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Abstract— It is well known that for discrete-time, station-
ary sources, most lossy source coding techniques have opera-
tional rate-distortion functions that approach the Shannon rate-
distortion function with respect to squared error to within an
additive constant as distortion approaches zero. With the goal of
investigating similar phenomena for continuous-time sources, this
paper investigates the low-distortion performance of distributed
coding of continuous-time, stationary, Gaussian sources based
on high-rate sampling. It is found that for bandlimited sources
and nonbandlimited sources whose spectra have sufficiently light,
e.g., exponentially decreasing, tails, distributed source coding
is asymptotically as good as centralized coding in the small
distortion regime. On the other hand, for spectra with tails that
decay as a power (greater than one) of frequency, it is found that
for small distortions the distributed rate-distortion function is a
constant times larger than the Shannon rate-distortion, where
the constant decreases as the power increases. For example, it is
approximately 1.2 when the power is 2. The conclusion is that for
a stationary Gaussian source and asymptotically small distortion,
the ratio of the distributed to centralized rate-distortion function
is a function of the weight of the tail of the source spectrum. In
the process of finding the ratio, the low distortion form of the
centralized rate-distortion function is found for sources whose
spectra have exponential and power law tails.

I. INTRODUCTION

High-resolution theory, c.f. [1], shows that for almost any
stationary discrete-time source with finite variance and for
large rate r, the Shannon distortion-rate function with respect
to squared-error distortion has the form

D(r) ∼= c 2−2r , (1)

where c is some positive constant that depends on the source.
Equivalently, the Shannon rate-distortion function has the form

R(d) ∼= − 1
2

log2 d+
1
2

log2 c . (2)

(Actually, the theory shows that the ratio of the left- and right-
hand sides of (1) asymptotically approaches one as r → ∞,
and the difference between the left- and right-hand sides of
(2) asymptotically approaches zero as d → 0.) Moreover,
for most classes of lossy source codes1, including fixed-
and variable-rate scalar and vector quantization, as well as
transform coding, the operational distortion-rate function for

1The only exception known to the authors is fixed-rate uniform scalar
quantization [2].

the given source and class satisfies (1) in the same asymptotic
sense except for some other constant c that depends on the
source and the class of codes.

On the other hand, for continuous-time sources, much less
is known about distortion-rate and rate-distortion functions
with respect to squared-error distortion. For a bandlimited,
stationary, Gaussian source with a spectrum that is flat over a
band of positive frequencies of width b, in his classic paper
[3], Shannon found the rate-distortion function to be

R(d) = − b

2π
log d+

b

2π
log2 P , (3)

where P is the power of the source, which has the same form
as (2).

About the only other known rate-distortion function is the
following inverse water pouring parametric characterization
for a stationary Gaussian source, due to Kolmogorov [4] (see
also [5, p. 117]):

R(θ) ,
1

2π

∫ ∞
−∞

max
{1

2
log2

S(Ω)
θ

, 0
}
dΩ

D(θ) ,
1

2π

∫ ∞
−∞

min
{
S(Ω), θ

}
dΩ ,

where S(Ω) is the power spectral density of the source and θ
is a free parameter, 0 ≤ θ ≤ ess supΩ S(Ω). (Throughout this
paper, caligraphic font will indicate continuous-time rate and
distortion, overbars will indicate parametric rate and distortion
formulas, and we focus exclusively on stationary, Gaussian
sources and squared-error distortion.)

Berger [5, p. 138] has used the above result to show that
for a bandlimited stationary Gaussian source with nonflat
spectrum and for small values of d, the rate-distortion function
has the same form as in (2) and (3):

R(d) ∼= − a log2 d+ b ,

where a and b are known constants.
On the other hand, it is has been shown in [6], see also [5,

p. 145], that for a nonbandlimited, stationary Gauss-Markov
source with spectrum

S(Ω) =
2

Ω2 + 1
, (4)
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and for small d, the rate-distortion function has the form

R(d) ∼=
1

2 ln 2

( 8
π2d
− 1
)
, (5)

which has a very different form than (2) and (3). Thus we see
that unlike discrete-time, the continuous-time rate-distortion
function can have very different forms in the low-distortion
region.

Recent work of the authors [7]-[10] has parametrically
characterized the operational rate-distortion function for a
continuous-time, stationary, Gaussian source, squared-error
distortion, and two types of lossy coding based on high-rate
sampling and discrete-time coding of the resulting samples.

First, for ideal lossy distributed coding of the samples, using
the Berger-Tung bound [11], it was found that the following
rate-distortion performance is attainable [7], [9], [10]:

RBT (θ) ,
1

4π

∫ ∞
−∞

log
(S(Ω)

θ
+ 1
)
dΩ (6)

DBT (θ) ,
1

2π

∫ ∞
−∞

S(Ω) θ
S(Ω) + θ

dΩ (7)

for any θ ∈ [0,∞). Let RBT (d) denote the corresponding
operational rate-distortion function, which is an upper bound
to the best possible performance of distributed coding based on
high-rate sampling that we call the BT rate-distortion function.
Note that to obtain this result, it was necessary to impose
technical conditions on the tails of the source spectrum and
autocorrelation function in order that the sampled process
have autocorrelation function and power spectral density in
L2, and also to hypothesize an additional coding dimension.
In particular, in [7], [9], [10] the main coding dimension is
space and the additional dimension is time. That is, for each
sampled location in space, a separate, i.e., distributed, encoder
operates on a temporal block of samples taken at this location.
A decoder then operates on the encodings of a spatial block
of samples to decode all samples in the corresponding spatio-
temporal block. Since in the present paper there is no attention
to actual code operation, it is not necessary to consider an
additional dimension and the principal dimension is considered
to be time.

Second, for orthogonal transform coding operating on high-
rate samples, the operational rate-distortion function is found
to be characterized as follows [8]-[10]:

RT ,Q(γ) ,
1

2π

∫ ∞
−∞

R̃Q
(
ψ(γS(Ω))

)
dΩ (8)

DT ,Q(γ) ,
1

2π

∫ ∞
−∞

S(Ω)ψ
(
γS(Ω)

)
dΩ (9)

for any γ ≤ 0, where Q denotes a specific family of scalar
quantizers, e.g., uniform scalar quantizers with entropy coding,
R̃Q(d) denotes the lower convex hull of the operational rate-
distortion function, and where it is assumed that R̃Q(d)
satisfies some technical conditions, referred to as goodness,
and either R̃Q(d) is strictly convex or the power spectral
density has no flat spots in the sense that for every s > 0, the

{Ω : S(Ω) = s} is a set of measure zero. A somewhat more
involved parametric characterization applies when neither of
the last two assumptions holds, but the process is bandlimited.
Let RT ,Q(d) denote the operational rate-distortion function
for orthogonal transform coding based on high-rate sampling
and the family of quantizers Q.

Numerical evaluations using (6)-(9) for the Gauss-Markov
source with spectrum (4) suggest that both RBT (d)/R(d)
and RT ,Q(d)/R(d) approach constants larger than one as d
goes to zero. This behavior is rather different than in discrete-
time, where, as mentioned earlier, we almost always see the
difference between an operational rate-distortion function and
the Shannon rate-distortion approaching a constant, and con-
sequently their ratio approaches one. The goal of the present
paper is to analytically derive the low distortion form of the
operational distortion-rate function in the case of distributed
coding and to compare this to the low rate form of the Shannon
rate-distortion function. Results are provided for several source
spectra. In the process, we also find the low distortion form
of the centralized rate-distortion function for some spectra
that have not previously been analyzed. The case of transform
coding is left to future work.

II. LOW DISTORTION PERFORMANCE
OF DISTRIBUTED CODING

A. Bandlimited sources
Consider first a stationary Gaussian source whose spectrum

is bandlimited in the sense that S(Ω) > 0 when and only
when Ω ∈ B, where B is a closed and bounded set. Moreover,
assume that S(Ω) is a continuous function on B, so that it has
a nonzero minimum value. Then from (6),

RBT (θ) =
1

4π

∫
B

log
(S(Ω)

θ
+ 1
)
dΩ

=
1

4π

∫
B

log
S(Ω)
θ

dΩ

+
1

4π

∫
B

log
(

1 +
θ

S(Ω)

)
dΩ

= R(θ) +O(θ) ,

where O(θ) denotes a quantity that remains within a bounded
factor of θ as θ → 0. It follows that

RBT (θ)−R(θ) → 0 as θ → 0 . (10)

Similarly, from (7),

DBT (θ) =
1

2π

∫
B

θ S(Ω)
S(Ω) + θ

dΩ

=
1

2π

∫
B

θ dΩ − 1
2π

∫
B

θ2

S(Ω) + θ
dΩ

= D(θ)− o(θ) ,

where o(θ) denotes a quantity whose ratio to θ goes to zero
as θ goes to zero. It follows that

DBT (θ)−D(θ)
θ

→ 0 as θ → 0 . (11)
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Using (10) and (11), one can then show that

RBT (d)−R(d) → 0 as d→ 0 .

That is, at asymptotically low distortions there is no loss in
distributed coding relative to centralized coding. Considering
distortion-rate functions instead of rate-distortion functions,
one can also show

DBT (r)
D(r)

→ 1 as r →∞ .

The essentially optimal behavior of distributed coding at
low distortions for bandlimited sources can be explained as
follows. The forward test channel that achieves the Berger-
Tung distributed coding operational rate-distortion function
has the following structure:

X̂(Ω) = c(Ω)
(
X(Ω) +Q(Ω)

)
,

where X(Ω) is the fourier transform of the source sample
function x(t), Q(Ω) is the Fourier transform of the forward
quantization noise, and c(Ω) is a minimum mean squared
error estimation coefficient. Due to the constraint of distributed
compression, the quantization noise at different sources are
independent, making Q(Ω) constant (white). In contrast, in the
centralized coding case, Q(·) can be chosen to be anything. In
other words, the only performance loss of distributed coding as
compared to centralized coding is due to its inability to color
the forward quantization noise in the ideal way. In particular,
in the centralized case the spectrum of the quantization noise
should be chosen so that the spectrum of the minimum mean
squared error (MMSE) is as flat as possible (i.e., inverse-water
pouring). When distortion is small, the water level is indeed
exactly flat. The value of the spectrum of MMSE at frequency
Ω is given by

S(Ω)SQ(Ω)
S(Ω) + SQ(Ω)

.

In the distributed case, SQ(·) is constrained to be flat, whereas
in the centralized case, SQ(·) is chosen to make S(Ω)SQ(Ω)

S(Ω)+SQ(Ω)

flat. When the distortion is close to 0, the difference between
the two spectra is small, as

S(Ω)SQ(Ω)
S(Ω) + SQ(Ω)

≈ SQ(Ω) .

Therefore, distributed coding loses little or nothing in com-
parison to centralized coding when distortion is small.

B. Exponential spectrum

Consider next a stationary Gaussian source with the expo-
nential spectrum

S(Ω) = e−|Ω| ,

which although not bandlimited has a very light tail. For this
source, the parametric form of the rate-distortion function can

be computed to be2

R(θ) =
(ln θ)2

4π ln 2
,

D(θ) = − θ

π
ln θ +

θ

π
,

which can be used to find the distortion-rate function

D(r) =
1
π
e−
√

4πR ln 2
(
1 +
√

4πR ln 2
)
.

The rate-distortion function R(d), i.e., the inverse of the
above, can be expressed in terms of a secondary branch of
the Lambert W function. Although the latter does not have a
closed form expression, there is a useful expansion [12] with
which it can be shown that

R(d) =
1

4π ln 2

(
ln

e

dπ
+ ln ln

e

dπ
− 1 + o(1)

)2

=
1

4π ln 2

(
ln2 e

dπ

)
(1 + o(1)) ,

where o(1) denotes a quantity that goes to zero as d goes to
zero.

One can also compute the parametric form of the BT rate-
distortion function:

RBT (θ) =
(ln θ)2

4π ln 2
+

π

12 ln 2
− θ

2π ln 2
+ o(θ)

= R(θ) +
π

12 ln 2
− θ

2π ln 2
+ o(θ) , (12)

DBT (θ) =
θ

π
ln θ +

θ

π
ln(1 + θ)

= D(θ)− θ

π

(
1− ln(1 + θ)

)
= D(θ)− θ

π
+ o(θ) . (13)

One can then use the above to relate the BT and Shannon
rate-distortion functions. Specifically, one can show

lim sup
d→0

(
RBT (d)−R(d)

)
≤ π

12 ln 2
= 0.378 , (14)

and
lim
r→∞

DBT (r)
D(r)

= 1 . (15)

Notice that although (15) is not sufficient to imply that the
lim sup in (14) is zero, it might well be so, because the
excess rate evidenced in (12) is mitigated to some extent by
the decreased distortion in (13). In any case, we see that for a
Gaussian source with an exponential density, at low distortions
distributed coding loses little if anything to centralized coding.

C. Gauss-Markov source

For a Gauss-Markov source with spectrum given in (4) and
rate-distortion function given in (5) the BT distributed rate-
distortion function was found in [7], [9], [10] to be

RBT (d) =
1

2 ln 2

(1
d
− 1
)
,

2The derivations here and for subsequent results are omitted.
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which differs from the low distortion approximation to R(d)
in (5) only in that the factor one multiplying 1/d is larger
than the factor 8/π2 = 0.81. In other words, distributed coding
requires approximately 19% more rate than centralized coding.
This is a significantly larger difference than for a bandlimited
or exponential spectra.

D. Spectrum with power law tail

Suppose now that the spectrum S(Ω) of a stationary Gaus-
sian source is monotonically decreasing for all sufficiently
large Ω and has a power law tail in the sense that

S(Ω) Ωu , C(Ω) → C as Ω→∞

for some u > 1 and C > 0. Equivalently,

S(Ω) = C(Ω) Ω−u = C Ω−u(1 + o(1)) .

where o(1)→ 0 as Ω→∞.
The parametric form of the rate-distortion function can be

shown to be

R(θ) =
uC1/u

2π ln 2
1

θ1/u
+ o

( 1
θ1/u

)

D(θ) =
C1/u

π

u

u− 1
θ

u−1
u

(1 + o(1)) .

Using these, the rate-distortion function can be shown to be

R(d) =
1

2 ln 2
1

π
u

u−1
u

u
u−1 (u− 1)−

1
u−1 C

1
u−1

1

d
1

u−1

+ o
( 1

d
1

u−1

)
,

which gives rate to within a small percentage, but not to within
a small additive constant.

For u = 2 and C = 2, and the above reduce to

R(θ) =
√

2
π ln 2

1√
θ

+ o
( 1√

θ

)

D(θ) =
2
√

2
π

√
θ + o(

√
θ)

and

R(d) =
4

π2 ln 2
1
d

+ o
(1
d

)
,

which match the corresponding formulas for the Gauss-
Markov source.

To learn the small distortion behavior of the BT rate-
disortion function for distributed coding, we first consider the
asymptotic ratio of RBT (θ) to R(θ) in the limit of small θ
by considering the ratio of RBT (θ) to θ−

1
u and show

RBT (θ)
θ−

1
u

→ 1
2π ln 2

C
1
u

∫ ∞
0

ln
(

1
xu

+ 1
)
dx

Therefore,

RBT (θ) = θ−
1
u

1
2π ln 2

C
1
u

∫ ∞
0

ln
(

1
xu

+ 1
)
dx (1 + o(1)) .

As in the case of rate, we consider the asymptotic ratio of
DBT (θ) to D(θ) in the limit of small θ by considering the
ratio of DBT (θ) to θ1− 1

u . The result is

DBT (θ)
θ1− 1

u

→ 1
π
C

1
u

∫ ∞
0

1
1 + xu

dΩ . (16)

Therefore,

DBT (θ) = θ
u−1

u
1
π
C

1
u

∫ ∞
0

1
1 + xu

dx (1 + o(1)) .

From the parametric expressions, one may show

RBT (d) =
1

2π ln 2

(CA(u)
π

) 1
u−1

B(u)
1

d
1

u−1
+ o

( 1

d
1

u−1

)
,

where

A(u) =
∫ ∞

0

1
1 + xu

dx and B(u) =
∫ ∞

0

ln
( 1
xu

+1
)
dx .

For u = 2 and C = 2, these become

RBT (θ) =
1√

2θ ln 2
+ o

( 1√
θ

)
DBT (θ) =

1√
2

√
θ + o

(√
θ
)

and

R̃BT (d) =
1

2 ln 2
1
d

+ o
(1
d

)
,

which match the corresponding results for the Gauss-Markov
source.

For small d, we see that

RBT (d)
R(d)

→ B(u)
(

(u− 1)A(u)
uu

) 1
u−1

as d→ 0 .

For u = 2, the limiting ratio equals π2

8 , which again matches
the result for Gauss-Markov. Moreover, it can be shown that
as u decreases to one, the limiting expression on the right side
of the above goes to infinity. Thus, as u→ 1, the asymptotic
low-distortion ratio of the BT rate-distortion function to the
Shannon rate-distortion function becomes arbitrarily large.

III. DISCUSSION AND CONCLUSIONS

It was already understood that the low distortion behavior of
the rate-distortion function relates to the tail of the spectrum,
with a light-tailed spectrum, such as bandlimited or exponen-
tial, having rate-distortion function that approaches infinity
more slowly than for a heavy-tailed spectrum such as that of
the Gauss-Markov source. Thus, the latter is easier to encode.
The results of this paper indicate that, in addition, the lighter
the tail, the less distributed coding loses to centralized coding
at low distortion. In particular, for a bandlimited spectrum with
no tail, there is no loss, and for an exponentially decaying tail,
which is very light, there is asymptotically no loss. On the
other hand, for a power law tail, the asymptotic low-distortion
ratio of RBT (d) to R(d) approaches a constant greater than
one, which grows without bound as the power approaches 1.
Although the RBT (d) is known only to be an upper bound to
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the operational rate-distortion function for distributed coding
of high-rate samples, it is our belief that it gives a good
indication of the latter. Interestingly, the results of this paper
indicate that only the tail of the spectrum affects the limiting
ratio. That is, it is not affected by the low frequency part
of the spectrum. Finally, we mention that the low distortion
form of the centralized rate-distortion function was found for
sources whose spectra is exponential or has a power law tail.
To our knowledge, these have not previously appeared in the
literature.

Some interesting questions remain. For example, it would
be nice to know the precise dividing line between spectra
such that the limiting ratio of RBT (d) to the Shannon rate-
distortion function is one and spectra whose limiting ratio is
greater than one. Also, it would be nice to know if there are
spectra whose tails are so heavy that the limiting ratio grows
without bound as distortion decreases.

ACKNOWLEDGMENT

This work was supported by NSF grants CCF-0915619,
CCF-1116021, and CCF-0830438.

REFERENCES

[1] R.M. Gray and D.L. Neuhoff, “Quantization,” IEEE Trans. Inform. Thy.,
vol. IT-44, pp. 2325–2383, Oct. 1998.

[2] D. Hui and D.L. Neuhoff, “Asymptotic analysis of ptimal fixed-Rate uni-
form scalar quantization,” IEEE Trans. Inform. Thy., vol. IT-47, pp. 957–
977, Mar. 2001.

[3] C.E. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, pp. 379–423, 623–656, 1948.

[4] N. Kolmogorov, “On the Shannon theory of information transmission in
the case of continuous signals,” IEEE Trans. Inform. Thy., vol. 2, pp. 102–
108, 1956.

[5] T. Berger, Rate distortion theory: A mathematical basis for data com-
pression. Englewood Cliffs: Prentice Hall, 1971.

[6] T.J. Goblick, “Theoretical limitations on the transmission of data
from analog source,” IEEE Trans. Inform. Thy., vol. IT-11, pp. 558–567,
Oct. 1965.

[7] D.L. Neuhoff and S.S. Pradhan, “An upper bound to the rate of ideal dis-
tributed source coding of densely sampled data,” Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Proc. (ICASSP), 2006.

[8] S.S. Pradhan and D.L. Neuhoff, “Transform coding of densely sam-
pled Gaussian data,” Proc. IEEE Int. Symp. Inform. Thy., Nice, France,
pp. 1111–1114, June 2007.

[9] D.L. Neuhoff and S.S. Pradhan, “Information rates of densely sam-
pled Gaussian data,” Proc. IEEE Intl Symp. Inform. Thy., pp. 2877–2881,
St. Petersberg, Russia, Aug. 2011.

[10] D.L. Neuhoff and S.S. Pradhan, “Information rates of densely sampled
Gaussian data: distributed vector quantization and scalar quantization
with transforms,” submitted to IEEE Trans. Inform. Thy., Dec. 2011.

[11] T. Berger, “Multiterminal Source Coding,” Information Theory Ap-
proach to Communication, (CISM Courses and Lecture Notes No. 229),
G. Longo, Ed., Wien and New York: Springer-Verlag, 1977.

[12] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth,
“On the Lambert W function,” Advances in Computational Mathematics
vol. 5, no. 1, pp. 329–359, 1996.

367


