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Abstract—The problem of computing sum of sources over a
multiple access channel (MAC) is considered. Building on the
technique of linear computation coding (LCC) proposed by Nazer
and Gastpar [1], we employ the ensemble of nested coset codes
to derive a new set of sufficient conditions for computing sum
of sources over an arbitrary MAC. The optimality of nested
coset codes [2] enables this technique outperform LCC even for
linear MAC with a structural match. Examples of non-additive
MAC for which the technique proposed herein outperforms
separation and systematic based computation are also presented.
Finally, this technique is enhanced by incorporating separation
based strategy, leading to a new set of sufficient conditions for
computing sum over a MAC.

I. INTRODUCTION

Consider a scenario wherein a centralized receiver is in-
terested in evaluating a multi-variate function, the arguments
of which are available to spatially distributed transmitters.
Traditionally, the technique of computing functions at a cen-
tralized receiver is based on it’s decoding of the arguments
in it’s entirety. Solutions based on this technique have been
proven optimal for particular instances of distributed source
coding. Moreover, this technique lends itself naturally for
communication based on separation. Buoyed by this partial
success and ease of implementation, the de facto framework
for computing at a centralized receiver is by enabling the
decoder decode the arguments of the function in it’s entirety.

The problem of computing mod-2 sum of distributed binary
sources has proved to be an exception. Studied in the context
of a source coding problem, Körner and Marton [3] propose
an ingenious technique based on linear codes, that circumvent
the need to communicate sources to the decoder, and thereby
perform strictly better for a class of source distributions. In
fact, as proposed in [3], the decoder needs only sum of
message indices put out by the source encoder. This fact has
been further exploited by Nazer and Gastpar [1] in developing
a channel coding technique for a linear MAC, henceforth
referred to as linear computation coding (LCC), that enables
the decoder reconstruct the sum of the message indices input
to the channel encoder. Since the decoder does not need to
disambiguate individual message indices, this technique, when
applicable, outperforms earlier known techniques.

LCC [1] is built around employing the same linear code
as a channel code at both encoders. The message indices
output by the Körner-Marton (KM) source code is linearly

mapped into channel codewords. Since a linear MAC first
computes a sum of the transmitted codewords, it is as if the
codeword corresponding to the sum of messages was input to
the ensuing channel. The first question that comes to mind is
the following. If the MAC is not linear, would it be possible
to decode sum of message indices without having to decode
the individual codewords? In other words, what would be the
generalization of LCC for an arbitrary MAC?1 If there exist
such a generalization, how efficient would it be?

In this article, we answer the above question in the af-
firmative. Firstly, we recognize that in order to decode the
sum of transmitted codewords, it is most efficient to employ
channel codes that are closed under addition, of which a
linear code employed in LCC is the simplest example. Closure
under addition contains the range of the sum of transmitted
codewords and thereby support a larger range for individual
messages. Secondly, typical set decoding circumvents need
for the MAC to be linear. Since nested coset codes have
been proven to achieve capacity of arbitrary point-to-point
channels [2] and are closed under addition, we employ this
ensemble for generalizing the technique of LCC. As illustrated
by examples 1,2 in section III, the generalization we propose
(i) outperforms separation based technique for an arbitrary
MAC and moreover (ii) outperforms LCC even for examples
with a structural match.2 We remark that analysis of typical set
decoding of a function of transmitted codewords with nested
coset codes that contain statistically dependent codewords
contains new elements detailed in [4].

Even in the case of a structural match, separation based
schemes might outperform LCC [1, Example 4]. This raises
the following question. What then would be a unified scheme
for computing over an arbitrary MAC? Is there such a scheme
that reduces to (i) separation when the desired function and
MAC are not matched and (ii) LCC when appropriately
matched? We recognize that KM technique is indeed subopti-
mal for a class of source distributions. For such sources, it is
more efficient to communicate sources as is. We therefore take
the approach of Ahlswede and Han [5, Section VI], where in a

1The technique of systematic computation coding (SCC) [1] may not be
considered as a generalization of LCC. Indeed SCC does not reduce to LCC
for a linear MAC.

2This is expected since linear codes achieve only symmetric capacity and
nested coset codes can achieve capacity of arbitrary point-to-point channels.



two layer source code accomplishes distributed compression.
The first layer generates message indices of those parts that
are best reconstructed as is, and the second employs a KM
technique. In section IV, we propose a two layer channel code
for MAC that is compatible with the above two layer source
code. The first layer of the MAC channel code communicates
the message indices as is, while the second enables the decoder
decode the sum of second layer message indices, and thereby
develop a unifying strategy that subsumes separation and LCC.

We highlight the significance of our contribution. Firstly,
we propose a strategy based on nested coset codes and derive
a set of sufficient conditions for the problem of computing
sum of sources over an arbitrary MAC. The proposed strategy
subsumes all current known strategies and performs strictly
better for certain examples (section III). Secondly, our findings
highlight the utility of nested coset codes [2] as a generic
ensemble of structured codes for communicating over arbitrary
multi-terminal communication problems. Thirdly, and perhaps
more importantly, our findings hint at a general theory of
structured codes. Linear and nested linear codes have been
employed to derive communication strategies for particular
symmetric additive source and channel coding problems that
outperform all classical unstructured-code based techniques.
However the question remains whether these structured code
based techniques can be generalized to arbitrary multi-terminal
communication problems. Our findings indicate that strategies
based on structured codes can be employed to analyze more
intelligent encoding and decoding techniques for an arbitrary
multi-terminal communication problem.

II. PRELIMINARIES AND PROBLEM STATEMENT

Following remarks on notation (II-A) and problem statement
(II-B), we briefly describe LCC for a linear MAC (II-C) and
set the stage for it’s generalization.

A. Notation

We employ notation that is now widely adopted in the
information theory literature supplemented by the following.
We let Fq denote a finite field of cardinality q. When the
finite field is clear from context, we let ⊕ denote addition in
the same. When ambiguous, or to enhance clarity, we specify
addition in Fq using ⊕q . In this article, we repeatedly refer to
pairs of objects of similar type. To reduce clutter in notation,
we use an underline to refer to aggregates of similar type. For
example, (i) S abbreviates (S1, S2), (ii) if X1,X2 are finite
alphabet sets, we let X either denote the Cartesian product
X1 × X2 or abbreviate the pair X1,X2 of sets. More non
trivially, if ej : Sn → Xn

j : j = 1, 2 are a pair of maps,
we let e(sn) abbreviate (e1(sn1 ), e2(sn2 )).

B. Problem statement

Consider a pair (S1, S2) of information sources each taking
values over a finite field S of cardinality q. We assume out-
come (S1,t, S2,t) of the sources at time t ∈ N, is independent
and identically distributed across time, with distribution WS .
We let (S,WS) denote this pair of sources. Sj is observed

by encoder j that has access to input j of a two user discrete
memoryless multiple access channel (MAC) that is used with-
out feedback. Let X1, X2 be the finite input alphabet sets and Y
the finite output alphabet set of MAC. Let WY |X1X2

(y|x1, x2)
denote MAC transition probabilities. We refer to this as MAC
(X ,Y,WY |X). The objective of the decoder is to compute
S1 ⊕ S2. In this article, we provide a characterization of a
sufficient condition for computing S1⊕S2 with arbitrary small
probability of error. The relevant notions are made precise in
the following definitions.

Definition 1: A computation code (n, e, d) for computing
sum of sources (S,WS) over the MAC (X ,Y,WY |X) consists
of (i) two encoder maps ej : Sn → Xn

j : j = 1, 2 and (ii) a
decoder map d : Yn → Sn.

Definition 2: The average error probability ξ̄(e, d) of a
computation code (n, e, d) is∑

s∈Sn

∑
yn:d(yn)6=
sn1⊕s

n
2

WY n|Xn(yn|e(sn))WSn(sn).

Definition 3: The sum of sources (S,WS) is computable
over MAC (X ,Y,WY |X) if for all η > 0, there exists an
N(η) ∈ N such that for all n > N(η), there exists an
(n, e(n), d(n)) computation code such that ξ̄(e(n), d(n)) ≤ η.

The main objective in this article is to provide a sufficient
condition for computability of sum of sources over a MAC.

C. Linear Computation Coding

We describe the technique of LCC in a simple setting and
highlight the key aspects. Consider binary sources and a binary
additive MAC, i.e., S = X1 = X2 = {0, 1} and Y = X1 ⊕
X2 ⊕ N , where N is independent of the inputs and P (N =
1) = q. Furthermore assume sources are symmetric, uniform,
i.e., P (S = (0, 0)) = 1−p

2 = P (S = (1, 1)) and P (S =
(0, 1)) = P (S = (1, 0)) = p

2 such that hb(p) < 1− hb(q).
By employing a KM source code, the two message indices at

rate hb(p) can be employed to decode S1⊕S2. Let h ∈ Sk×n
denote a parity check matrix for the KM source code, with
k
n arbitrarily close to hb(p). Nazer and Gastpar observe that
the decoder only requires the sum h(Sn

1 ⊕ Sn
2 ) = h(Sn

1 ) ⊕
h(Sn

2 ) of message indices. If the map from message indices
to channel code is linear, then the decoder can infer h(Sn

1 )⊕
h(Sn

2 ) by decoding the codeword corresponding to sum of
transmitted codewords. Since sum of transmitted codewords
passes through a BSC(q), they employ a capacity achieving
linear code of rate arbitrarily close to 1−hb(q) with generator
matrix g ∈ X l×n

1 . Each encoder employs the same linear code
and transmits xnj : = h(Sn

j )g. The decoder receives Y n and
decodes as if the channel is a BSC(q). It ends up decoding
message corresponding to xn1 ⊕ xn2 which was precisely what
it was looking for.

We note that a separation based scheme will require the sum
capacity of the MAC to be greater than 2hb(p) and hence LCC
is more efficient. What are key aspects of LCC? Note that (i)
the channel code is designed for the X1 ⊕X2 to Y channel,
i.e., the BSC(q) and (ii) both encoders employ the same



linear channel code, thereby ensuring their codes are closed
under addition. This contains range of the sum of transmitted
codewords to a rate 1− hb(q). It is instructive to analyze the
case when the two users are provided two linear codes of rates
R1 and R2 spanning disjoint subspaces. Since the range of sum
of transmitted codewords is R1 +R2, the same decoding rule
will impose the constraint R1+R2 < 1−hb(q) resulting in the
constraint 2hb(p) ≤ 1−hb(q) which is strictly suboptimal. We
conclude that the two users’ channel codes being closed under
addition is crucial to the optimality of LCC for this problem.
Furthermore, the coupling of (i) a linear map of KM message
indices to the channel code at the encoder and (ii) decoding
of the sum of transmitted codewords, is central to LCC.

In the following section, we make use of the above observa-
tions to propose a generalization of LCC for computing sum
of sources over an arbitrary MAC.

III. NESTED COSET CODES FOR COMPUTING SUM OF
SOURCES OVER A MAC

In this section, we propose a technique for computing
S1⊕S2 over an arbitrary MAC using the ensemble of nested
coset codes [2], and derive a set of sufficient conditions
under which, sum of sources (S,WS) can be computed over
a MAC (X ,Y,WY |X). Definitions 4 and theorem 1 state
these sufficient conditions. This is followed by examples that
illustrate significance of theorem 1.

Definition 4: Let D(WY |X) be collection of distributions
pV1V2X1X2Y defined over S2 × X × Y such that (i)
pV1X1V2X2

= pV1X1
pV2X2

, (ii) pY |XV = pY |X = WY |X . For
pV XY ∈ D(WY |X), let α(pV XY ) be defined as

{R ≥ 0 : R ≤ min{H(V1), H(V2)} −H(V1 ⊕ V2|Y )} , and
α(WY |X) : = sup∪pV XY ∈D(WY |X)α(pV XY ).

Theorem 1: The sum of sources (S,WS)is computable over
a MAC (X ,Y,WY |X) if H(S1 ⊕ S2) ≤ α(WY |X).
In the interest of brevity, we briefly discuss the coding strategy
and indicate how we attain the rates promised above. The
reader is referred to [4] for a complete proof of theorem 1.

We begin with a description of the encoding rule. Encoder
j employs a KM source code to compress the observed
source. Let M l

j : = hSn
j denote corresponding message

index, where h ∈ Sl×n is a KM parity check matrix of
rate l

n ≈ H(S1 ⊕ S2). Each encoder is provided with a
common nested linear code taking values over S. The nested
linear code is described through a pair of generator matrices

gI ∈ Sk×n and gO/I ∈ Sl×n, where gI and
[
gTI gTO/I

]T
are

the generator matrices of the inner (sparser) code and complete
(finer) codes respectively, where

k

n

(a)

≥ 1−
min

{
H(V1),
H(V2)

}
log |S|

,
k + l

n

(b)

≤ 1− H(V1 ⊕ V2)

log |S|
. (1)

Encoder j picks a codeword in coset(
akgI ⊕M l

jgO/I : ak ∈ Sk
)

indexed by M l
j that is typical

with respect to pVj
. Based on this chosen codeword Xn is

generated according to pXj |Vj
and transmitted.

The decoder is provided with the same nested linear
code. Having received Y n it lists all codewords that are
jointly typical with Y n with respect to distribution pV1⊕V2,Y .
If it finds all such codewords in a unique coset, say(
akgI ⊕mlgO/I : ak ∈ Sk

)
, then it declares ml to be the sum

of KM message indices and employs KM decoder to decode
the sum of sources. Otherwise, it declares an error.

We derive an upper bound on probability of error by aver-
aging the error probability over the ensemble of nested linear
codes. For the purpose of proof, we consider user codebooks to
be cosets of nested linear codes.3 We average uniformly over
the entire ensemble of nested coset codes. Lower bound (1(a))
ensures the encoders find a typical codeword in the particular
coset. Upper bound (1(b)) enables us derive an upper bound on
the probability of decoding error. From (1), it can be verified
that if H(S1 ⊕ S2) ≈ l

n ≤ min{H(V1), H(V2)} − H(V1 ⊕
V2|Y ) then the decoder can reconstruct the sum of sources
with arbitrarily small probability of error.

How does nesting of linear codes enable attain non-uniform
distributions?4 As against to a linear code, nesting of lin-
ear codes provides the encoder with a coset to choose the
codeword from. The vectors in the coset being uniformly
distributed, it contains at least one vector typical with respect
to pVj

with high probability, if the coset is of rate at least
1− H(Vj)

log |S| . By choosing such a vector, the encoder induces a
non-uniform distribution on the input space. Therefore, con-
straint (1(a)) enables achieve non-uniform input distributions.

Since the codebooks employed by the encoders are uni-
formly and independently distributed cosets of a common
random linear code, the sum of transmitted codewords also
lies in a codebook that is a uniformly distributed coset of
the same linear code. Any vector in this codebook is uni-
formly distributed over it’s entire range. Therefore, a vector
in this codebook other than the legitimate sum of transmitted
codewords is jointly typical with the received vector with
probability at most |S|n(H(V1⊕V2|Y )−1).5 Employing a union
bound, it can be argued that the probability of decoding error
decays exponentially if (1(b)) holds.

Since the ensemble of codebooks contain statistically de-
pendent codewords and moreover user codebooks are closely
related, deriving an upper bound on the probability of error
involves new elements. The informed reader will recognize
that in particular, deriving an upper bound on the probability
of decoding error will involve proving statistical independence
of the pair of cosets indexed by KM indices (M l

1,M
l
2) and

any codeword in a coset corresponding to m̂l 6= M l
1 ⊕M l

2.
The statistical dependence of the codebooks results in new
elements to the proof. The reader is encouraged to peruse
details in [4, Proof of Theorem1].

It can be verified that the rate region presented in theo-
rem 1 subsumes that presented in [1, Theorem1, Corollary

3This is analogous to the use of cosets of a linear code to prove achievability
of symmetric capacity over point-to-point channels.

4Note that linear codes only achieve mutual information with respect to
uniform input distributions.

5Here, the logarithm is taken with respect to base |S|.



2]. This follows by substituting a uniform distribution for
V1, V2. Therefore examples presented in [1] carry over as
examples of rates achievable using nested coset codes. One
might visualize a generalization of LCC for arbitrary MAC
through the modulo-lattice transformation (MLT) [6, Section
IV]. Since the map for KM source code message indices to the
channel code has to be linear, the virtual input alphabets of the
transformed channel are restricted to be source alphabets as in
definition 4. It can now be verified that any virtual channel,
specified through maps from (i) virtual to actual inputs, (ii)
output to the estimate of the linear combination, identifies a
corresponding test channel in D(WY |X). Hence, the technique
proposed herein subsumes MLT. Moreover, while MLT is
restricted to employing uniform distributions over the auxiliary
inputs, nested coset codes can induce arbitrary distributions.

We now present a sample of examples to illustrate signifi-
cance of theorem 1. The reader is referred to [4] for additional
examples that illustrate utility of the coding technique pro-
posed herein. As was noted in [1, Example 4] a uniform dis-
tribution induced by a linear code maybe suboptimal even for
computing functions over a MAC with a structural match. The
following example, closely related to the former, demonstrates
the ability of nested coset codes to achieve a nonuniform
distribution and thus exploit the structural match better.

Example 1: Let S1 and S2 be a pair of independent and
uniformly distributed sources taking values over the field
F5 of five elements. The decoder wishes to reconstruct
S1 ⊕5 S2. The two user MAC channel input alphabets X1 =
X2 = F5 and output alphabet Y = {0, 2, 4}. The output
Y is obtained by passing W = X1 ⊕5 X2 through an
asymmetric channel whose transition probabilities are given
by pY |W (y|1) = pY |W (y|3) = 1

3 for each y ∈ Y and
pY |W (0|0) = pY |W (2|2) = pY |W (4|4) = 1. Let the number of
source digits output per channel use be λ. We wish to compute
the range of values of λ for which the decoder can reconstruct
the sum of sources. This is termed as computation rate in [1].

It can be verified that the decoder can reconstruct S1⊕5 S2

using the technique of LCC if λ ≤ 3
5
log2(3)
log2 5 = 0.4096. A

separation based scheme enables the decoder reconstruct the
sum if λ ≤ 1

2
log2(3)
log2(5)

= 0.3413. We now explore the use of
nested coset codes. It maybe verified that pmf

pV XY (v, x, x1 ⊕5 x2) =

{
1
4

if v1=x1,v2=x2

and v1,v2∈{0,2}
0 otherwise .

(2)

defined on F5×F5 satisfies (i),(ii) of definition 4 and moreover
α(pV XY ) = {R ≥ 0 : R ≤ 1}.Thus nested coset codes enable
reconstructing S1⊕5S2 at the decoder if λ ≤ 1

log2 5 = .43067.
The above example illustrates the need for nesting codes in
order to achieve nonuniform distributions. However, for the
above example, a suitable modification of LCC is optimal.
Instead of building codes over F5, let each user employ the
linear code of rate 16 built on F2. The map F2 → Xj : j = 1, 2
defined as 0→ 0 and 1→ 2 induces a code over F5 and it can

6This would be the set of all binary n−length vectors

be verified that LCC achieves the rate achievable using nested
coset codes. However, the following example precludes such
a modification of LCC.

Example 2: The source is assumed to be the same as in
example 1. The two user MAC input and output alphabets
are also assumed the same, i.e., X1 = X2 = F5 and output
alphabet Y = {0, 2, 4}. The output Y is obtained by passing
W = X1 ⊕5 X2 through an asymmetric channel whose tran-
sition probabilities are given by pY |W (y|1) = pY |W (y|3) = 1

3
for each y ∈ Y and pY |W (0|0) = pY |W (2|2) = pY |W (4|4) =
0.90, pY |W (2|0) = pY |W (4|0) = pY |W (0|2) = pY |W (4|2) =
pY |W (0|4) = pY |W (2|4) = 0.05.

The technique of LCC builds a linear code over F5. It
can be verified that the symmetric capacity for the X1 ⊕5

X2(= W )− Y channel is 0.6096 and therefore LCC enables
decoder reconstruct the sum if λ ≤ 0.6096

log2 5 = 0.2625. A
separation based scheme necessitates communicating each of
the sources to the decoder and this can be done only if
λ ≤ 1

2
log2 3
log2 5 = 0.3413. The achievable rate region of the test

channel in (2) is α(pV XY ) = {R ≥ 0 : R ≤ 0.91168} and
therefore nested coset codes enable decoder reconstruct the
sum if λ ≤ 0.91168

log2 5 = 0.3926.
Example 3: Let S1 and S2 be independent sources dis-

tributed uniformly over {0, 1, 2}. The input alphabets X1 =
X2 = F3 is the ternary field and the output alphabet Y = F2 is
the binary field. Let W = 1{X1 6=X2} and output Y is obtained
by passing W through a BSC with crossover probability 0.1.
The decoder is interested in reconstructing W . As noted in
[1, Example 8], W is 0 if an only if S1 ⊕3 2S2 = 0.
Therefore, it suffices for the decoder to reconstruct S1⊕3 2S2.
Following the arguments in proof of theorem 1 it can be
proved that S1⊕3 2S2 can be reconstructed using nested coset
codes if there exists a pmf pV XY ∈ D(WY |X) such that
H(S1 ⊕3 2S2) ≤ min{H(V1), H(V2)} −H(V1 ⊕3 2V2|Y ). It
can be verified that for pmf pV XY wherein V1, V2 are indepen-
dently and uniformly distributed over F3, X1 = V1, X2 = V2,
the achievable rate region is α(pV XY ) = {R : R ≤ 0.4790}.
The computation rate achievable using SCC and separation
technique are 0.194 and 0.168 respectively. The computation
rate achievable using nested coset codes is 0.4790

log2 3 = 0.3022.
Example 4: Let S1 and S2 be independent and uniformly

distributed binary sources and the decoder is interested in
reconstructing the binary sum. The MAC is binary, i.e. X1 =
X2 = Y = F2 with transition probabilities P (Y = 0|X1 =
x1, X2 = x2) = 0.1 if x1 6= x2, P (Y = 0|X1 = X2 =
0) = 0.8 and P (Y = 0|X1 = X2 = 1) = 0.9. It can be easily
verified that the channel is not linear, i.e., X−X1⊕X2−Y is
NOT a Markov chain. This restricts current known techniques
to either separation based coding or SCC [1, Section V]. SCC
yields a computation rate of 0.3291. The achievable rate region
for the test channel pV XY where in V1 and V2 are independent
and uniformly distributed binary sources, X1 = V1, X2 = V2
is given by {R : R ≤ 0.4648}.
We conclude by recognizing that example 4 is indeed a family
of examples. As long as the MAC is close to additive we can
expect nested coset codes to outperform separation and SCC.



IV. GENERAL TECHNIQUE FOR COMPUTING SUM OF
SOURCES OVER A MAC

In this section, we propose a general technique for comput-
ing sum of sources over a MAC that subsumes separation and
computation. The architecture of the code we propose is built
on the principle that techniques based on structured coding
are not in lieu of their counterparts based on unstructured
coding. Indeed, the KM technique is outperformed by the
Berger-Tung [7] strategy for a class of source distributions.
A general strategy must therefore incorporate both.

We take the approach of Ahlswede and Han [5, Section VI],
where in a two layer source code is proposed. Each source
encoder j generates two message indices Mj1,Mj2. Mj1 is
an index to a Berger-Tung source code and Mj2 is an index
to a KM source code. The source decoder therefore needs
M11,M21 and M12 ⊕ M22 to reconstruct the quantizations
and thus the sum of sources. We propose a two layer MAC
channel code that is compatible with the above source code.
The first layer of this code is a standard MAC channel code
based on unstructured codes. The messages input to this
layer are communicated as is to the decoder. The second
layer employs nested coset codes and is identical to the one
proposed in theorem 1. A function of the codewords selected
from each layer is input to the channel. The decoder decodes
a triple - the pair of codewords selected from the first layer
and a sum of codewords selected from the second layer -
and thus reconstructs the required messages. The following
characterization specifies rates of layers 1 and 2 separately
and therefore differs slightly from [5, Theorem 10].

Definition 5: Let DAH(WS) be collection of distributions
pT1T2S1S2 defined over T1 × T2 × S2 such that (a) T1, T2 are
finite sets, (b) pS1S2

= WS , (c) T1−S1−S2−T2 is a Markov
chain. For pTS ∈ DAH(WS), let

βS(pTS) : =

 (R11, R12, R2) ∈ R3 : R11 ≥ I(T1;S1|T2),
R12 ≥ I(T2;S2|T1), R2 ≥ H(S1 ⊕ S2|T ),
R11 +R12 ≥ I(T ;S)

 .

Let βS(WS) denote convex closure of the union βS(pTS) over
pTS ∈ DAH(WS)
We now characterize achievable rate region for communicating
these indices over a MAC. We begin with a definition of test
channels and the corresponding rate region.

Definition 6: Let DG be collection of distributions
pU1U2V1V2X1X2Y defined on U1×U2×S ×S ×X1×X2×Y
such that (i) pUVX = pU1V1X1

pU2V2X2
, (ii)

pY |XUV = pY |X = WY |X . For pUVXY ∈ DG, let
βC(pUVXY ) be defined as

(R11,R12,R2)∈R3:0≤R11≤I(U1;Y,U2,V1⊕V2),

0≤R12≤I(U2;Y,U1,V1⊕V2),R11+R12≤I(U ;Y,V1⊕V2)

R2≤Hmin(V |U)−H(V1⊕V2|Y,U)

R11+R2≤Hmin(V |U)+H(U1)−H(V1⊕V2,U1|Y,U2)

R12+R2≤Hmin(V |U)+H(U2)−H(V1⊕V2,U2|Y,U1)

R11+R12+R2≤Hmin(V |U)+H(U1)+H(U2)−H(V1⊕V2,U |Y )


.

where Hmin(V |U) : = min{H(V1|U1), H(V2|U2)} and
define βC(WY |X) as the convex closure of the union

βC(pUVXY ) over pUVXY ∈ DG(WY |X).
Theorem 2: The sum of sources (S,WS) is computable

over MAC (X ,Y,WY |X) if βS(WS) ∩ βC(WY |X) 6= φ.
Remark 1: It is immediate that the general strategy sub-

sumes separation and computation based techniques. Indeed,
substituting T ,U to be degenerate yields the conditions pro-
vided in theorem 1. Substituting V to be degenerate yields
separation based technique.

V. CONCLUDING REMARKS

Having decoded the sum of sources, we ask whether it
would be possible to decode an arbitrary function of the
sources using the above techniques? The answer is yes and
the technique involves ‘embedding’. Example 3 illustrates
embedding and a framework is proposed in [4]. This leads
us to the following fundamental question. The central element
of the technique presented above was to decode the sum of
transmitted codewords and use that to decode sum of KM
message indices. If the MAC is ‘far from additive’, is it
possible to decode a different bivariate function of transmitted
codewords and use that to decode the desired function of
the sources? The answer to the first question is yes. Indeed,
the elegance of joint typical encoding and decoding enables
us reconstruct other ‘well behaved’ functions of transmitted
codewords. We recognize that if codebooks take values over
a finite field and were closed under addition, it was natural
and more efficient to decode the sum. On the other hand, if
the codebooks were taking values over an algebraic object,
for example a group, and were closed with respect to group
multiplication, it would be natural and efficient to decode
the product of transmitted codewords. Since, we did not
require the MAC to be linear in order to compute the sum
of transmitted codewords, we will not require it to multiply in
order for us to decode the product of transmitted codewords.
We elaborate on this in [4].
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