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Abstract—A new structured coding scheme based on transver-
sal group codes is proposed. We investigate the information
theoretic performance limits for this strategy in multi-terminal
communications. Achievability results are derived for lossless
reconstruction of sum of two sources. In addition, a new rate
region is presented for the problem of computation over multiple
access channel . We show that the application of the new coding
strategy, results in strict gains in terms of achievable rates in
both settings.

I. INTRODUCTION

Use of structured code ensembles toward obtaining new
inner bounds to the optimal performance limits of multi-
terminal communication problems has been of recent interest.
This approach was started by Korner and Marton [1], who
proposed a novel scheme based on linear code ensembles for
distributed source coding which outperforms those based on
standard unstructured code ensembles. The algebraic structure
is exploited toward achieving better source compression. This
approach has been applied in a variety of communication
settings such as lossy distributed source coding [9], multiple-
access channels (MAC) with states [17], interference channels
[18], [20], computation over multiple-access channels [8], [10],
and broadcast channels [19]. Most of these works have used
schemes based on linear code ensembles. All of these works
use some form of matching the algebraic structure of the code
to the structure of the source or channel.

Codes with weaker algebraic structures such as groups and
rings have been studied in [2]-[7] for point-to-point communi-
cation problems because of lower computational complexity of
encoding and decoding. Recently these codes have been used
for multi-terminal communication problems mainly toward
achieving better inner bounds to the optimal performance
limits that those achieved by linear codes. There are two main
reasons to use such codes: 1) the finite fields exist only for
alphabets whose size equals to a prime power. 2) there may
be a better match between the weaker algebraic structures and
the structure of the source or channel. Based on these works,
a general framework for Abelian group codes which unifies
the previous works was provided in [11], and the asymptotic
performance limits of group codes for point-to-point channel
coding and source coding problems were derived. This was
then used for the general distributed source coding problem
[9], [15] and a new achievable rate region is derived. The
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performance limits of codes over abelian groups which are not
fields are, in general, inferior to those of linear codes for the
same alphabet size for point-to-point communication problems.
However, if the structure of the multi-terminal source or
channel matches with that of the former, then they tend to
give superior asymptotic performance than those given by the
latter. This was demonstrated in [9], [15].

In this paper, a new coding scheme based on transversal
group codes is proposed. They are based on abelian groups,
but they are not closed with respect to the group operation.
In fact they are transversals (coset representatives) of group
codes. They can also be viewed as nested group codes. We
restrict our attention to cyclic groups in this paper. This work
is motivated by the construction of multi-level polar codes
[5], [21], [22]. We study the information-theoretic performance
limits of an ensemble of transversal group codes in point-to-
point (ptp) as well as multi-terminal settings. More precisely,
four problems are addressed: ptp channel coding, ptp source
coding, distributed source coding and computation over MAC.
We prove that transversal group codes are optimal in terms of
achieving the symmetric capacity of any point-to-point channel
and the symmetric rate-distortion function of any source. We
use these results as building blocks to study multi-terminal
problems. Consider a two-user distributed source coding prob-
lem in which the decoder wishes to recover the sum of the
sources. We propose a new scheme using transveral group
codes and derive an achievable rate region for such problem.
The results illustrate that this scheme outperforms all previous
schemes such as linear codes and group codes. We also propose
a new strategy for a specific linear computation over MAC.
In this problem the joint receiver wishes to evaluate the sum
of the codewords available at two distributed transmitters.
This problem is considered as an intermediate step for other
problems such as broadcast and interference channels. Due to
space limitation in this paper, some proofs have been omitted;
a more complete version can be found in [23].

This paper is organized as follows: The construction of
transveral group codes as well as the preliminaries are pre-
sented in Section II. Section III analyzes group codes and
transveral group codes for point-to-point settings. Distributed
source coding and computation over MAC are addressed in
Section IV and V.
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II. PRELIMINARIES

a) Groups: A group is a set G equipped with a binary
operation “+”. All groups considered in this paper are cyclic.
A subset H of G is a subgroup, if it is closed under the
group operation. We denote this by H � G. For a subgroup
H in G, define a coset to be a shift of H by an element
g ∈ G. A subset S ⊆ G is a transversal for H in G iff
every coset of H contains exactly one element of S . Given a
prime power pr, the ring of integers modulo pr, is denoted by
Zpr = {0, 1, · · · , pr − 1}. For s = 0, 1, · · · , r, define Hs =
psZpr = {ps · g : g ∈ Zpr}. For any g ∈ Zpr , define

[g]s := g +Hs (1)

b) Group Codes: For a group G, let Gn = ⊕n
i=1G. A

group code C with length n is a subgroup of Gn. A shifted
group code is a translation of C by an element bn ∈ Gn. The
ensemble of group codes is the collection of all subgroups of
Gn. Sahebi et.al. [11] characterized such ensemble.

c) Discrete Memoryless Channel: (X ,Y,WY |X) de-
notes a discrete memoryless channel with input alphabet X ,
output alphabet Y and conditional probability distribution
WY |X . The Symmetric Channel Capacity for such channel is
defined as I(X;Y ), where X is uniform.

d) Discrete Memoryless Source: Consider a discrete-
time memoryless source that takes values from a set X
with probability distribution PX . The reconstructed source is
denoted Z that takes values from Z . The reconstruction is
measured by a distortion measure d : X × Z → [0,∞]. Such
a source is denoted by (X ,Z, PX , d). The Symmetric Rate-
distortion Function for such source is defined as

R(D) = min
PZ|X :E{d(X,Z)}≤D

I(X;Z)

where Z is uniform over Z .

A. Transversal Group Codes

We propose a construction of transversal group codes over
the underlying group Zpr . The proposed construction can be
easily extended to any Abelian groups. The coding scheme
consists of r codebooks. Each codebook is generated based
on a group code over Zpr . More precisely, given non-negative
integers ki, the ith codebook is defined as:

Ci = {uki
i Ai : u

ki
i ∈ T ki

i } (2)

Where Ai is a ki×n matrix with elements belonging to Zpr

and Ti = {0, 1, · · · , pi − 1} is a subset of Zpr . Consequently,
the transversal group code is defined as:

C =

r∑

i=1

Ci + bn (3)

Where the summation is elementwise and bn ∈ Z
n
pr is a

dither vector.

There is an alternative representation for C. Let J =⊗r
i=1 T

ki
i . Define the map

φ : J → Z
n
pr (4)

φ(a) :=

r∑

i=1

uki
i Ai

where a = (uk1
1 , uk2

2 , · · · , ukr
r ) is an element of J .

Therefore, C is the image of φ translated by bn. Sometimes,
we refer to code-words of C by φ(a) + bn . The resulting rate
of the transversal group code is

R =
1

n
log2 |J | =

r∑

i=1

ki
n

log2 |Ti|

=

r∑

i=1

i
ki
n

log2 p

Given n and ki for i = 1, 2, · · · , r, the ensemble of
transversal group codes is the set of all codes of the form
C. Such an ensemble is generated by choosing elements of Ai

and bn uniformly and independently from Zpr .

Note, based on (2), only Cr is a group code. Other Ci’s are
a subset of codewords of a group code. Therefore, a transversal
group code has a weaker algebraic structure than a group code.
We will see later that this strategy is more flexible terms
of matching the structure of certain sources and channels.
Therefore, transversal group codes can be superior to group
codes. We first present the results for point-to-point problems

III. POINT-TO-POINT SETTINGS

A. Channel Coding

Let (X ,Y,WY |X) be a discrete memoryless channel with
X = Zpr . We present the capacity of the ensemble of group
codes as derived in [3].

Theorem 1 ([3]). For the class of symmetric channels (X =
Zpr ,Y,WY |X), the group code capacity is given by:

Cg = min
0≤s≤r−1

r

r − s
I(X;Y |[X]s)

where X is uniform over Zpr .

Theorem 1 shows the drawback of using group codes. Fix
s, consider a channel in which Y depends highly on [X]s.
In this case, r

r−sI(X;Y |[X]s) is small causes a rate-loss. One
solution is to add another codebook to compensate for this rate-
loss. This is the reason that we use a summation of different
codebooks in transversal group codes. Example 1 illustrates
the effects of adding another codebook to the original group
code.

For the channel (X = Zpr ,Y,WY |X), we use a random
coding argument using transversal group codes over the un-
derlying group Zpr . The random encoder is characterized by
a random map φ and random shift Bn. Given a message
a ∈ J , the encoder sends xn = φ(a) + Bn. Suppose PX

is a uniform probability distribution over Zpr . Upon receiving
yn, the decoder looks for ã ∈ J such that φ(ã)+Bn is jointly
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typical with yn. The decoder declares error if there is no such
ã or if ã is not unique. We assume the message sequence a is
chosen uniformly from J .

Theorem 2. For channels with input alphabet X = Zpr ,
transversal group codes achieve the symmetric capacity.

Proof: Omitted.

Next we compare transversal group codes and group codes
on Z4.

Example 1. Consider the channel (X = Z4,Y = {0, 1},W )
where

W (0|x) = �{x ∈ {0, 2}}
W (1|x) = �{x ∈ {1, 3}}.

By Theorem 1 the capacity of group codes for this channel
is

min{I(X;Y ), 2I(X;Y |[X])} (5)

Therefore, the capacity of group codes in this case is 0.
However, by Theorem 2, transversal group codes achieve
I(X;Y ) = 1.

B. The Source Coding Problem

Let (X ,Z = Zpr , PX , d) be a discrete and memoryless
source. The problem of source coding using group codes is
studied in [11]. An achievable rate for such codes is given in
the following theorem.

Theorem 3 ([11]). Suppose Z is a uniform random variable
over Zpr . For a given a distortion D, The following rates
are achievable using group codes for the source (X ,Z =
Zpr , PX , d):

R ≥ min
PZ|X :E{d(Z,X)}≤D

max
1≤s≤r

r

s
I([Z]s;X).

Consider the ensemble of transversal group codes defined
in Section II-A. We use this ensemble to achieve the symmetric
rate-distortion function:

Theorem 4. Transversal group codes achieve the symmetric
rate-distortion function for the source (X ,Z = Zpr , PX , d).

Proof: Omitted.

By a similar argument as in the channel coding problem,
one can show that transversal group codes outperform group
codes.

IV. DISTRIBUTED SOURCE CODING

In the two-user distributed source coding problem, each en-
coder observes a source sequence. The sources are correlated.
Each encoder sends a quantized version of its corresponding
source sequence to the central decoder. The decoder wishes
to reconstruct a function of the two sources within some
distortion level. This problem is well studied for several special
cases [12], [13], [14], [9], [15].

Definition 1 (Distributed Sources). Consider a pair of sources
with joint distribution PXY defined on X × Y . This set-up is
denoted as (X ,Y, PXY , ρ). The source sequences (Xn, Y n)
are generated randomly and independently with the joint dis-
tribution P (xn, yn) =

∏n
i=1 PXY (xi, yi). Let Z be a discrete

set and the function ρ be given by ρ : X × Y → Z .

An (n,M1,M2)-code involves two encoder maps

f1 : Xn → {1, 2, · · · ,M1}
f2 : Yn → {1, 2, · · · ,M2}

and a decoder

g : {1, 2, · · · ,M1} × {1, 2, · · · ,M2} → Zn

The pair (R1, R2) is said to be achievable if for every
ε > 0 and large enough n, there exists an (n,M1,M2)-code
such that

1

n
log2 Mi ≤ Ri + ε for i = 1, 2

and

P{ρ(Xn, Y n) 	= g(f1(X
n), f2(Y

n))} ≤ ε.

The special case where X = Y = G where G is a group
and ρ(X,Y ) = X + Y , is well studied in [9], [15]. A new
coding scheme based on group codes is introduced in [15] and
an achievable rate region is derived. The results indicate that
using a combination of group codes and unstructured random
codes one can achieve rates outside of the previously known
rate regions. For ease of exposition, we only concentrate on the
special case where G = Zpr . This can be easily generalized to
any Abelian groups. For simplicity, we denote such distributed
sources over the group G by (G, PXY ). We first present the
achievable rate region using group codes [15].

Suppose X is a random variable taking values from Zpr .
For 0 ≤ θ ≤ r − 1, define

Hθ(X) =
r

r − θ
H(X|[X]θ)

For θ = 1, let Hr(X) = r. Note H0(X) = H(X).

Theorem 5 ([15]). Let X,Y be two sources with input
alphabets X = Y = Zpr and joint distribution PXY . For the
lossless reconstruction of the sum Z = X + Y , the following
rates are achievable using group codes:

R1 = R2 ≥ max
0≤θ≤r−1

Hθ(Z) (6)

Theorem 6. In the previous theorem, the following rates are
achievable using transversal group codes:

R1 = R2 ≥ H(Z) +

r∑

s=1

βs

∣∣Hs(Z)− max
0≤θ≤s−1

Hθ(Z)
∣∣+ (7)

where

βs =
H(Vs|[Vs]s)

s log p
,
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and Vs is a uniform random variable over {0, 1, · · · , ps−
1}.

Proof: Omitted.

The bound in (7) contains (6).

V. COMPUTATION OVER MAC

Consider the problem in which a central receiver is inter-
ested in reconstructng the sum of two codewords. Suppose X1

and X2 are two random variables taking values from a group
G. Two distributed encoders send X1, X2 through a MAC.
The decoder wishes to decode X1 + X2. Fig. 1 depicts the
problem. The MAC is defined by the conditional probability
WY |X1,X2

, where Y is the channel’s output with alphabet Y .
This set-up is denoted by (X1,X2,Y,W ).

WY |X1,X2

X1

X2

Decoder
Y

Z = X1 +X2

Fig. 1. An example of computation over MAC.

Definition 2. (Codes for computation over MAC) Consider
positive integers n, k. A (k, n)-code for computation over MAC
consists of two encoding functions and one decoding function.
The encoding function is given by fi : Sk

i → Xn for i = 1, 2
and the decoding function is defined by the map g : Yn → X k.

Definition 3. (Achievable rate) We say R = k
n is achievable

if for any δ > 0, there exist a (k, n)-code such that

P{g(Y n) 	= Xk
1 +Xk

2 } ≤ δ

A study of computation over MAC for the case where X
is a Galois field, can be found in [1], [10], [16]. Nazer and
Gastpar [10] used linear codes to generalize the work of Korner
and Marton [1] to q-ary alphabet. Coset codes are employed
to further extend the results to an arbitrary MAC [16]. In this
section, we generalize the results when X = Zpr . We first
derive an achievable rate region using group codes. Then, we
employ transversal group codes to improve upon the previously
known rate regions.

Theorem 7. For computation over MAC where the input
alphabets are Zpr , group codes achieve the following bound:

Rg,mac ≤ min
0≤s≤r−1

r

r − s
I(X1 +X2;Y |[X1 +X2]s)

where X1 and X2 are distributed uniformly and are indepen-
dent of each other.

Proof: Omitted.

We propose a new scheme which involves an inner and
an outer code. The inner code is a modified version of the
transversal group code defined in (2). In this code, instead of
Ti, elements of uki

i belong to the whole group Zpr . Therefore,
we obtain a larger codebook than C in (3). We use a particular
binning to reduce the size of this codebook.

Binning: Contrary to the common coding schemes,
binning is used only at the decoder. Binning is different for
each layer of the code. For the ith layer, two codewords uki

i Ai

and ũki
i Ai belong to the same bin if uki

i − ũki
i belongs to the

subgroup Hki
i . Therefore, cosets of Hki

i determine the binning
for the ith layer. Observe that elements of Ti can be used to
index each bin.

Identical encoders are used for each terminal. In the
encoders we use φ in (4) with J replaced by K =

⊕r
i=1 Z

ki
pr .

Suppose a1 and a2 are sent. Let z = a1 + a2. Upon receiving
yn, the decoder wishes to recover the bin number associated
with a1 + a2. Therefore, it first finds z̃ ∈ K such that
φ(z̃) + bn1 + bn2 is jointly typical with yn with respect to
the distribution PZ · WY |X1+X2

where PZ is the uniform
distribution over Zpr .Then it outputs the bin number of z̃.

Suppose there is no error in recovering the inner code. We
use different outer codes in each layer. Given there are no
errors in recovering the previous layers, the outer code for the
ith layer sees the MAC (S = Ti,Vi, QVi|S1+S2

), where

QVi|S1+S2
= �{Vi = [S1 + S2]i}

Therefore, this outer code should a code for computation
over MAC for this channel.

Lemma 1. An achievable rate for computation over the MAC
(S = Ti,Vi, QVi|S1+S2

) is

Ci = i log2 p−H(S1 + S2|[S1 + S2]i)

where the addition is the group Zpr operation and S1, S2

are uniform random variables taking values from Ti .

For 0 ≤ θ ≤ r − 1, define Iθ(X;Y ) = r
r−θ I(X;Y |[X]θ).

Also let Ir(X;Y ) = 0. We derive the achievable rate region
for this new scheme.

Theorem 8. An achievable rate using transversal group codes
for the MAC channel (X = Zpr ,Y,WY |X1+X2

) is

R ≤
r∑

s=1

αs

∣∣ min
0≤θ≤s−1

I[pθ] − I[ps]

∣∣+

where αs =
Cs

s log p .

Proof: Omitted.

Example 2. Consider the MAC depicted in Fig. 2. Suppose
the inputs take values from Z4. X1+X2 is passed through the
channel (Z = Z4,Y,WY |Z). WY |Z is given in Fig. 3, where
0 ≤ ε ≤ 1. The receiver wishes to decode X1 +X2.

The point to point capacity of this channel is 1. Suppose
Z is uniform over Z4, then

I(Z;Y ) = h(
1 + ε

4
)− h(ε)

4
(8)

I(Z;Y |[Z]) = 0.5h(
1− ε

2
)− 1

4
h(ε). (9)
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For this problem, the best achievable rate using group codes
is given by

R1 = R2 = min{I(Z;Y ), 2I(Z;Y |[X1 +X2])}, (10)

whereas transversal group codes achieve:

R1 = R2 = 0.5I(Z;Y ) + I(Z;Y |[X1 +X2]). (11)

Fig. 4 depicts the achievable sum-rates for different ε.

WY |Z
Z

Y

X1

X2

Fig. 2. The multiple access channel in Example 2

1− ε

ε

0

2

1

3

0

1

Z Y

Fig. 3. The channel between Z and Y .

VI. CONCLUSION

New coding strategies based on transversal group codes are
proposed for multi-terminal communications. Achievablility
results are provided for the problem of computation over MAC
as well as distributed source coding. It is shown that our coding
schemes outperform all previously known strategies for these
communication problems.
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