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Abstract—It is shown that polar coding schemes achieve the
known achievable rate regions for several multi-terminal com-
munications problems including lossy distributed source coding,
multiple access channels and multiple descriptions coding. The
results are valid for arbitrary alphabet sizes (binary or non-
binary) and arbitrary distributions (symmetric or asymmetric).

I. INTRODUCTION

Polar codes were recently proposed by Arikan [1] to
achieve the symmetric capacity of binary input channels. This
result was later generalized to arbitrary discrete memoryless
channels [2]–[5]. Polar coding schemes were also developed
to achieve the symmetric rate-distortion function for arbitrary
discrete memoryless sources [6]–[8]. Polar coding results for
asymmetric cases are developed in [9]. Among the existing
works on the application of polar codes for multi-terminal
cases we note [6], [10]–[12] for distributed source coding,
[13], [14] for the multiple access channels and [15] for
broadcast channels.

In [16], it is shown that nested polar codes can be used to
achieve the Shannon capacity of arbitrary discrete memoryless
channels and the Shannon rate-distortion function for discrete
memoryless sources. In this paper, we show that nested polar
codes can achieve the best known achievable rate regions
for several multi-terminal communication systems. We present
several examples in this paper, including the distributed source
coding problem, multiple access channels, computation over
MAC, broadcast channels and multiple description coding to
illustrate how these codes can be employed to have an optimal
performance for multi-terminal cases. The results of this paper
are general regarding the size of alphabets (binary or non-
binary) using the approach of [4]. The special case where
the alphabets are binary is discussed in [16] for the lossy
source coding problem. In addition, the results of this paper
are general regarding the distributions i.e., we do not assume
uniform distributions on the channel inputs or the source
alphabets.

This paper is organized as follows: In Section II we state
some preliminaries. In Section III, we consider the distributed
source coding problem and show that polar codes achieve
the Berger-Tung rate region. In Section IV, we consider a
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distributed source coding problem in which the decoder is
interested in decoding the sum of auxiliary random variables
and show that polar codes have the optimal performance (this
scheme has the Korner-Marton scheme as a special case). In
Section V, we show that polar codes achieve the capacity
region for multiple access channels. In Section VI, we show
that polar codes have an optimal performance for the problem
of computation over MAC where the decoder is interested in
the sum of variables. In Section VII, we study the performance
of polar codes for broadcast channels. In Section VIII, we
show that polar codes are optimal for the multiple description
problem. Finally, in Section IX, we discuss briefly other
possible problems and extensions to multiple user (more that
two) cases.

II. PRELIMINARIES

1) Channel Parameters: For a channel (X ,Y,W ), assume
X is equipped with the structure of a group (G,+). The
symmetric capacity is defined as Ī(W ) = I(X;Y ) where the
channel input X is uniformly distributed over X and Y is the
output of the channel. For d ∈ G, we define

Zd(W ) =
1

q

∑
x∈G

∑
y∈Y

√
W (y|x)W (y|x+ d)

and for H ≤ G define ZH(W ) =
∑

d/∈H Zd(W ).
2) Binary Polar Codes: For any N = 2n, a polar code

of length N designed for the channel (Z2,Y,W ) is a linear
(coset) code characterized by a generator matrix GN and a set
of indices A ⊆ {1, · · · , N} of almost perfect channels. The
set A is a function of the channel. The decoding algorithm
for polar codes is a specific form of successive cancelation [1].

3) Polar Codes Over Abelian Groups: For any discrete
memoryless channel, there always exists an Abelian group
of the same size as that of the channel input alphabet.
Polar codes for arbitrary discrete memoryless channels (over
arbitrary Abelian groups) are introduced in [4]. For various
notations used in this paper, we refer the reader to [4] and [16].

III. DISTRIBUTED SOURCE CODING: THE BERGER-TUNG
PROBLEM

In the distributed source coding problem, two separate
sources X and Y communicates with a centralized decoder.



Let X ,Y and U ,V be the source and the reconstruction alpha-
bets of the two terminals and assume X and Y have the joint
distribution pXY . Let d1 : X×U → R+ and d2 : Y×V → R+

be the distortion measures for terminals X and Y respectively.
We denote this source by (X ,Y,U ,V, pXY , d1, d2). Let U
and V be auxiliary random variables taking values from
U and V respectively such that U ↔ X ↔ Y ↔ V ,
E{d1(X,U)} ≤ D1 and E{d2(Y, V )} ≤ D2 for some
distortion levels D1, D2 ∈ R+. It is known by the Berger-Tung
coding scheme that the tuple (R1, R2, D1, D2) is achievable
if R1 ≥ I(X;U) − I(U ;V ), R2 ≥ I(Y ;V ) − I(U ;V ) and
R1 +R2 ≥ I(X;U) + I(Y ;V )− I(U ;V ). In this section, we
prove the following theorem:

Theorem III.1. For a source (X ,Y,U ,V, pXY , d1, d2), as-
sume U and V are finite. Then the Berger-Tung rate region is
achievable using nested polar codes.

It suffices to show that the rates R1 = I(X;U)− I(U ;V )
and R2 = I(Y ;V ) achievable. Let G be an Abelian group
of the size larger than or equal to the size of both U and
V . Note that for the source Y , we can use a nested polar
codes as introduced in [16] to achieve the rate I(Y ;V ).
Furthermore, we have access to the outcome vN1 of V N

1 at the
decoder with high probability. It remains to show that the rate
R1 = I(X;U) − I(U ;V ) is achievable when the sequence
vN1 with d2(yN1 , v

N
1 ) ≤ D2 is available at the decoder.

Given the test channel pX|U , define the artificial channels
(G,G2,Wc) and (G,X × G,Ws) such that for s, z ∈ G
and x ∈ X , Wc(v, z|s) = pV U (v, z − s) and Ws(x, z|s) =
pXU (x, z−s). These channels have been depicted in Figures 1
and 2. Let S be a random variable uniformly distributed over

U

ZS

Wc

pV |U V

Fig. 1: Test channel for the
inner code (the channel coding
component)

U

ZS

Ws

pX|U X

Fig. 2: Test channel for the
outer code (the source coding
component)

G which is independent from X and U . It is straightforward to
show that in this case, Z is also uniformly distributed over G.
Similarly to the point-to-point result [16], we can show that
the symmetric capacities of the channels Wc and Ws are given
by Ī(Wc) = log q −H(U |V ) and Ī(Ws) = log q −H(U |X).
We employ a nested polar code in which the inner code is
a good channel code for the channel Wc and the outer code
is a good source code for Ws. The rate of this code is equal
to R = Ī(Ws) − Ī(Wc) = I(X;U) − I(U ;V ). The rest of
this section is devoted to some general definitions and lemmas
which are used in the proofs.

Lemma III.1. The channel Wc is stochastically degraded with
respect to the channel Ws.

Proof: In the Definition [16, Definition III.1], let the

channel (X × G,G2,W ) be such that for v, z, z′ ∈ G and
x ∈ X , W (v, z|x, z′) = pV |X(v|x)1{z=z′}.

Let N = 2n for some positive integer n and let G be the
corresponding N × N generator matrix for polar codes. For
i = 1, · · · , N , and for zN1 , a

N
1 ∈ GN , vN1 ∈ VN and xN1 ∈

XN , let

W
(i)
c,N (zn1 , v

N
1 , a

i−1
1 |ai) =

∑
aNi+1∈GN−i

1

qN−1
WN

c (zN1 , v
N
1 |aN1 G)

W
(i)
s,N (xN1 , z

n
1 , a

i−1
1 |ai) =

∑
aNi+1∈GN−i

1

qN−1
WN

s (xN1 , z
N
1 |aN1 G)

Let the random vectors XN
1 , Y

N
1 , UN

1 , V
N
1 be distributed

according to PN
XY UV and let ZN

1 be a random variable
uniformly distributed over GN which is independent of
XN

1 , Y
N
1 , UN

1 , V
N
1 . Let SN

1 = ZN
1 −UN

1 and AN
1 = SN

1 G
−1

(Here, G−1 is the inverse of the mapping G : GN → GN ).
In other words, the joint distribution of the random vectors is
given by

pAN1 SN1 UN1 V N1 XN
1 ZN1

(aN1 , s
N
1 , u

N
1 , v

N
1 , x

N
1 , z

N
1 )

=
1

qN
pNXUV (xN1 , u

N
1 , v

N
1 )1{sN1 =aN1 G,un1 =zN1 −aN1 G}

A. Sketch of the proof

The following theorems from [4] state the standard channel
coding and source coding polarization phenomenons for the
general case.

Theorem III.2. For any ε > 0 and 0 < β < 1
2 , there exist a

large N = 2n and a partition {AH |H ≤ G} of [1, N ] such
that for H ≤ G and i ∈ AH ,

∣∣∣Ī(W
(i)
c,N )− log |G||H|

∣∣∣ < ε and

ZH(W
(i)
c,N ) < 2−N

β

. Moreover, as ε → 0 (and N → ∞),
|AH |
N → pH for some probabilities pH , H ≤ G adding up to

one with
∑

H≤G pH log |G||H| = Ī(Wc).

Theorem III.3. For any ε > 0 and 0 < β < 1
2 , there exist a

large N = 2n and a partition {BH |H ≤ G} of [1, N ] such
that for H ≤ G and i ∈ BH ,

∣∣∣Ī(W
(i)
s,N )− log |G||H|

∣∣∣ < ε and

ZH(W
(i)
s,N ) < 2−N

β

. Moreover, as ε → 0 (and N → ∞),
|BH |
N → qH for some probabilities qH , H ≤ G adding up to

one with
∑

H≤G qH log |G||H| = Ī(Ws).

For H ≤ G, define

AH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
c,N ) < 2−N

β

,

@K ≤ H : ZK(W
(i)
c,N ) < 2−N

β
}

BH =
{
i ∈ [1, N ]

∣∣∣ZH(W
(i)
s,N ) < 1− 2−N

β

,

@K ≤ H : ZK(W
(i)
c,N ) < 1− 2−N

β
}

For H ≤ G and K ≤ G, define AH,K = AH ∩ BK . Note
that for large N , 2−N

β

< 1−2−N
β

. This implies for i ∈ AH ,
we have ZH(W

(i)
s,N ) < 1 − 2−N

β

and hence i ∈ ∪K≤HBK .



Therefore, for K � H , we have AH,K = ∅. This means
{AH,K |K ≤ H ≤ G} forms a partition of [1, N ]. Note that
as N increases, |AH |N → pH and |BH |N → qH .

The encoding and decoding rules are as follows: Let zN1 ∈
GN be an outcome of the random variable ZN

1 known to both
the encoder and the decoder. Given K ≤ H ≤ G, let TH be
a transversal of H in G and let TK≤H be a transversal of K
in H . Any element g of G can be represented by g = [g]K +
[g]TK≤H + [g]TH for unique [g]K ∈ K, [g]TK≤H ∈ TK≤H and
[g]TH ∈ TH . Also note that TK≤H + TH is a transversal TK
of K in G so that g can be uniquely represented by g =
[g]K + [g]TK for some [g]TK ∈ TK and [g]TK can be uniquely
represented by [g]TK = [g]TK≤H + [g]TH .

Given a source sequence xN1 ∈ XN , the encoding rule is as
follows: For i ∈ [1, N ], if i ∈ AH,K for some K ≤ H ≤ G,
[ai]K is uniformly distributed over K and is known to both
the encoder and the decoder (and is independent from other
random variables). The component [ai]TK is chosen randomly
so that for g ∈ G,

P (ai = g) =
pAi|XN

1 ZN1 Ai−1
1

(g|xN1 , zN1 , ai−11 )

pAi|XN
1 ZN1 Ai−1

1
([ai]K + TK |xN1 , zN1 , a

i−1
1 )

Note that aN1 can be decomposed as aN1 = [vN1 ]K +
[aN1 ]TK≤H +[aN1 ]TH in which [aN1 ]K is known to the decoder.
The encoder sends [aN1 ]TK≤H to the decoder and the decoder
uses the channel code to recover [aN1 ]TH . The decoding rule
is as follows: Given zN1 , vN1 , [aN1 ]K and [aN1 ]TK≤H , and for
i ∈ AH,K , let

âi = argmax
g∈[ai]K+[ai]TK≤H+TH

W
(i)
c,N (zN1 , v

N
1 , â

i−1
1 |g)

Finally, the decoder outputs zN1 − âN1 G. Note that the rate of
this code is equal to

R =
∑

K≤H≤G

|AH,K |
N

log
|H|
|K|

=
∑

K≤H≤G

|AH,K |
N

log
|G|
|K|
−

∑
K≤H≤G

|AH,K |
N

log
|G|
|H|

→ Ī(Ws)− Ī(Wc) = I(X;U)− I(U ;V )

IV. DISTRIBUTED SOURCE CODING: DECODING THE SUM
OF VARIABLES

For a distributed source (X × Y, pX,Y , d) let the random
variables U and V take values from a group G. Assume that
U and V satisfy the Markov chain U ↔ X ↔ Y ↔ V and
assume E{d(X,Y, g(U +V )) ≤ D} for some function g. For
W = U +V , we show that the following rates are achievable:

R1 = H(W )−H(U |X), R2 = H(W )−H(V |Y )

for decoding W at the decoder. The source X employs a
nested polar codes whose inner code is a good channel code
for the channel (G,G,Wc,X) and whose outer code is a good
source code for the test channel (G,X ×G,Ws,X) where for

s, t, q, z ∈ G and x ∈ X , Wc,X(q|s+t) = pW (q−s−t) and
Ws,X(x, z|s)=pXU (x, z−s). Similarly, the source Y employs
a nested polar code whose inner code is a good channel code
for the channel (G,G,Wc,Y ) and whose outer code is a good
source code for the test channel (G,Y ×G,Ws,Y ) where for
s, t, q, r ∈ G and y ∈ Y , Wc,Y (q|s+t) = pW (q−s−t) and
Ws,Y (y, r|t) = pY V (y, r−t). These channels are depicted in
Figures 3, 4, 5 and 6.

W = U + V

QS + T

Wc,X

Fig. 3: Inner code (X).

U

ZS

Ws,X

pX|U X

Fig. 4: Outer code (X).

W = U + V

QS + T

Wc,Y

Fig. 5: Inner code (Y).

V

RT

Ws,Y

pY |V Y

Fig. 6: Inner code (Y).

We need to show that Wc,X is degraded with respect to
Ws,X (and Wc,Y is degraded with respect to Ws,Y ). To show
this, in the definition of degradedness [16, Definition III.1], we
let the channel (G,X ×G,W ) be such that that for q, z ∈ G
and x ∈ X , W (q|x, z) = pV |X(q − z|x).

V. MULTIPLE ACCESS CHANNELS

Let the finite sets X and Y be the input alphabets of a two-
user MAC and let Z be the output alphabet and assume the
messages are independent. In order to show that nested polar
codes achieve the capacity region of a MAC, it suffices to
show that the rates R1 = I(X;Z|Y ) = H(X) − H(X|Y Z)
and R2 = I(Y ;Z) are achievable (to incorporate the time-
sharing argument see Section IX). It is known from the point-
to-point result [16] that the Y terminal can communicate with
the decoder with rate I(Y ;Z) so that yN1 is available at the
decoder with high probability. It remains to show that the rate
R1 is achievable for the X terminal when yN1 is available at the
decoder. Let G be an Abelian group with |G| = |X |. Define
the artificial channels (G,G,Ws) and (G,Y × Z ×G,Wc)
such that for u, z ∈ G and y ∈ Y , Ws(s|u) = pX(s− u) and
Wc(y, z, s|u) = pXY Z(s−u, y, z). These channels have been
depicted in Figures(7) and (8).

X

SU

Ws

Fig. 7: Channel for inner code.

X

SU

Wc

pY Z|X Y,Z

Fig. 8: Channel for outer code.

Similarly to previous cases, one can show that the sym-
metric capacities of the channels are equal to Ī(Ws) =



log q − H(X) and Ī(Wc) = log q − H(X|Y Z). We employ
a nested polar code in which the inner code is a good source
code for the test channel Ws and the outer code is a good
channel code for Wc. The rate of this code is equal to
R = Ī(Wc) − Ī(Wx) = I(X;Z|Y ). Here, we only give a
sketch of the proof. First note that the channel Ws is degraded
with respect to Wc so that the the source code is contained in
the channel code.
For sN1 ∈ GN , yN1 ∈ YN and zN1 ∈ ZN , let

W
(i)
s,N (sN1 , a

i−1
1 |ai) =

∑
aNi+1∈GN−i

1

qN−1
WN

s (sN1 |aN1 G)

W
(i)
c,N (yN1 ,z

n
1 ,s

N
1 ,a

i−1
1 |ai)=

∑
aNi+1∈GN−i

1

qN−1
WN

c (yN1 ,z
N
1 ,s

N
1 |aN1 G)

Let the random vectors XN
1 , Y

N
1 , UN

1 , V
N
1 be distributed

according to PN
XY UV and let SN

1 be a random variable
uniformly distributed over GN which is independent of
XN

1 , Y
N
1 , UN

1 , V
N
1 . Let UN

1 = SN
1 −XN

1 and AN
1 = UN

1 G
−1.

The encoding and decoding rules are similar to those of the
point-to-point channel coding result; i.e., at the encoder, the
distribution pAi|SN1 Ai−1

1
is used for soft encoding and at the

decoder, W (i)
c,N (yN1 , z

n
1 , s

N
1 , a

i−1
1 |ai) is used in the successive

cancelation decoder to decode aN1 . The final decoder output
is equal to zN1 − aN1 G. Note that since yN1 is known to the
decoder with high probability, it can be used as the channel
output for Wc.

VI. COMPUTATION OVER MAC

In this section, we consider a simple computation problem
over a MAC with input alphabets X , Y and output alphabet
Z . The two input terminals of a MAC, X and Y are trying to
communicate with a centralized decoder which is interested in
the sum of the inputs S = X+Y where + is summation over
a group G. We show that the rate R = min(H(X), H(Y ))−
H(S|Z) is achievable using polar codes. The terminal X
employs a nested polar code whose inner code is a good source
code for the test channel (G,G,Ws,X) and whose outer code
is a good channel code for the channel (G,Z × G,Wc,X)
where for u, v, r, z ∈ G and z ∈ Z , Ws,X(r|u)=pX(r−u) and
Wc,X(z, q|u+v)=pSZ(q−u−v, z). Similarly, the terminal Y
employs a nested polar code whose inner code is a good source
code for the test channel (G,G,Ws,Y ) and whose outer code
is a good channel code for the channel (G,Z × G,Wc,Y )
where for u, v, t, z ∈ G and z ∈ Z , Ws,Y (t|v)=pY (t−v) and
Wc,Y (z, q|u+v)=pSZ(q−u−v, z). Note that the two terminals
use the same channel code. These channels are depicted in
Figures 9, 10, 12 and 11.

X

RU

Ws,X

Fig. 9: Inner code (X).

S

QU + V

Wc,X

pZ|S Z

Fig. 10: Outer code (X).

Y

TV

Ws,Y

Fig. 11: Inner code (Y).

S

QU + V

Wc,X

pZ|S Z

Fig. 12: Outer code (X).

Similarly to previous cases, one can show that the sym-
metric capacities of the channels are equal to Ī(Ws) =
log q − H(X) and Ī(Wc) = log q − H(X|Y Z). We employ
a nested polar code in which the inner code is a good source
code for both test channels Ws,X and Ws,Y and the outer code
is a good channel code for Wc,X = Wc,Y . The rate of this
code is equal to R = Ī(Wc,X)−max(Ī(Ws,X), Ī(Ws,Y )) =
min(H(X), H(Y )) −H(S|Z). It is worth noting that it can
be shown that the intersection of the two source codes is
contained in the common channel code.

VII. THE BROADCAST CHANNEL

In this section, we consider a broadcast channel (X ,Y ×
Z,W,w) when X = G for some arbitrary Abelian group G.
Let X be a random variable over X such that E{w(X)} ≤ D
and let Y,Z be the corresponding channel outputs. Let U, V be
random variable over G satisfying the Markov chain UV ↔
X ↔ Y Z such that there exists a function g : G2 → X with
g(U, V ) = X . We show that the following rates are achievable

R1 =I(U ;Y )−I(U ;V )=H(U |Y )−H(U |V ), R2 =I(V ;Z)

if the Markov chain U ↔ X ↔ V holds in addition to
the Markov chain above needed for Marton’s bound. Note
that the Z terminal can use a point-to-point channel code
to achieve the desired rate. It remains to show that the rate
R2 is achievable when vN1 is available at the encoder. Define
the artificial channels (G,G2,Ws) and (G,Y ×G,Wc) such
that for s, v, z ∈ G and y ∈ Y , Ws(v, z|s) = pUV (z − s, v)
and Wc(y, z|s) = pUY (z − s, y). These channels have been
depicted in Figures(13) and (14). Similarly to previous cases,

U

QS

Ws

pV |U V

Fig. 13: Channel for inner code

U

QS

Wc

pY |U Y

Fig. 14: Channel for outer code

one can show that the symmetric capacities of the channels
are equal to Ī(Ws) = log q −H(U |V ) and Ī(Wc) = log q −
H(U |Y ). Note that to guarantee that Ws is degraded with
respect to Wc, we need an additional condition on the auxiliary
random variables. It suffices to assume that the Markov chain
U ↔ X ↔ V holds.

We employ a nested polar code in which the inner code is a
good source code for the test channel Ws and the outer code
is a good channel code for Wc. The rate of this code is equal
to R = Ī(Wc)− Ī(Wx) = I(U ;Y )− I(U ;V ).

VIII. MULTIPLE DESCRIPTION CODING

Consider a multiple description problem in which a source
X is to be reconstructed at three terminals U , V and W .



There are two encoders and three decoders. Terminals U and V
have access to the output of their corresponding encoders and
terminal W has access to the output of both encoders. The goal
is to find all achievable tuples (R1, R2, D1, D2, D3) where
R1 and R2 are the rates of encoders U and V respectively
and D1, D2 and D3 are the distortion levels corresponding
to decoders U , V and W respectively. D1, D2 and D3

are measured as the average of distortion measures d1(·, ·),
d2(·, ·) and d3(·, ·) respectively. Let U , V and W be random
variables such that E{d1(X,U)} ≤ D1, E{d2(X,V )} ≤
D2 and E{d3(X,W )} ≤ D3. We show that the tuple
(R1, R2, D1, D2, D3) is achievable if R1 ≥ I(X;U), R2 ≥
I(X;V ) and R1+R2 ≥ I(X;UVW )+I(U ;V ). It suffices to
show that the rates R1 = I(X;UVW )− I(X;V ) + I(U ;V ),
R2 = I(X;V ) are achievable. The point-to-point source
coding result implies that with R2 = I(X;V ) we can have
vN1 at the output of the second decoder with high probability.
To achieve the rate R1 when vN1 is available, first we note that
R1 = H(U)−H(U |V X) +H(W |UV )−H(W |UV X). We
use a code with rate R11 = H(U) −H(U |V X) for sending
U and another code R12 = H(W |UV ) − H(W |UV X)
for sending W . The corresponding channels are depicted in
Figures 15, 16, 17 and 18.

U

ZS

Wc,U

Fig. 15: Inner code (X).

U

ZS

Ws,U

pXV |U X

Fig. 16: Outer code (X).

W

RT

Wc,W

pUV |W U, V

Fig. 17: Inner code (Y).

W

RT

Ws,W

pXUV |W X,U, V

Fig. 18: Outer code (Y).

IX. OTHER PROBLEMS AND DISCUSSION

In this paper, we studied the main multi-terminal com-
munication problems in their simplest forms (e.g., no time
sharing etc.). The approach of this paper can be extended to
the more general formulations and to other similar problems.
The approach presented in this paper can also be extended
to multiple user (more than two) cases in a straightforward
fashion. We briefly discuss examples of such extensions.
First, consider the Berger-Tung rate region for the distributed
source coding problem and let Q be the time-sharing random
variable. We show that the rates R1 = I(X;U |V Q) and
R2 = I(Y ;V |Q) are achievable for this problem. To achieve
these rates, note that R1 = I(U ;XQ) − I(U ;V Q) and
R2 = I(V ;Y Q) − I(V ;Q) and design an inner polar code
of rate I(U ;V Q) and an outer polar code of rate I(U ;XQ)
for the source X , and an inner polar code of rate I(V ;Q)
and an outer polar code of rate I(V ;Y Q) for the source
Y using some suitably defined channels. Let’s denote the
channel depicted in Figure 1 symbolically by W(U → V )
for generic random variables U and V . Then, these channels

are given by W(U → V,Q), W(U → X,Q), W(V → Q)
and W(V → Y,Q) respectively.

Next, we consider the multiple description coding prob-
lem and show that the rates R1 = I(X;V T ) and R2 =
I(X;UVW |T ) + 2I(X;T ) + I(U ;V |T ) − I(X;V T ) are
achievable for some random variable T . To achieve these
rates, we note that R1 = R11 + R12 + R13 and R2 =
R21 + R22 where R11 = H(U |T ) − H(U |XV T ), R12 =
H(W |UV T ) − H(W |XUV T ), R13 = H(T ) − H(T |X),
R21 = H(V |T )−H(V |XT ) and R22 = H(T )−H(T |X). We
design a nested polar codes for each of these rates similarly
to the other examples presented in the paper.

Finally, consider a 3-user MAC with inputs W , X and Y
and output Z. We have seen in Section V that with rates RX =
I(X;Y Z) and RY = I(Y ;Z), we can have access to xN1
and yN1 at the decoder with high probability. The channels
W(W → 0) and W(V → X,Y, Z) can be used to design a
nested polar code of rate RW = I(W ;Z|XY ) for terminal
W .
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