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Abstract—In this paper, we show that nested lattice codes
achieve the capacity of arbitrary continuous channels with or
without non-causal state information at the transmitter. We also
show that nested lattice codes are optimal for source coding
with or without non-causal side information at the receiver for
arbitrary continuous sources. We show the optimality of lattice
codes for the Gelfand-Pinsker and Wyner-Ziv problems in their
most general settings.

I. INTRODUCTION

Lattice codes for continuous sources and channels are the
analogue of linear codes for discrete sources and channels and
play an important role in information theory and communica-
tions. Linear/lattice and nested linear/lattice codes have been
used in many communication settings to improve upon the
existing random coding bounds [2], [10]–[13], [16], [18], [20].

In [2] and [12] the existence of lattice codes satisfying
Shannon’s bound has been shown. These results have been
generalized and the close relation between linear and lattice
codes has been pointed out in [13]. In [24], several results
regarding lattice quantization noise in high resolution has
been derived and the problem of constructing lattices with
an arbitrary quantization noise distribution has been studied
in [7].

Nested lattice codes were introduced in [26] where the
concept of structured binning is presented. Nested linear/lattice
codes are important because in many communication prob-
lems, specially multi-terminal settings, such codes can be
superior in average performance compared to random codes
[11]. It has been shown in [25] that nested lattice codes are
optimal for the Wyner-Ziv problem when the source and side
information are jointly Gaussian. The dual problem of channel
coding with state information has been addressed in [4]–[6],
[21] and the optimality of lattice codes for Gaussian channels
has been shown. In [3], it was shown that random linear
codes provide good binning schemes for general Slepian-Wolf
coding.

In a recent work [17], it has been shown that nested linear
codes are optimal for arbitrary discrete memoryless channels
with state information at the transmitter. In this paper we focus
on two problems: 1) The point to point channel coding with
state information at the encoder (the Gelfand-Pinsker problem
[8]) and 2) Lossy source coding with side information at the
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decoder (the Winer-Ziv problem [22], [23]). We consider these
two problems in their most general settings i.e. when the
source and the channel are arbitrary but memoryless. We use
nested lattice codes with joint typicality decoding/encoding
rather than lattice decoding. We consider a lattice code en-
semble with simpler random dithers and without modulo-Λ
transformations as used in [25]. We show that in both settings,
from an information-theoretic point of view, nested lattice
codes are optimal.

The paper is organized as follows: in Section II we present
the required preliminaries and introduce our notation. In Sec-
tion III we show the optimality of nested lattice codes for chan-
nels with state information (the Gelfand-Pinsker problem).
We briefly present the optimality of nested lattice codes for
source coding with side information (the Wyner-Ziv problem)
in Section IV and we conclude in Section V.

II. PRELIMINARIES

1) Channel Model: We associate two sets X and Y with
the channel as the channel input and output alphabets. The set
of channel states is denoted by S and it is assumed that the
channel state is distributed over S according to PS . When the
state of the channel S is s ∈ S, the input-output relation of the
channel is characterized by a transition kernel WY |XS(y|x, s)
for x ∈ X and y ∈ Y . We assume the state of the channel is
known at the transmitter non-causally. The channel is specified
by (X ,Y,S, PS ,WY |XS , w) where w is the cost function.

2) Source Model: The source is modeled as a discrete-
time random process X with each sample taking values in
a fixed set X called alphabet. Assume X is distributed jointly
with the random variable S according to the measure PXS
over X × S where S is an arbitrary set. We assume that
the side information S is known to the receiver non-causally.
The reconstruction alphabet is denoted by U and the quality
of reconstruction is measured by a single-letter distortion
functions d : X × U → R+. We denote such sources by
(X ,S,U , PXS , d).

3) Linear and Coset Codes Over Zp: For a prime number
p, a linear code over Zp of length n and rate R = k

n log p
is a collection of pk codewords of length n which is closed
under mod-p addition. Any such code can be characterized
by its generator matrix G ∈ Zk×np . The set of all message
tuples for this code is Zkp and the set of all codewords is the
range of the matrix G. The linear encoder maps a message
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tuple u ∈ Zkp to the codeword x where x = uG and the
operations are done mod-p. A coset code over Zp is a shift
of a linear code by a fixed vector. A coset code of length n
and rate R = k

n log p is characterized by its generator matrix
G ∈ Zk×np and it’s shift vector (dither) B ∈ Znp . The encoding
rule for the corresponding coset code is given by x = uG+B,
where u is the message tuple and x is the codeword.

4) Lattice Codes and Shifted Lattice Codes: A lattice code
of length n is a collection of codewords in Rn which is closed
under real addition. A shifted lattice code is any translation
of a lattice code by a real vector. In this paper, we use coset
codes to construct (shifted) lattice codes as follows: Given a
coset code C of length n over Zp and a step size γ, define
Λ(C, γ, p) = γ(C − p−1

2 ). Then the corresponding mod-p
lattice code Λ̄(C, γ, p) is the disjoint union of shifts of Λ by
vectors in γpZn. i.e. Λ̄(C, γ, p) =

⋃
v∈pZn

(γv + Λ). Note that

Λ(C, γ, p) ⊆ Λ̄(C, γ, p) is a scaled and shifted copy of the
linear code C.

5) Nested Linear Codes: A nested linear code consists of
two linear codes, with the property than one of the codes (the
inner linear code) is a subset of the other code (the outer
linear code). For positive integers k and l, let the outer and
inner codes Ci and Co be linear codes over Zp characterized
by their generator matrices G ∈ Zl×np and G′ ∈ Z(k+l)×n

p

and their shift vectors B ∈ Znp and B′ ∈ Znp respectively.

Furthermore, assume G′ =

[
G

∆G

]
for some ∆G ∈ Zk×np

and B′ = B. In this case,

Co =
{
aG+m∆G+B|a ∈ Zlp,m ∈ Zkp

}
, (1)

Ci =
{
aG+B|a ∈ Zlp

}
(2)

It is clear that the inner code is contained in the outer code.
Furthermore, the inner code induces a partition of the outer
code through its shifts. For m ∈ Zkp define the mth bin of Ci
in Co as Bm =

{
aG+m∆G+B|a ∈ Zlp

}
. The outer code

is the disjoint union of all the bins and each bin index m ∈ Zkp
is considered as a message. We denote a nested linear code
by a pair (Ci,Co).

6) Nested Lattice Codes: Given a nested linear code
(Ci,Co) over Zp and a step size γ, define

Λi(Ci, γ, p) = γ(Ci −
p− 1

2
), (3)

Λo(Co, γ, p) = γ(Co −
p− 1

2
) (4)

Then the corresponding nested lattice code consists of an inner
lattice code and an outer lattice code

Λ̄i(Ci, γ, p) = ∪v∈pZn(γv + Λi) (5)
Λ̄o(Co, γ, p) = ∪v∈pZn(γv + Λo) (6)

In this case as well, the inner lattice code induces a partition of
the outer lattice code. For m ∈ Zkp , define Bm = γ(Bm−p−1

2 )
where Bm is the mth bin of Ci in Co. The mth bin of the
inner lattice code in the outer lattice code is defined by:

B̄m = ∪v∈pZn(γv + Bm)

The set of messages consists of the set of all bins of Λ̄i in
Λ̄o. We denote a nested lattice code by a pair (Λ̄i, Λ̄o).

7) Achievability for Channel Coding: A transmission sys-
tem with parameters (n,M,Γ, τ) for reliable communication
over a given channel (X ,Y,S, PS ,WY |XS) with cost function
w : X → R+ consists of an encoding mapping and a
decoding mapping e : Sn × {1, 2, . . . ,M} → Xn, f :
Yn → {1, 2, . . . ,M} such that for all m = 1, 2, . . . ,M ,

if x = (x1, · · · , xn) = e(m) then 1
n

n∑
i=1

w(xi) < Γ and∑M
m=1

1
M Pr (f(Y n) 6= m|Xn = e(m)) ≤ τ .

Given a channel (X ,Y,S, fS , fY |XS), a pair of non negative
numbers (R,W ) is said to be achievable if for all ε > 0 and
for all sufficiently large n, there exists a transmission system
for reliable communication with parameters (n,M,Γ, τ) such
that 1

n logM ≥ R− ε, Γ ≤W + ε and τ ≤ ε.
8) Achievability for Source Coding: A transmission sys-

tem with parameters (n,Θ,∆, τ) for compressing a given
source (X ,S,U , PXS , d(·)) consists of an encoding mapping
e : Xn → {1, 2, · · · ,Θ} and a decoding mapping g : Sn ×
{1, 2, · · · ,Θ} → Un such that P (d(Xn, g(e(Xn))) > ∆) ≤
τ where Xn is the random vector of length n generated by
the source. In this transmission system, n denotes the block
length, log Θ denotes the number of channel uses, ∆ denotes
the distortion level and τ denotes the probability of exceeding
the distortion level ∆.
Given a source, a pair of non-negative real numbers (R,D)
is said to be achievable if there exists for every ε > 0, and
for all sufficiently large numbers n a transmission system with
parameters (n,Θ,∆, τ) for compressing the source such that
1
n log Θ ≤ R+ ε, ∆ ≤ D + ε and τ ≤ ε.

9) Mutual Information and Kullback-Leibler divergence:
Let Q = {A1, A2, · · · , Ar} be a finite measurable partition
of Rd. For random variables U and Y on Rd with measure
PUY define the quantized random variables UQ and YQ
on Q with measure PUQYQ(Ai, Aj) = PUY (Ai, Aj). The
Kullback-Leibler divergence between U and Y is defined
as D(U‖Y ) = supQD(UQ‖YQ) where D(UQ‖YQ) is the
discrete Kullback-Leibler divergence and the supremum
is taken over all finite partitions Q of Rd. Similarly,
the mutual information between U and Y is defined as
I(U ;Y ) = supQ I(UQ;YQ) where I(UQ;YQ) is the discrete
mutual information between the two random variables and
the supremum is taken over all finite partitions Q of Rd.

10) Typicality: We use the notion of weak* typicality with
Prokhorov metric introduced in [14]. Let M(Rd) be the set of
probability measures on Rd. For a subset A of Rd define its
ε-neighborhood by Aε = {x ∈ Rd|∃y ∈ A such that ‖x −
y‖ < ε} where ‖ · ‖ denotes the Euclidean norm in Rd.
The Prokhorov distance between two probability measures
P1, P2 ∈M(Rd) is defined as follows:

πd(P1, P2) = inf{ε > 0|P1(A) > P2(Aε) + ε and

P2(A) > P1(Aε) + ε ∀ Borel set A in Rd}
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Consider two random variables X and Y with joint distribution
PXY (·, ·) over X × Y ⊆ R2. Let n be an integer and ε be a
positive real number. For the sequence pair (x, y) belonging
to Xn × Yn where x = (x1, · · · , xn) and y = (y1, · · · , yn)
define the empirical joint distribution by

Pxy(A,B) =
1

n

n∑
i=1

1{xi∈A,yi∈B}

for Borel sets A and B. Let Px and Py be the corre-
sponding marginal probability measures. It is said that the
sequence x is weakly* ε-typical with respect to PX if
π1(PX , Px) < ε. We denote the set of all weakly* ε-typical
sequences of length n by Anε (X). Similarly, x and y are
said to be jointly weakly* ε-typical with respect to PXY if
π2(Pxy, PXY ) < ε. We denote the set of all weakly* ε-
typical sequence pairs of length n by Anε (XY ). We define
Anε (Y |x) = {y ∈ Yn |(x, y) ∈ Anε (X,Y )}.

11) Notation: In our notation, O(ε) is any function of ε
such that limε→0O(ε) = 0 and for a set G, |G| denotes the
cardinality (size) of G.

III. CHANNEL CODING

We show the achievability of the rate R = I(U ;Y ) −
I(U ;S) for the Gelfand-Pinsker channel using nested lattice
code for U .

Theorem III.1. For the channel (X ,Y,S, PS ,WY |XS) where
X ,X ,X ⊆ R, let w : X → R+ be a continuous cost function.
Let U be an arbitrary set and let SUXY be distributed over
S × U × X × Y according to PSPU |SWX|USWY |SX where
PU |S and WX|US are such that E{w(X)} ≤ W . Then the
pair (R,W ) is achievable using nested lattice codes where
R = I(U ;Y )− I(U ;S).

A. Discrete U and Bounded Continuous Cost Function

In this section we prove the theorem for the case when
U = Û takes values from the discrete set γ(Zp− p−1

2 ) where
p is a prime and γ is a positive number. We use a random
coding argument over the ensemble of mod-p lattice codes to
prove the achievability. Let Co and Ci be defined as (1) and
(2) where G is a random matrix in Zl×np , ∆G is a random
matrix in Zk×np and B is a random vector in Znp , all uniformly
distributed over their respective domains. Define Λ̄i(Ci, γ, p)
and Λ̄o(Co, γ, p) accordingly. The ensemble of nested lattice
codes consists of all lattices of the form (3) and (4). The set
of messages consists of all bins Bm indexed by m ∈ Zkp . The
encoder observes the message m ∈ Zkp and the channel state
s ∈ Sn and looks for a vector u in the mth bin Bm which is
jointly weak* typical with s and encodes the message m to
x according to WX|SU . The encoder declares error if it does
not find such a vector.
After receiving y ∈ Yn, the decoder decodes it to m ∈ Zkp if
m is the unique tuple such that the mth bin Bm contains a
sequence jointly typical with y. Otherwise it declares error.

1) Encoding Error: Let S′ = [−γp2 , γp2 ]n ∩ γZn. For a ∈
Zkp , m ∈ Zlp, define

g(a,m) = γ

(
(aG+m∆G+B)− (p− 1)

2

)
g(a,m) has the following properties:

Lemma III.2. For a ∈ Zlp and m ∈ Zkp , g(a,m) is uniformly
distributed over S′.

Proof: Follows from the fact that B is independent of G
and ∆G and is uniformly distributed.

Lemma III.3. For a, ã ∈ Zlp and m ∈ Zkp if a 6= ã then
g(a,m) and g(ã,m) are pairwise independent.

Proof: Follows from a counting argument.
For message m ∈ Zkp and state s ∈ Sn, the encoder declares

error if there is no sequence in Bm jointly typical with s.
Define

θ(s) =
∑
u∈Bm

1{u∈Anε (Û |s)} =
∑
a∈Zlp

1{g(a,m)∈Anε (Û |s)}

Let Z be a uniform random variable over S′. Then we have

E{θ(s)} =
∑
a∈Zlp

P
(
Zn ∈ Anε (Û |s)

)
we need the following lemmas to proceed:

Lemma III.4. Let PXY be a joint distribution on R2 and PX
and PY denote its marginals. Let y be a sequence and Zn a
random sequence drawn according to PnZ . If D(PXY ‖PZPY )
is finite then for each δ > 0, there exist ε(δ) and ε̄(δ) such
that if ε < ε(δ), ε̄ < ε̄(δ) and y ∈ Anε̄ (PY ) then

lim sup
1

n
logPnZ ((Zn, y)∈Anε (PXY )≤−D(PXY ‖PZPY )+δ

Proof: This lemma is a generalization of theorem 21 of
[14]. The complete proof can be found in a more complete
version of this work [19].

Lemma III.5. Let PXY be a joint distribution on R2 and PX
and PY denote its marginals. Let y be a sequence and Zn

a random sequence drawn according to PnZ . Then for each
ε, δ > 0, there exist ε̄(ε, δ) such that if y ∈ Anε̄ (PY ) then

lim inf
1

n
logPnZ ((Zn, y)∈Anε (PXY )≥−D(PXY ‖PZPY )−δ

Proof: This lemma is a generalization of theorem 22 of
[14]. The complete proof can be found in [19].

Using these lemmas we get

E{θ(s)} = pk2−n[D(PÛS‖PZPS)+O(ε)]

Similarly, let Zn = g(a,m) and Z̃n = g(ã,m). Note that Zn

and Z̃n are equal if a = ã and are independent if a 6= ã. We
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have

E{θ(s)2} =
∑

a,ã∈Zlp

P
(
Zn, Z̃n ∈ Anε (Û |s)

)
=
∑
a∈Zlp

P
(
Zn ∈ Anε (Û |s)

)
+

∑
a,ã∈Zlp
a6=ã

P
(
Zn ∈ Anε (Û |s)

)2

= pk2−n[D(PÛS‖PZPS)+O(ε)]

+ pk(pk − 1)2−2n[D(PÛS‖PZPS)+O(ε)]

Therefore, using Chebyshev’s inequality we obtain

P (θ(s) = 0) ≤ var{θ(s)}
E{θ(s)}2

≤ pk2−n[D(PÛS‖PZPS ]+O(ε)]

Therefore if l
n log p > D(PÛS‖PZPS) then the probability of

encoding error goes to zero as the block length increases.
2) Decoding Error: The decoder declares error if there is

no bin Bm containing a sequence jointly typical with the chan-
nel output y or if there are multiple bins containing sequences
jointly typical with y. Assume that the message m has been
encoded to x according to WX|SU where u = g(a,m) and
the channel state is s. The channel output y is jointly typical
with u with high probability. It can be shown [19] that the
probability of decoding error is upper bounded by

Perr ≤ plpk2−n[D(PÛY ‖PZPY )+O(ε)]

Hence the probability of decoding error goes to zero if
k+l
n log p < D(PÛY ‖PZPY ). If we choose l

n log p sufficiently
close to D(PÛS‖PZPS) and k+l

n log p sufficiently close to
D(PÛS‖PZPS) we can achieve the rate

R =
k

n
log p ≈ D(PÛY ‖PZPY )−D(PÛS‖PZPS)

= I(Û ;Y )− I(Û ;S)

B. Arbitrary U and Bounded Continuous Cost Function

We have shown in Section III-A that for discrete random
variables the region given in Theorem III.1 is achievable. In
this part, we make a quantization argument to generalize this
result to arbitrary auxiliary random variables. Let S,U,X, Y
be distributed according to PSPU |SPX|USWY |X where in this
case U is an arbitrary random variable. We start with the
following theorem:

Theorem III.6. Let F1 ⊆ F2 ⊆ · · · be an increasing
sequence of σ-algebras on a measurable set A. Let F∞ denote
the σ-algebra generated by the union ∪∞n=1Fn. Let P and Q
be probability measures on A. Then

D(P |Fn‖Q|Fn)→ D(P |F∞‖Q|F∞) as n→∞

where P |F denotes the restriction of P on F .

Proof: Provided in [9] and [1].
For a prime p > 2 and a real positive number γ and

for i = 0 · · · , p − 1 define ai = −γ(p−1)
2 + γi and define

the quantization Qγ,p as Qγ,p = {A0, A2, · · · , Ap−1} where
A0 = (−∞, a0], Ap−1 = (ap−2,+∞) and Ai = (ai−1, ai]
for i = 1, · · · , p−2. Let the random variable Ûγ,p take values
from {a0, · · · , ap−1} according to joint measure

PSÛXY (Û=ai, SXY∈B)=PSUXY (U∈Ai, SXY∈B) (7)

For all Borel sets B ⊆ R3. For a fixed γ, let p ≤ q be two
primes. Then the σ-algebra induced by Qγ,p is included in the
σ-algebra induced by Qγ,q . Therefore, for a fixed γ, we can
use the above theorem to get

I(U |Fγ,p ;Y |Fγ,p)→ I(U |Fγ,∞ ;Y |Fγ,∞) as p→∞ (8)

where U |Fγ,∞ is a random variable over Qγ,∞ = {Ai|i ∈ Z}
where Ai = γ

2 + (γi, γ(i+ 1)] with measure PU |Fγ,∞ (Ai) =
PU (Ai).
Let γ0 = 1 and define γn = 1

2n . Note that if m > n then
Fγn,∞ is included in Fγm,∞. Also, since dyadic intervals
generate the Borel Sigma field ( [15] for example), the
restriction of U to the sigma algebra generated by ∪∞n=1Fγn,∞
is U itself. We can use Theorem III.6 to get

I(U |Fγn,∞ ;Y |Fγn,∞)→ I(U ;Y ) as n→∞ (9)

Combining (8) and (9) we conclude that for all ε > 0, there
exist Γ and P such that if γ ≤ Γ and p ≥ Γ then∣∣I(U |Fγ,p ;Y |Fγ,p)− I(U ;Y )

∣∣ < ε

Since quantization reduces the mutual information (XQ →
X → Y ), we have

I(U |Fγ,p ;Y |Fγ,p) ≤ I(U |Fγ,p ;Y ) ≤ I(U ;Y )

Therefore
∣∣I(U |Fγ,p ;Y )− I(U ;Y )

∣∣ < ε. Also note that
I(U |Fγ,p ;Y ) = I(Ûγ,p;Y ) since we define the joint measure
to be the same. Therefore∣∣∣I(Ûγ,p;Y )− I(U ;Y )

∣∣∣ ≤ ε (10)

With a similar argument, ∀ε > 0 there exist γ and p such that∣∣∣I(Ûγ,p;S)− I(U ;S)
∣∣∣ ≤ ε (11)

if we take the maximum of the two p’s and the minimum of
the two γ’s, we can say for all ε > 0 there exist γ and p such
that both (10) and (11) happen.

Lemma III.7. The sequence PSÛγp,pX converges to PSUX in
the weak* sense as p→∞.

Proof: Provided in a more complete version [19].
The above lemma implies EPSÛγp,pX{w(X)} converges to

EPSUX{w(X)} ≤ W since w is assumed to be bounded
continuous.
We have shown that for arbitrary PU |S and WX|SU , one can
find PÛ |S and WX|SÛ induced from (7) such that Û is a
discrete variable and

I(Û ;Y )− I(Û ;S) ≈ I(U ;Y )− I(U ;S)

EPSÛX{w(X)} ≈ EPSUX{w(X)}
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Hence, using the result of section III-A, we have shown the
achievability of the rate region given in Theorem III.1 for
arbitrary auxiliary random variables when the cost function
is bounded and continuous.

C. Arbitrary U and Continuous Cost Function

For a positive number l, define the bounded random variable
X̂ by X̂ = sign(X) min(l, |X|) and let Ŷ be distributed
according to WŶ |X̂(·, x̂) = WY |X(·, x̂).

Lemma III.8. As l→∞, I(U ; Ŷ )→ I(U ;Y ).

Proof: Proved in a more complete version [19].
Since X̂ is bounded and w is assumed to be continuous, w

is also bounded. This completes the proof.

IV. SOURCE CODING

We show the achievability of the rate R = I(U ;X) −
I(U ;S) for the Wyner-Ziv problem using nested lattice codes.

Theorem IV.1. For the source (X ,S, X̂ , PXS , d(·)) assume
X ,S, X̂ ⊆ R and d(·) is continuous. Let U be a random
variable taking values from the set U jointly distributed with X
and S according to PXSWU |X where WU |X(·|·) is a transition
kernel. Further assume that there exists a measurable function
f : S × U → X̂ such that E{d(X, f(S,U))} ≤ D. Then the
rate R∗(D) = I(X;U)− I(S;U) is achievable using nested
lattice codes.

Here we present a sketch of the proof of this theorem. The
complete proof is similar to the channel coding problem and
is provided in [19]. The ensemble of codes used for source
coding is based on the parity check matrix representation of
linear and lattice codes. For a prime number p, the linear code
over Zp corresponding to the parity check matrix H ∈ Zk×np is
the kernel of the matrix H; i.e. C =

{
u ∈ Znp |Hu = 0

}
where

the operations are done mod-p. The coset code corresponding
to the parity check matrix H ∈ Zk×np and the bias vector
c ∈ Zkp is defined as C =

{
u ∈ Znp |Hu = c

}
.

Nested linear codes based on the parity check representation
of linear codes can be defined as follows

Co =
{
u ∈ Znp |Hu = c

}
,

Ci =
{
u ∈ Znp |Hu = c,∆Hu = ∆c

}
where H ∈ Zk×np and ∆H ∈ Zk×np . The ensemble of lattice
codes are then constructed using (1) and (4). The encoding
and decoding rules are as follows: For m ∈ Zkp , Let Bm be
the mth bin of Λi in Λo. The encoder observes the source
sequence x ∈ Xn and looks for a vector u in the outer code
Λo which is typical with x and encodes the sequence x to the
bin of Λi in Λo containing u. The encoder declares error if it
does not find such a vector.
Having observed the index of the bin m and the side infor-
mation s, the decoder looks for a unique sequence u in the
mth bin which is jointly typical with s and outputs f(u, s).
Otherwise it declares error. Similar to the channel coding
problem, this theorem is first proved for discrete auxiliary
random variables and then it is generalized to arbitrary sources.

V. CONCLUSION

We have shown that nested lattice codes are optimal for the
Gelfand-Pinsker problem as well as the Wyner-Ziv problem.
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