interval 1/N . We make additional assumptions on the family
Q in terms of conditions on the lower-convex envelope R̃Q(·)
of the rate-distortion function R∗Q(·).

We restrict our attention to good families of quantizers Q
such that R̃Q(·) satisfies the following two conditions

(4)

R̃Q(d) =

{
h(d) 0 ≤ d ≤ d0

h(d0)
(1−d0) (1− d) d0 < d ≤ 1 , (14)

where h(d) is defined on [0, d0], and convex and twice
differentiable over the interval (0, d0] 4, and h(0) =∞.

(5) There exists a constant c3 < 0 such that for all d ∈
(0, d0],

h′(d)
h′′(d)

≥ c3. (15)

It turns out that we require an additional condition on the
power spectral density SX(·), which is given in the following

(6) If SX(·) has infinite support, then SX(·) does not have
a flat spot, i.e., for every constant α > 0,

|{Ω : SX(Ω) = α}| = 0. (16)

Clearly, h′(d) exists for all d ∈ (0, d0). Let g(·) denote
the inverse of this function. Let θ0 = limd↑d0 h

′(d). Note
that since R̃Q(·) is convex (by definition), we have that
θ0 ≤ − h(d0)

(1−d0) . Moreover, since R̃Q(·) always lies above the
Shannon rate-distortion function, the slope of R̃Q(·) at d = 1
must be no greater than the corresponding slope of the latter,
i.e.,

θ0 ≤ −
h(d0)

(1− d0)
≤ − log e

2
< 0. (17)

Under the above conditions, the inverse ψβ(·) of the first
derivative of R̃Q(·) can be written as for all β ∈ [0, 1], and
γ ∈ (−∞, 0],

ψβ(θ) =


g(θ) θ < θ0

d0 θ0 ≤ θ < − h(d0)
(1−d0)

(1− β)d0 + β θ = − h(d0)
(1−d0)

1 − h(d0)
(1−d0) < θ ≤ 0.

Note that ψβ(θ) is continuous at θ = θ0. The following is the
main result of this section.

Theorem 4: For a spatio-temporal random process X satis-
fying Condition 1, 2, 3 and 6, and a good family of quantizers
Q, with R̃Q satisfying Condition 4 and 5, an upper bound on

4h′(d0) is defined as limd↑d0 h′(d), and similarly, h′′(d0) is defined.

the asymptotic operational rate-distortion function RQ(D) is
given by the following: for γ ∈ (−∞, 0],

RKTQ (γ) ,
1

2π

∫
{Ω:SX(Ω)>

θ0
γ }

h(g(γSX(Ω)))dΩ

+
h(d0)

2π

∣∣∣∣{Ω :
θ0

γ
> SX(Ω) > − h(d0)

γ(1− d0)

}∣∣∣∣ bits/meter

(18)

DKTQ (γ) ,
1

2π

∫
{Ω:SX(Ω)>

θ0
γ }
SX(Ω)g(γSX(Ω))dΩ

+
1

2π

∫
{Ω:

θ0
γ >SX(Ω)>− h(d0)

γ(1−d0)}
SX(Ω)d0dΩ

+
1

2π

∫
{Ω:− h(d0)

γ(1−d0)>SX(Ω)}
SX(Ω)dΩ. (19)

Proof: The proof of skipped due to lack of space.
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