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Abstract

A single-letter achievable rate region is proposed for the two-receiver discrete memoryless broadcast

channel with noiseless or noisy feedback. The coding strategy involves block-Markov superposition coding

using Marton’s coding scheme for the broadcast channel without feedback as the starting point. If the

message rates in the Marton scheme are too high to be decoded at the end of a block, each receiver is left

with a list of messages compatible with its output. Resolution information is sent in the following block

to enable each receiver to resolve its list. The key observation is that the resolution information of the

first receiver is correlated with that of the second. This correlated information is efficiently transmitted

via joint source-channel coding, using ideas similar to the Han-Costa coding scheme. The proposed rate

region is computed for two examples, including the degraded AWGN broadcast channel, which show that

the region can be strictly larger than the capacity region in the absence of feedback. Finally, the proposed

rate region is shown to contain the achievable region proposed independently by Shayevitz and Wigger

under certain mild conditions.

1 Introduction

The two-receiver discrete memoryless broadcast channel is shown in Figure 1(a). The channel has one trans-

mitter which generates a channel input X, and two receivers which receive Y and Z, respectively. The channel

is characterized by a conditional law PY Z|X . The transmitter wishes to communicate information simulta-

neously to the receivers at rates (R0, R1, R2), where R0 is the rate of the common message, and R1, R2 are

the rates of the private messages of the two receivers. This channel has been studied extensively. The largest

known set of achievable rates for this channel without feedback is due to Marton [1]. Marton’s rate region is

equal to the capacity region in all cases where it is known. (See [2], for example, for a list of such channels.)

Figure 1(b) shows a broadcast channel with noiseless feedback where the channel outputs at both receivers

are available at the transmitter with a finite delay. El Gamal showed in [3] that feedback does not enlarge

the capacity region of a physically degraded broadcast channel. Later, through a simple example, Dueck [4]

demonstrated that feedback can strictly improve the capacity region of a general broadcast channel. For
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Figure 1: The discrete memoryless broadcast channel with a) no feedback b) noiseless feedback.

the degraded AWGN broadcast channel with feedback, an achievable rate region larger than the no-feedback

capacity region was established in [5], and more recently, in [6]. In this paper, we establish a single-letter

achievable rate region for the discrete memoryless broadcast channel with noiseless or noisy feedback.

Before describing our coding strategy, let us revisit the example from [4]. Consider the broadcast channel

in Figure 2. The channel input is a binary triple (X0, X1, X2). X0 is transmitted cleanly to both receivers.

In addition, receiver 1 receives X1 ⊕ N and receiver 2 receives X2 ⊕ N , where N is an independent binary

Bernoulli( 1
2 ) noise variable. Here, the operation ⊕ denotes the modulo-two sum. Without feedback, the

maximum sum rate for this channel is 1 bit/channel use, achieved by using the clean input X0 alone. In other

words, no information can be reliably transmitted through inputs X1 and X2.

Channel
X = (X0, X1, X2)

Y = (X0, X1 ⊕N)

Z = (X0, X2 ⊕N)

Figure 2: The channel input is a binary triple (X0, X1, X2). N ∼ Bernoulli( 1
2 ) is an independent noise variable.

Dueck described a simple scheme to achieve a greater sum rate using feedback. In the first channel use,

transmit one bit to each receiver i through Xi, i = 1, 2. Receivers 1 and 2 then receive Y = X1 ⊕ N and

Z = X2 ⊕ N , respectively, and cannot recover Xi. The transmitter learns Y,Z through feedback and can

compute N = Y ⊕X1 = Z ⊕X2. For the next channel use, the transmitter sets X0 = N . Since X0 is received

noiselessly by both receivers, receiver 1 can now recover X1 as Y ⊕N . Similarly, receiver 2 reconstructs X2 as

Z ⊕N . We can repeat this idea over several transmissions: in each channel use, transmit a fresh pair of bits

(through X1, X2) as well as the noise realization of the previous channel use (through X0). This yields a sum

rate of 2 bits/channel use. This is, in fact, the sum-capacity of the channel since it equals the cut-set bound

maxPX I(X;Y Z).

The example suggests a natural way to exploit feedback in a broadcast channel. If we transmit a block

of information at rates outside the no-feedback capacity region, the receivers cannot uniquely decode their

messages at the end of the block. Each receiver now has a list of its codewords that are jointly typical with its

channel output. In the next block, we attempt to resolve these lists at the two receivers. The key observation

is that the resolution information needed by receiver 1 is in general correlated with the resolution information
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needed by receiver 2. The above example is an extreme case of this: the resolution information needed by the

two receivers is identical, i.e., the correlation is perfect!

It is known that correlated information can be transmitted over the broadcast channel at higher rates

than independent information [7–11]. At the heart of the proposed coding scheme is a way to represent the

resolution information of the two receivers as a pair of correlated sources, which is then transmitted efficiently

in the next block using joint source-channel coding, along the lines of [7]. We repeat this idea over several

blocks of transmission, with each block containing independent fresh information superimposed over correlated

resolution information for the previous block.

The following are the main contributions of this paper:

• We obtain a single-letter achievable rate region for the discrete memoryless broadcast channel with

noiseless or noisy feedback. The proposed region contains three extra random variables in addition to

those in Marton’s rate region.

• Using a simpler form of the rate region with only one extra random variable, we compute achievable

rates for two examples including the degraded AWGN broadcast channel. These show that the achievable

region is strictly larger than the capacity region in the absence of feedback.

• At the conference where our result was first presented [12], another rate region for the broadcast channel

with feedback was proposed independently by Shayevitz and Wigger [13]. We show that under some

(mild) conditions, the Shayevitz-Wigger region is contained in our rate region.

Notation: We use uppercase letters to denote random variables, lower-case for their realizations and calli-

graphic notation for their alphabets. Bold-face notation is used for random vectors. Unless otherwise stated,

all vectors have length n. Thus A , An , (A1, . . . , An). The ε-strongly typical set of block-length n of a

random variable with distribution P is denoted A
(n)
ε (P ). Logarithms are with base 2, and entropy and mutual

information are measured in bits. For α ∈ (0, 1), ᾱ , 1− α.

In the following, we give an intuitive description of a two-phase coding scheme for communicating over a

broadcast channel with noiseless feedback. We will use the notation ∼ to indicate the random variables used in

the first phase. Thus (Ỹ , Z̃) denote the channel output pair for the first phase, and (Y,Z) the channel output

pair for the second phase. We start with Marton’s coding strategy for the discrete memoryless broadcast

channel without feedback. The rates of the messages of the two receivers are assumed to lie outside Marton’s

achievable rate region. Let Ũ , Ṽ , and W̃ denote the auxiliary random variables used to encode the information.

W̃ carries the information meant to be decoded at both receivers. Ũ and Ṽ carry the rest of the information

meant for the first and the second receiver, respectively. The Ũ - and Ṽ -codebooks are formed by randomly

sampling the Ũ - and Ṽ -typical sets, respectively. Let Ũ, Ṽ and W̃ denote the three random codewords chosen

by the transmitter. The channel input vector X̃ is obtained by ‘fusing’ the triple (Ũ, Ṽ,W̃).

Since the rates lie outside Marton’s region, the receivers are not able to decode the information contained

in Ũ , Ṽ , and W̃ . Instead, they obtain just a list of highly likely codewords given the respective channel output

vectors. The first phase can be thought of as transmission of independent messages over a broadcast channel

with list decoding. At the first decoder, this list is formed by collecting all (Ũ , W̃ )-codeword pairs that are

jointly typical with the channel output. A similar list of (Ṽ , W̃ )-codeword pairs is formed at the second

receiver. Note that even with feedback, the total transmission rate of the broadcast channel cannot exceed

the capacity of the point-to-point channel with input X̃ and outputs (Ỹ , Z̃). (This is because the channel is
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memoryless.) Hence, given both channel output vectors (Ỹ, Z̃), the posterior probability of the codewords will

be concentrated on the transmitted codeword triple.

The channel output vectors Ỹ and Z̃ are fed back to the encoder. For the second phase, we treat (Ũ,W̃) as

the source of information to be transmitted to the first decoder, and (Ṽ,W̃) as the source of information to be

transmitted to the second decoder. The objective in the second phase is to communicate these two correlated

pairs to the decoders over the broadcast channel, while treating Ỹ and Z̃ as source state information. This

is accomplished using a joint-source-channel coding strategy. Transmission of correlated information over a

broadcast channel has been addressed in [7,10]. The former addresses the case when the correlated information

is modeled as a pair of memoryless sources characterized by a fixed single-letter distribution. In the latter,

the correlated information is modeled as a random edge in an exponentially large nearly semi-regular bipartite

graph. A bipartite graph is called semi-regular if the degrees of all the left vertices are the same, and the

degrees of all the right vertices are the same.

In the current setup, the correlated information given by (Ũ,W̃) and (Ṽ,W̃) does not exhibit a memoryless-

source-like behavior. This is because the vectors Ũ, Ṽ and W̃ come from codebooks. Instead, the correlated

information can be modeled as a random edge in a nearly semi-regular bipartite graph. This follows from

the law of large numbers since the codewords are sufficiently long and are chosen randomly. Transmission of

such correlated information is addressed in [10]. We will use a combination of the techniques in [7] and [10] to

develop a scheme for the second phase. At the end of the second phase, the decoders are able to decode the

respective messages.

We will superimpose these two phases using a block-Markov strategy. Therefore, the overall transmission

scheme has several blocks, with fresh information entering in each block being decoded in the subsequent

block. The fresh information gets encoded in the first phase, and is superimposed on the second phase which

corresponds to information that entered in the previous block.

It turns out that the performance of such a scheme cannot be directly captured by single-letter information

quantities. This is because the state information, given by the channel outputs of all the previous blocks,

keeps accumulating, leading to a different joint distribution of the random variables in each block. We address

this issue by constraining the distributions used in the second phase so that in every block, all the sequences

follow a stationary joint distribution. This results in a first-order stationary Markov process of the sequences

across blocks.

The rest of paper is organized as follows. In Section 2, we give the formal problem statement and the first

main result of the paper, an achievable rate region for broadcast channel with noiseless feedback. We give an

outline of the proof of the coding theorem in Section 3. In Section 4, we give the second main result of the

paper, an achievable rate region for broadcast channels with noisy feedback. In Section 5, the rate region is

computed for two examples, including the degraded AWGN broadcast channel. In Section 6, we compare our

rate region with the one proposed by Shayevitz and Wigger. The formal proof of the coding theorem is given

in Section 7, and Section 8 concludes the paper.

2 Problem Statement and Main Result

A two-user general discrete memoryless broadcast channel is a quadruple (X ,Y,Z, PY Z|X) of input alphabet

X , two output alphabets Y, Z and a set of probability distributions PY Z|X(·|x) on Y × Z for every x ∈ X .
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The channel satisfies the following conditions for all n = 1, 2, . . .

P r(Yn = yn, Zn = zn|Xn = x, Y n−1 = y, Zn−1 = z) = PY Z|X(yn, zn|xn), (1)

for all yn ∈ Y, zn ∈ Z, x ∈ Xn, y ∈ Yn−1 and z ∈ Zn−1. The outputs are fed back noiselessly to the encoder

as shown in Figure 1 (b).

Definition 2.1. An (n,M0,M1,M2) transmission system for a given broadcast channel with noiseless feedback

consists of

• A sequence of mappings for the encoder:

em : {1, 2, . . . ,M0} × {1, 2, . . . ,M1} × {1, 2, . . . ,M2} × Ym−1 ×Zm−1 → X , m = 1, 2, . . . , n, (2)

• A pair of decoder mappings:

g1 : Yn → {1, 2, . . . ,M0} × {1, 2, . . . ,M1}, g2 : Zn → {1, 2, . . . ,M0} × {1, 2, . . . ,M2}. (3)

Remark : Though we have defined the transmission system above for feedback delay 1, all the results in

this paper hold for feedback with any finite delay k.

We use W0 to denote the common message, and W1,W2 to denote the private messages of decoders 1 and 2,

respectively. The messages (W0,W1,W2) are uniformly distributed over the set {1, 2, . . . ,M0}×{1, 2, . . . ,M1}×
{1, 2, . . . ,M2}. The channel input at time n is given by Xn = en(W0,W1,W2, Y

n−1, Zn−1). The average error

probability of the above transmission system is given by

τ =
1

M0M1M2

M0∑
k=1

M1∑
i=1

M2∑
j=1

Pr ((g1(Y n), g2(Zn)) 6= ((k, i), (k, j))|(W0,W1,W2) = (k, i, j)) . (4)

Definition 2.2. A triple of non-negative real numbers (R0, R1, R2) is said to be achievable for a given broad-

cast channel with feedback if ∀ε > 0, there exists an N(ε) > 0 such that for all n > N(ε), there exists an

(n,M0,M1,M2) transmission system satisfying the following constraints:

1

n
logM0 ≥ R0 − ε,

1

n
logM1 ≥ R1 − ε,

1

n
logM2 ≥ R2 − ε, τ ≤ ε. (5)

The set of all achievable rate pairs is the capacity region of the channel.

Before stating the main result of the paper, we define the structure for the joint distribution of variables

in each block of our coding scheme, and also the joint distribution of variables across successive blocks.

Definition 2.3. Given a broadcast channel (X ,Y,Z, PY Z|X), define P as the set of all distributions P on

U × V ×A× B × C × X × Y × Z of the form

PABC PUV |C PX|ABCUV PY Z|X ,

where A, B, C, U , and V are arbitrary sets. Consider two sets of random variables (U, V,A,B,C,X, Y, Z)

and (Ũ , Ṽ , Ã, B̃, C̃, X̃, Ỹ , Z̃) each having the same distribution P . For brevity, we often refer to the collection
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(A,B, Y, Z) as K, to (Ã, B̃, Ỹ , Z̃) as K̃, and to A× B × Y × Z as K. Hence

PŨṼ C̃K̃X̃ = PUV CKX = P.

For a given P ∈ P, define Q(P ) as the set of conditional distributions Q that satisfy the following consis-

tency condition

PABC(a, b, c) =
∑

ũ,ṽ,,k̃,c̃∈U×V×K×C

QABC|ŨṼ K̃C̃(a, b, c|ũ, ṽ, k̃, c̃)PUVKC(ũ, ṽ, k̃, c̃), ∀(a, b, c). (6)

Then for any P ∈ P and Q ∈ Q(P ), the joint distribution of the two sets (U, V,K,C,X) and (Ũ , Ṽ , K̃, C̃, X̃)

is

PŨṼ K̃C̃X̃ QABC|ŨṼ C̃K̃ PUVKX|ABC . (7)

With the above definitions, we have the following theorem.

Theorem 1. Given a broadcast channel (X ,Y,Z, PY Z|X), for any distribution P ∈ P and Q ∈ Q(P ), the

following rate region is achievable with noiseless feedback.

R0 < min{T1, T2, T3, T4, T5} (8)

R0 +R1 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃) (9)

R0 +R2 < I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃) (10)

R0 +R1 +R2 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃)− I(U ;V |C) (11)

+ I(Ṽ ;C|C̃) + I(Ṽ B;ZZ̃B̃|CC̃)− I(ŨK̃A;B|CṼ C̃)

R0 +R1 +R2 < I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃)− I(U ;V |C) (12)

+ I(Ũ ;C|C̃) + I(ŨA;Y Ỹ Ã|CC̃)− I(Ṽ K̃B;A|CŨC̃)

2R0 +R1 +R2 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃)− I(U ;V |C) (13)

+ I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃)− I(A;B|CC̃ŨṼ K̃)

where

T1 , I(AC;Y Ỹ Ã|C̃Ũ)− I(Ṽ K̃;AC|C̃Ũ)

T2 , I(BC;ZZ̃B̃|C̃Ṽ )− I(ŨK̃;BC|C̃Ṽ )

T3 , I(AC;Y Ỹ Ã|C̃Ũ) + I(B;ZZ̃B̃|C̃Ṽ C)− I(Ṽ K̃;AC|C̃Ũ)− I(ŨK̃A;B|CC̃Ṽ )

T4 , I(A;Y Ỹ Ã|C̃ŨC) + I(BC;ZZ̃B̃|C̃Ṽ )− I(Ṽ K̃B;A|CC̃Ũ)− I(ŨK̃;BC|C̃Ṽ )

T5 ,
1

2

[
I(AC;Y Ỹ Ã|C̃Ũ)− I(Ṽ K̃;AC|C̃Ũ) + I(BC;ZZ̃B̃|C̃Ṽ )− I(ŨK̃;BC|C̃Ṽ )− I(A;B|CC̃ŨṼ K̃)

]
Proof. This theorem is proved in Section 7.

Remark : We can recover Marton’s achievable rate region for the broadcast channel without feedback by

setting A = B = φ, and C = W with QC|ŨṼ K̃C̃ = PW .
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3 Coding scheme

In this section, we give an informal outline of the proof of the theorem. The formal proof is given in Section

7. Let us first consider the case when the rate R0 of the common message equals 0. Let the message rate

pair (R1, R2) lie outside Marton’s achievable region [1]. The coding scheme uses a block-Markov superposition

strategy, with the communication taking place over L blocks, each of length n.

In each block, a fresh pair of messages is encoded using the Marton coding strategy (for the broadcast

channel without feedback). In block l, random variables U and V carry the fresh information for receivers 1

and 2, respectively. At the end of this block, the receivers are not able to decode the information in (U, V )

completely, so we send ‘resolution’ information in block (l + 1) using random variables (A,B,C). The pair

(A,C) is meant to be decoded by the first receiver, and the pair (B,C) by the second receiver. Thus in each

block, we obtain the channel output by superimposing fresh information on the resolution information for the

previous block. At the end of the block, the first receiver decodes (A,C), the second receiver decodes (B,C),

thereby resolving the uncertainty about their messages of the previous block.

Codebooks: The A-, B-, and C-codebooks are constructed on the alphabets A, B, and C respectively. The

exact procedure for this construction, and the method for selecting codewords from these codebooks will be

described in the sequel. Since C is decoded first by both the receivers, conditioned on each codeword in the

C-codebook, we construct U- and V-codebooks of sizes 2nR
′
1 and 2nR

′
2 by generating codewords according to

PU |C and PV |C , respectively. Each U-codebook is divided into 2nR1 bins, and each V-codebook into 2nR2

bins.

Encoding : In each block l, the encoder chooses a tuple of five codewords (Al,Bl,Cl,Ul,Vl) as follows.

The resolution information for block (l−1) is used to select (Al,Bl,Cl) from the A-, B- and C-codebooks. Cl

determines the U- and V-codebooks to be used to encode the message pair of block l. Denoting the message

pair by (m1l,m2l), the encoder choose a U -codeword from bin m1l of the U -codebook and a V -codeword from

bin m2l of the V -codebook that are jointly typical according to PUV |C . This pair of jointly typical codewords

is set to be (Ul,Vl).

This step is successful if the product of the sizes of U -bin and V -bin is nearly equal to 2nI(U ;V |C) [14].

Therefore, we have

R′1 +R′2 −R1 −R2 > I(U ;V |C). (14)

These five codewords are combined using the transformation PX|ABCUV (applied componentwise) to generate

the channel input Xl.

Decoding : After receiving the channel output of block l, receiver 1 first decodes (Al,Cl), and receiver

2 decodes (Bl,Cl) However, the rates R′1, R
′
2 of the U - and V -codebooks are too large for receivers 1 and

2 to uniquely decode Ul and Vl, respectively. Hence receiver 1 is left with a list of U -codewords that are

jointly typical with its channel output Yl and the just-decoded resolution information (Al,Cl); receiver 2

has a similar list of V -codewords that are jointly typical with its channel output Zl, and the just-decoded

resolution information (Bl,Cl). The sizes of the lists are nearly equal to 2n(R′1−I(U ;Y |AC)) and 2n(R′2−I(V ;Z|BC)),

respectively. The transmitter knows both these lists due to feedback, and resolves them in the next block as

follows.

In block (l + 1), the random variables of block l are represented using the notation ∼. Thus we have

Ũl+1 = Ul, Ṽl+1 = Vl, C̃l+1 = Cl, Ãl+1 = Al, B̃l+1 = Bl,
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For brevity, we denote the collection of random variables (A,B, Y, Z) as K, and (Al,Bl,Yl,Zl) as Kl = K̃l+1.

The random variables (U, V,K,C) in block l are jointly distributed via PABCPUV |CPY Z|ABCUV chosen from

P as given in the statement of the theorem.

For block l+1, (Ũl+1, Ṽl+1) = (Ũl, Ṽl) can be considered to be a realization of a pair of correlated ‘sources’

(Ũ and Ṽ ), jointly distributed according to PŨṼ |Ỹ Z̃ÃB̃C̃ along with the transmitter side information given by

(Ãl+1, B̃l+1, Ỹl+1, Z̃l+1), and the common side-information C̃l+1. The goal in block (l+ 1) is to transmit this

pair of correlated sources over the broadcast channel, with

• Receiver 1 needing to decode Ũl+1, treating (Ãl+1, Ỹl+1, C̃l+1) as receiver side-information,

• Receiver 2 needing to decode Ṽl+1, treating (B̃l+1, Z̃l+1, C̃l+1) as receiver side-information.

We use the ideas of Han and Costa [7] to transmit this pair of correlated sources over the broadcast channel

(with appropriate extensions to take into account the different side-information available at the transmitter

and the receivers). This is shown in Figure 3. The triple of correlated random variables (A,B,C) is used to

cover the sources. This triple carries the resolution information intended to disambiguate the lists of the two

receivers. The random variables of block (l+1), given by (A,B,C) are related to the random variables in block

l via QABC|ŨṼ K̃C̃ , chosen from Q given in the statement of the theorem. We now describe the construction

of the A-, B-, and C- codebooks.

Covering the Sources: For each c̃ ∈ Cn, a C-codebook CC(c̃) of rate ρ0 is constructed randomly from PC|C̃ .

For every realization of ũ ∈ Un, c̃ ∈ Cn, and c ∈ Cn, an A-codebook CA(ũ, c̃, c) of rate ρ1 is constructed

with codewords picked randomly according to PA|Ũ,C̃,C . Similarly, for every realization of ṽ ∈ Vn, c̃ ∈ Cn,

and c ∈ Cn, a B-codebook CB(ṽ, c̃, c) of rate ρ2 is constructed with codewords picked randomly according to

PB|Ṽ ,C̃,C .

At the beginning of block (l + 1), for a given realization (Ũl+1, Ṽl+1, K̃l+1, C̃l+1), of correlated ‘sources’,

and side information, the encoder chooses a triple of codewords (Al+1,Bl+1,Cl+1) from the appropriate A-, B-

and C-codebooks such that the two tuples are jointly typical according to PŨṼ K̃C̃QABC|ŨK̃Ṽ C̃ . The channel

input Xl+1 is generated by fusing this (Al+1,Bl+1,Cl+1) with the pair of codewords (Ul+1,Vl+1), which

carry fresh information in block (l + 1).

Now consider the general case when R0 > 0. We can use the variable C to encode common information to

be decoded by both receivers. Hence C serves two purposes - it is used to (a) cover the correlated sources and

transmitter side-information, thus being part of the resolution information, and (b) to carry common fresh

information. Note that in every block, two communication tasks are being accomplished simultaneously. The

first is channel coding over the broadcast channel with list decoding, accomplished via (U, V,C). The second

is joint-source-channel coding of correlated sources over the broadcast channel, accomplished via (A,B,C).

Recall that in Marton’s achievable region for the broadcast channel without feedback, there is a random

variable W meant to be decoded by both receivers. In the present case, it turns out that C can be made to

assume the dual role of the common random variable associated with both the tasks.

Analysis: For this encoding to be successful, we need the following covering conditions. These are similar
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Source 1: Ũ

Source 2: Ṽ

A,B,C

W,U, V

CHANNEL
X

Encoder

Dec. 1

Dec. 2

Y

Z

C̃, Ã, Ỹ

C̃, B̃, Z̃

(Ỹ , Z̃, Ã, B̃, C̃)

Side-Information

Msgs. W0,W1,W2

Figure 3: Transmitting correlated sources with side-information at the receivers through (A,B,C), and fresh
information through U, V .

to equations (3.1)-(3.5) in [7].

ρ0 > I(ŨK̃Ṽ ;C|C̃) +R0 (15)

ρ0 + ρ1 > I(Ṽ K̃;A|CC̃Ũ) + I(ŨK̃Ṽ ;C|C̃) +R0 (16)

ρ0 + ρ2 > I(ŨK̃;B|CC̃Ṽ ) + I(ŨK̃Ṽ ;C|C̃) +R0 (17)

ρ0 + ρ1 + ρ2 > I(Ṽ K̃;A|CC̃Ũ) + I(ŨK̃;B|CC̃Ṽ ) + I(A;B|ŨK̃Ṽ CC̃) + I(ŨK̃Ṽ ;C|C̃) +R0 (18)

At the end of block (l + 1), receiver 1 determines Ul = Ũl+1 by finding the pair (Ũl+1,Al+1,Cl+1) using

joint typical decoding in the composite U -, A-, and C-codebooks. A similar procedure is followed at the second

reciever. For the decoding to be successful, we need the following packing conditions.

R′1 + ρ0 + ρ1 < I(Ũ ;Y Ỹ Ã|C̃) + I(C;Y ÃỸ Ũ |C̃) + I(A;Y ÃỸ |ŨCC̃) (19)

R′1 + ρ1 < I(Ũ ;Y ÃỸ C|C̃) + I(A;Y ÃỸ |ŨCC̃) (20)

R′2 + ρ0 + ρ2 < I(Ṽ ;ZZ̃B̃|C̃) + I(C;ZB̃Z̃Ṽ |C̃) + I(B;ZB̃Z̃|Ṽ CC̃) (21)

R′2 + ρ2 < I(Ṽ ;ZB̃Z̃C|C̃) + I(B;ZB̃Z̃|Ṽ CC̃) (22)

ρ0 + ρ1 < I(C;Y ÃỸ Ũ |C̃) + I(A;Y ÃỸ |Ũ C̃C) (23)

ρ0 + ρ2 < I(C;ZB̃Z̃Ṽ |C̃) + I(B;ZB̃Z̃|Ṽ C̃C) (24)

ρ1 < I(A;Y ÃỸ |Ũ C̃C) (25)

ρ2 < I(B;ZB̃Z̃|Ṽ C̃C) (26)

Performing Fourier-Motzkin elimination on equations (14), (15-18) and (19-26), we obtain the statement

of the theorem.

To get a single-letter characterization of achievable rates, we need to ensure that the random variables in

each block follow a stationary joint distribution. We now describe how we ensure that the sequences in each

block are jointly distributed according to

PABC · PUV |C · PX|ABCUV · PY Z|X (27)
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Figure 4: The discrete memoryless broadcast channel with noisy feedback.

for some chosen PABC , PUV , and PX|ABCUV .

Suppose that the sequences in a given block are jointly distributed according to (27). These sequences

become the source pair (Ũ , Ṽ ), and the side-information (Ã, B̃, C̃, Ỹ , Z̃) in the next block. To cover the source

pair with (A,B,C), we pick a conditional distribution QABC|ÃB̃C̃ŨṼ Ỹ Z̃ such that the covering sequences are

distributed according to PABC . This holds when the consistency condition given by (6) is satisfied. We thereby

ensure that the sequences in each block are jointly distributed according to (27). Our technique of exploiting

the correlation induced by feedback is similar in spirit to the coding scheme of Han for two-way channels [15].

Note that the transmitter side information K̃ = (ÃB̃Ỹ Z̃) is exploited at the encoder in the covering

operation implicitly, without using codebooks conditioned on K̃. This is because this side information is only

partially available at the receivers, with receiver 1 having only (Ã, Ỹ ), and receiver 2 having only (B̃, Z̃).

Hence this approach can be extended to the case of noisy feedback in a straightforward way1. This is done is

the next section.

4 Noisy Feedback

A two-user discrete memoryless broadcast channel with noisy feedback is a quintuple (X ,Y,Z,S, PY ZS|X) of

input alphabet X , two output alphabets Y, Z, noisy feedback alphabet S and a set of probability distributions

PY ZS|X(·|x) on Y ×Z × S for every x ∈ X . The channel satisfies the following conditions for all n = 1, 2, . . . ,

P r(Yn = yn, Zn = zn, S = sn|Xn = x, Y n−1 = y, Zn−1 = z, Sn−1 = s) = PY ZS|X(yn, zn, sn|xn), (28)

for all yn ∈ Y, zn ∈ Z, sn ∈ S, x ∈ Xn, y ∈ Yn−1, s ∈ Sn−1 and z ∈ Zn−1. The schematic is shown in Figure

4. We note that we can obtain the broadcast channel with noiseless feedback as a special case by setting

S = Y × Z, and Sn = (Yn, Zn).

Definition 4.1. An (n,M0,M1,M2) transmission system for a given broadcast channel with noisy feedback

consists of

• A sequence of mappings for the encoder:

em : {1, 2, . . . ,M0} × {1, 2, . . . ,M1} × {1, 2, . . . ,M2} × Sm−1 → X , m = 1, 2, . . . , n, (29)

1This is in contrast to communication over a multiple-access channel with feedback, where there is a significant difference
between the noiseless feedback and noisy feedback [16].
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• A pair of decoder mappings:

g1 : Yn → {1, 2, . . . ,M0} × {1, 2, . . . ,M1}, g2 : Zn → {1, 2, . . . ,M0} × {1, 2, . . . ,M2}. (30)

The messages (W0,W1,W2) are uniformly distributed over the set {1, 2, . . . ,M0}×{1, 2, . . . ,M1}×{1, 2, . . . ,M2}.
The channel input at time n is given by Xn = en(W0,W1,W2, S

n−1). The average error probability of the

above transmission system is given by

τ =
1

M0M1M2

M0∑
k=1

M1∑
i=1

M2∑
j=1

Pr ((g1(Y n), g2(Zn)) 6= ((k, i), (k, j))|(W0,W1,W2) = (k, i, j)) . (31)

The definition of achievable rates and the capacity region for a broadcast channel with noisy feedback is

identical to Definition 2.2. We now state the second result of the paper, an achievable rate region for the

discrete memoryless broadcast channel with noisy feedback.

Definition 4.2. Given a broadcast channel with noisy feedback (X ,Y,Z,S, PY ZS|X), define P as the set of

all distributions P on U × V ×A× B × C × X × Y × Z of the form

PABC PUV |C PX|ABCUV PY Z|X ,

where A, B, C, U , and V are arbitrary sets. Consider two sets of random variables (U, V,A,B,C,X, Y, Z, S)

and (Ũ , Ṽ , Ã, B̃, C̃, X̃, Ỹ , Z̃, S̃) each having the same distribution P . For brevity, we often refer to the collection

(A,B, S) as K, to (Ã, B̃, S̃) as K̃, and to A× B × S as K. Hence

PŨṼ C̃K̃Ỹ Z̃ = PUV CKY Z = P.

For a given P ∈ P, define Q(P ) as the set of conditional distributions Q that satisfy the following consis-

tency condition

PABC(a, b, c) =
∑

ũ,ṽ,,k̃,c̃∈U×V×K×C

QABC|ŨṼ K̃C̃(a, b, c|ũ, ṽ, k̃, c̃)PUVKC(ũ, ṽ, k̃, c̃), ∀(a, b, c). (32)

Then for any P ∈ P and Q ∈ Q(P ), the joint distribution of the two sets (U, V,K,C,X, Y, Z) and (Ũ , Ṽ , K̃, C̃, X̃, Ỹ , Z̃)

is

PŨṼ K̃C̃X̃Ỹ Z̃ QABC|ŨṼ C̃K̃ PUVKXY Z|ABC . (33)

With the above definitions, we have the following theorem:

Theorem 2. Given a broadcast channel with noisy feedback (X ,Y,Z,S, PY ZS|X), for any distribution P ∈ P
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and Q ∈ Q(P ), the following rate region is achievable.

R0 < min{T1, T2, T3, T4, T5} (34)

R0 +R1 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃) (35)

R0 +R2 < I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃) (36)

R0 +R1 +R2 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃)− I(U ;V |C) (37)

+ I(Ṽ ;C|C̃) + I(Ṽ B;ZZ̃B̃|CC̃)− I(ŨK̃A;B|CṼ C̃)

R0 +R1 +R2 < I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃)− I(U ;V |C) (38)

+ I(Ũ ;C|C̃) + I(ŨA;Y Ỹ Ã|CC̃)− I(Ṽ K̃B;A|CŨC̃)

2R0 +R1 +R2 < I(ŨAC;Y Ỹ Ã|C̃)− I(Ṽ K̃;AC|Ũ C̃)− I(U ;V |C) (39)

+ I(Ṽ BC;ZZ̃B̃|C̃)− I(ŨK̃;BC|Ṽ C̃)− I(A;B|CC̃ŨṼ K̃)

where

T1 , I(AC;Y Ỹ Ã|C̃Ũ)− I(Ṽ K̃;AC|C̃Ũ)

T2 , I(BC;ZZ̃B̃|C̃Ṽ )− I(ŨK̃;BC|C̃Ṽ )

T3 , I(AC;Y Ỹ Ã|C̃Ũ) + I(B;ZZ̃B̃|C̃Ṽ C)− I(Ṽ K̃;AC|C̃Ũ)− I(ŨK̃A;B|CC̃Ṽ )

T4 , I(A;Y Ỹ Ã|C̃ŨC) + I(BC;ZZ̃B̃|C̃Ṽ )− I(Ṽ K̃B;A|CC̃Ũ)− I(ŨK̃;BC|C̃Ṽ )

T5 ,
1

2

[
I(AC;Y Ỹ Ã|C̃Ũ)− I(Ṽ K̃;AC|C̃Ũ) + I(BC;ZZ̃B̃|C̃Ṽ )− I(ŨK̃;BC|C̃Ṽ )− I(A;B|CC̃ŨṼ K̃)

]
Proof. This theorem is obtained by replacing K = (A,B, Y, Z) in Theoem 1 by K = (A,B, S). The proof of

this theorem is identical to that of Theorem 1, and is omitted.

5 Special Cases and Examples

In this section, we obtain a simpler version of the rate region of Theorem 1, and use it to compute achievable

rates for two examples.

5.1 A Simpler Rate Region

Corollary 5.1. Given a broadcast channel with noisy feedback (X ,Y,Z,S, PY ZS|X), define any joint distri-

bution P of the form

PC0PWUV PX|WUV C0
PY ZS|X . (40)

for some discrete random variables W,U, V,C0. Let (C0,W,U, V,X, Y, Z, S) and (C̃0, W̃ , Ũ , Ṽ , X̃, Ỹ , Z̃, S̃) be

two sets of variables each distributed according to P and jointly distributed as

PC̃0W̃ ŨṼ X̃Ỹ Z̃S̃ QC0|C̃0W̃ ŨṼ S̃ PWUVXY ZS|C0
. (41)
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where QC0|C̃0W̃ ŨṼ S̃ is a distribution such that

PC0(c0) =
∑

c̃0,w̃,ũ,ṽ,s̃

QC0|C̃0W̃ ŨṼ S̃(c0|c̃0, w̃, ũ, ṽ, s̃)P (c̃0, w̃, ũ, ṽ, s̃), ∀c0 ∈ C0. (42)

Then the following region is achievable.

R0 < min{T1, T2} (43)

R0 +R1 < I(UW ;Y |C0) + I(C0;Y |Ỹ C̃0W̃ ) + I(C0; Ỹ |C̃0W̃ Ũ)− I(Ṽ S̃;C0|C̃0W̃ Ũ) (44)

R0 +R2 < I(VW ;Z|C0) + I(C0;Z|Z̃C̃0W̃ ) + I(C0; Z̃|C̃0W̃ Ṽ )− I(Ũ S̃;C0|C̃0W̃ Ṽ ) (45)

R0 +R1 +R2 < I(UW ;Y |C0) + I(C0;Y |Ỹ C̃0W̃ ) + I(C0; Ỹ |C̃0W̃ Ũ)− I(Ṽ S̃;C0|C̃0W̃ Ũ) (46)

+ I(C0; Ṽ |C̃0W̃ ) + I(Ṽ ; Z̃|C0C̃0W̃ )− I(U ;V |W )

R0 +R1 +R2 < I(VW ;Z|C0) + I(C0;Z|Z̃C̃0W̃ ) + I(C0; Z̃|C̃0W̃ Ṽ )− I(Ũ S̃;C0|C̃0W̃ Ṽ ) (47)

+ I(C0; Ũ |C̃0W̃ ) + I(Ũ ; Ỹ |C0C̃0W̃ )− I(U ;V |W )

2R0 +R1 +R2 < I(UW ;Y |C0) + I(C0;Y |Ỹ C̃0W̃ ) + I(C0; Ỹ |C̃0W̃ Ũ)− I(Ṽ S̃;C0|C̃0W̃ Ũ) (48)

+ I(VW ;Z|C0) + I(C0;Z|Z̃C̃0W̃ ) + I(C0; Z̃|C̃0W̃ Ṽ )− I(Ũ S̃;C0|C̃0W̃ Ṽ )− I(U ;V |W )

where

T1 , I(C0; Ỹ |C̃0W̃ Ũ) + I(C0W ;Y |Ỹ C̃0W̃ Ũ)− I(Ṽ S̃;C0|C̃0W̃ Ũ)

T2 , I(C0; Z̃|C̃0W̃ Ṽ ) + I(C0W ;Z|Z̃C̃0W̃ Ṽ )− I(Ũ S̃;C0|C̃0W̃ Ṽ )

Proof. In Theorem 2, set A = B = φ, and C = (C0,W ), with

QC|C̃ŨṼ S̃ = QC0W |C̃0W̃ ŨṼ S̃ = PWQC0|C̃0W̃ ŨṼ S̃ .

This choice of QC|C̃ŨṼ S̃ ∈ Q(P ) if (42) is satisfied.

Dueck’s feedback example: The rate region of Corollary 5.1 yields the optimal rates for the example

described in Section 1. To see this, set

W = φ, (U, V ) ∼ PUV = PUPV , with PU (0) = PU (1) = PV (0) = PV (1) =
1

2

PC0
(0) = PC0

(1) =
1

2
(49)

X : (X0 = C0, X1 = U, X2 = V )

We define the distribution Q that generates C0 for each block from the variables of the previous block as

Q : C0 = Ỹ ⊕ Ũ = Z̃ ⊕ Ṽ (50)

Since Y ⊕ U = Z ⊕ V = N , the noise variable which is Bernoulli(1
2 ), the above choice satisfies (42). Finally,
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substituting (49) in Corollary 5.1, the mutual information quantities are

I(V ;Z|C0) = I(U ;Y |C0) = 0, I(C0;Y |Ỹ C̃0) = I(C0;Z|Z̃C̃0) = 1

I(C0; Ỹ |C̃0Ũ) = I(C0; Z̃|C̃0Ṽ ) = 1, I(Ṽ Ỹ Z̃;C0|C̃0Ũ) = I(Ũ Ỹ Z̃;C0|C̃0Ṽ ) = 1

I(C0; Ṽ |C̃0) = I(C0; Ũ |C̃0) = 1 I(Ũ ; Ỹ |C0C̃0) = I(Ṽ ; Z̃|C0C̃0) = 1

I(C0; Ỹ |C̃0Ũ) = I(C0; Z̃|C̃0Ũ) = 1, I(C0;Y |Ỹ C̃0Ũ) = I(C0;Z|Z̃C̃0Ṽ ) = 0.

Using these, we see that a rate of R1 = R2 = 1 is achievable.

5.2 The AWGN Broadcast Channel with Feedback

In this subsection, we compute the rate region of Corollary 5.1 for the scalar AWGN broadcast channel with

noiseless feedback and average power constraint P . We compare the obtained sum rate with: a) the maximum

sum rate in the absence of feedback, and b) the achievable region for the AWGN broadcast channel with

noiseless feedback obtained by Ozarow and Leung in [5] using a generalization of the Schalkwijk-Kailath

coding scheme [17].

The channel, with X = Y = Z = R, is described by

Y = X +N1, Z = X +N2, (51)

where N1, N2 are Gaussian noise variables with zero mean and unit variance. N1 and N2 are independent of

one another as well as the channel input X. The input sequence x for each block satisfies
∑n
i=1 x

2
i ≤ P .

In the absence of feedback, the capacity region of the AWGN broadcast channel is known [18,19] and can

be obtained from Marton’s inner bound using the following choice of random variables.

V =
√
ᾱPQ2, U =

√
αPQ1 +

αP

αP + σ2
V

where α ∈ (0, 1), and Q1, Q2 are independent Gaussian variables with zero mean and unit variance. The

Marton sum rate is then given by

Rno-FB = I(V ;Z) + I(U ;Y )− I(U ;V ) =
1

2
log2

(
1 +

P

σ2

)
. (52)

This is essentially the ‘writing on dirty paper’ coding strategy [20, 21]: for the channel from U to Y , V can

be considered as channel state information known at the encoder. We note that an alternate way of achieving

the no-feedback capacity region of the AWGN broadcast channel is through superposition coding [2].

Using Corollary 5.1, we now compute an achievable region for the channel (51) with noiseless feedback.2

The joint distribution PC0
PUV PX|C0UV is chosen as

V =
√
ᾱP1Q2, U =

√
αP1Q1 + βV (53)

X =
√
P − P1C0 +

√
ᾱP1Q2 +

√
αP1Q1 (54)

2Theorems 1 and 2 were established for a discrete memoryless broadcast channel with feedback. These theorems can be
extended to the AWGN broadcast channel using a similar proof, recognizing that in the Gaussian case superposition is equivalent
to addition.
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Figure 5: Achievable sum rates for the AWGN broadcast channel. The solid line shows the sum rate computed
using Corollary 5.1. The dashed line (a) is the no-feedback sum rate, and the dotted line (b) is the sum rate
of the Ozarow-Leung scheme.

where C0, Q1, Q2 are independent Gaussians with zero mean and unit variance, and α, β ∈ (0, 1), P1 ∈ (0, P )

are parameters to optimized later.

Next we define a conditional distribution QC0|C̃0ŨṼ Ỹ Z̃
that satisfies (42). Let

S̃1 =
Ũ − E[Ũ |Ỹ C̃0]√

E[(Ũ − E[Ũ |Ỹ C̃0])2]
. (55)

Then define QC0|C̃0ŨṼ Ỹ Z̃
by the relation

C0 =
√

1−DS̃1 + η (56)

where η is a Gaussian random variable with zero mean and variance D independent of S1.

In words, S̃1 is the normalized error in the estimate of Ũ at receiver 1. This estimation error is quantized at

distortion level D and suitably scaled to obtain C0. Thus, in each block, C0 represents a quantized version of

the estimation error at receiver 1 in the previous block. If we similarly denote by S̃2 the error in the estimate

of Ṽ at receiver 2, then S̃2 is correlated with S̃1. Therefore, C0 simultaneously plays the role of conveying

information about S̃2 to receiver 2. With the above choice of joint distribution, the information quantities in

Corollary 5.1 are computed and listed in Appendix A.

For different values of the signal-to-noise ratio P/σ2, we then numerically compute the maximum sum rate
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by optimizing over the parameters (α, β,D, P1). This is plotted in Figure 5. The figure also shows the sum rate

in the absence of feedback and the maximum sum rate of the Ozarow-Leung scheme with noiseless feedback.

We observe that the obtained sum rate is higher than the sum rate without feedback, but lower than that of

the Ozarow-Leung scheme. However, we emphasize that the Ozarow-Leung coding scheme is specific to the

AWGN broadcast channel and does not extend to other discrete memoryless broadcast channels, unlike the

rate region proposed in this paper.

For the AWGN broadcast channel with noisy feedback, a similar joint distribution can be used to obtain

achievable rates outside the no-feedback capacity region. In this case, the variable S̃1 should be defined as the

encoder’s estimate of the error at receiver 1. This is then quantized to C0, and sent to both receivers in the

subsequent block.

6 Comparison with the Shayevitz-Wigger (S-W) Rate Region

In [13], the following achievable rate region was proposed for a broadcast channel with noisy feedback.

Fact 1. S-W Region. Consider a broadcast channel with noisy feedback defined by PY ZS|X , where S denotes

the noisy feedback signal available to the transmitter. Let U0, U1, U2, V0, V1, V2 be discrete auxiliary random

variables jointly distributed according to

PU0U1U2 PX|U0U1U2
PY ZS|X PV0V1V2|U0U1U2S . (57)

Then the following rate region is achievable.

R0 + Θ1 < Θ2 (58)

R0 +R1 < I(U0U1;Y V1)− I(U0U1U2S;V1|V0Y )−Θ1 (59)

R0 +R2 < I(U0U2;ZV2)− I(U0U1U2S;V2|V0Z)−Θ1 (60)

R0 +R1 +R2 < I(U1;Y V1|U0) + I(U2;ZV2|U0)− I(U1;U2|U0) + Θ2 −Θ1

− I(U0U1U2S;V1|V0Y )− I(U0U1U2S;V2|V0Z) (61)

where

Θ1 , max{I(U0U1U2S;V0|Y ), I(U0U1U2S;V0|Z)}, Θ2 , min{I(U0;Y V1), I(U0;ZV2)}. (62)

Remark 1: There appears to be an error in the derivation of the rate region in [13]. In particular, there is

an inequality missing in the set of constraints obtained by performing Fourier-Motzkin elimination on equation

(35) in [13]. We have communicated this to the authors. The correct version of the S-W rate region is given

above.

Remark 2: The joint distribution of (V0, V1, V2) conditioned on all the other variables can be written as

PV0V1V2|U0U1U2S = PV0|U0U1U2S · PV1V2|V0U0U1U2S . (63)
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Now define another conditional distribution P ′V0V1V2|U0U1U2S
as

P ′V0V1V2|U0U1U2S
= PV0|U0U1U2S · PV1|V0U0U1U2S · PV2|V0U0U1U2S (64)

where we have used the marginals from (63) to define P ′. We observe that if we replace PV0V1V2|U0U1U2S by

P ′V0V1V2|U0U1U2S
in (57), the Shayevitz-Wigger region remains the same because at most one of V1 and V2

appears in each of the mutual information terms. Hence, without loss of generality, we can assume that the

joint distribution in (57) is of the form

PU0U1U2
PX|U0U1U2

PY ZS|X PV0|U0U1U2S PV1|V0U0U1U2S PV2|V0U0U1U2S . (65)

The S-W rate region is obtained using a block-Markov superposition coding scheme with several blocks

of transmission. The rates of the message are too high for the receivers to decode them directly at the end

of each block. At the end of the block, the encoder is therefore left with the task of transmitting a triple of

correlated sequences (U0,U1,U2) with side-information Y and Z available at decoders 1 and 2, respectively.

These correlated ‘sources’ at the encoder are covered using three random variables (V0, V1, V2), which are

transmitted in the following block using separate source-channel coding. Receiver 1 first recovers (V0, V1) and

then uses backward decoding with V1 as an additional output to decode its message from the previous block.

Receiver 2 decodes in a similar fashion using V2 as an additional output.

We now evaluate the rate region of Theorem 2 with a choice of random variables that results in the joint

distribution (65). We show that the resulting rate constraints on R0, R0 + R1, R0 + R2, and 2R0 + R1 + R2

are implied by the S-W rate constraints. Further, the R0 + R1 + R2 constraints are also implied by the S-W

constraints as long as a couple of conditions on the mutual information terms hold.

Proposition 6.1. Consider any joint distribution of the form (65) for which the following inequalities hold.

I(V0;U0U1|V1Y ) + I(V2;U2U0|V0Z) > I(V2;U2|U0Z),

I(V0;U0U2|V2Z) + I(V1;U1U0|V0Y ) > I(V1;U1|U0Y )
(66)

The S-W region evaluated with such a joint distribution is contained in the rate region of Theorem 2.

Proof. For a given broadcast channel with noisy feedback PY ZS|X , pick any joint distribution of the form (65).

We will evaluate Theorem 2 by identifying distributions P and Q ∈ Q(P ) such that the joint distribution

coincides with the one in (65). Consider the following choice of random variables. Pick A = (Ṽ1, U1), B =

(Ṽ2, U2), C = (Ṽ0, U0), and U = V = φ, where (U0, U1, U2) are jointly distributed according to PU0U1U2
,

and (Ṽ0, Ṽ1, Ṽ2) are jointly distributed according to PV0V1V2
, the marginals from (65). Further, (Ṽ0, Ṽ1, Ṽ2) is

independent of (U0, U1, U2). The input X is generated according to PX|U0U1U2
.

We choose a conditional distribution in Q(P ) to generate (A,B,C)l+1 from the information (U,V,C,K)l

as follows.

QCAB|ŨṼ C̃K̃ = QCAB|ÃB̃C̃S̃=Q
Ṽ0U0Ṽ1U1Ṽ2U2| ˜̃V1Ũ1

˜̃V2Ũ2
˜̃V0Ũ0S̃

, PU0U1U2PṼ0Ṽ1Ṽ2|Ũ0Ũ1Ũ2S̃
.

where PṼ0Ṽ1Ṽ2|Ũ0Ũ1Ũ2S̃
= PV0V1V2|U0U1U2S , the marginal from (65).

To summarize, the joint distribution over two successive blocks with C = (Ṽ0, U0), A = (Ṽ1, U1), B =
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(Ṽ2, U2), and U = V = φ is

P ˜̃V0
˜̃V1

˜̃V2
PŨ0Ũ1Ũ2

PX̃|Ũ0Ũ1Ũ2
PỸ Z̃|X̃ PṼ0Ṽ1Ṽ2|Ũ0Ũ1Ũ2S̃

PU0U1U2
PX|U0U1U2

PY Z|XPV0V1V2|U0U1U2S . (67)

Therefore, we have ensured that the joint distribution of the sequences (U0,U1,U2,X,Y,Z,S,V0,V1,V2)

is the same as that used for the Shayevitz-Wigger region in (65). Substituting C = (Ṽ0, U0), A = (Ṽ1, U1), B =

(Ṽ2, U2), and U = V = φ, the first constraint of Theorem 2 becomes

R0 +R1 < I(U0U1Ṽ1Ṽ0;Y Ỹ Ũ1|Ũ0)− I(Ũ1Ũ2S̃; Ṽ1Ṽ0|Ũ0)

(a)
= I(U0U1;Y ) + I(Ṽ0Ṽ1; Ỹ Ũ1|Ũ0)− I(Ũ1Ũ2S̃; Ṽ1Ṽ0|Ũ0)

(b)
= I(U0U1;Y ) + I(V0V1;Y U1|U0)− I(U0U1U2S;V1V0) + I(V1V0;U0)

(c)
= I(U0U1;Y ) + I(V0V1;Y U1U0)− I(U0U1U2SY ;V1V0)

= I(U0U1;Y ) + I(V0V1;U1U0|Y )− I(U0U1U2S;V1V0|Y ).

(68)

In the above, (a) is due to the fact that Y is independent of (Ũ0, Ũ1, Ỹ , Ṽ0, Ṽ1), as can be seen from (67). (b)

is true because (Ũ0, Ũ1, Ũ2, Ỹ , Z̃, S̃, Ṽ0, Ṽ1, Ṽ2) has the same joint distribution as

(U0, U1, U2, Y, Z, S, V0, V1, V2). (c) holds because I(Y ;V1V0|U0U1U2S) = 0, since Y − (U0, U1, U2, S)− (V1, V0)

form a Markov chain. The other rate constraints of Theorem 2 can be similarly evaluated, and are given

below.

R0 +R1 < I(U0U1;Y ) + I(V0V1;U1U0|Y )− I(U0U1U2S;V1V0|Y ) (69)

R0 +R2 < I(U0U2;Z) + I(V0V2;U2U0|Z)− I(U0U1U2S;V2V0|Z) (70)

R0 +R1 +R2 < I(U0U1;Y ) + I(U2;Z|U0) + I(V0V1;U1U0|Y ) + I(V2;U2U0|V0Z)

− I(U0U1U2S;V1V0|Y )− I(U0U1U2S;V2|V0Z)− I(U1;U2|U0) (71)

R0 +R1 +R2 < I(U1;Y |U0) + I(U0U2;Z) + I(V1;U1U0|V0Y ) + I(V0V2;U2U0|Z)

− I(U0U1U2S;V1|V0Y )− I(U0U1U2S;V2V0|Z)− I(U1;U2|U0) (72)

2R0 +R1 +R2 < I(U0U1;Y ) + I(U0U2;Z) + I(V0V1;U1U0|Y ) + I(V0V2;U2U0|Z)

− I(U0U1U2S;V1V0|Y )− I(U0U1U2S;V2V0|Z)− I(U1;U2|U0) (73)

(The R0 constraint of Theorem 2 does not appear because it subsumed by the above constraints.) We now

have the following lemma.

Lemma 6.1. Given a joint distribution PWUV PX|WUV PY ZS|XPV0|WUV SPV1|V0WUV SPV2|V0WUV S, the follow-

ing statements hold.

1. (69) is implied by (59).

2. (70) is implied by (60).

3. (73) is implied by (61) and (58).

4. (71) and (72) are implied by (61) if the inequalities in (66) hold.
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The proof of the lemma is given in Appendix B. This completes the proof that the rate region of Theorem

2 contains the S-W achievable region for the broadcast channel with noisy/noiseless feedback.

7 Proof of Theorem 1

7.1 Preliminaries

We shall use the notion of strong typicality as defined in [22]. Consider three finite sets V,Z1 and Z2, and an

arbitrary distribution PV Z1Z2 on them.

Definition 7.1. For any distribution PV on V, a sequence vn ∈ Vn is said to be ε-typical with respect to PV ,

if ∣∣∣∣ 1n#(a|vn)− PV (a)

∣∣∣∣ ≤ ε

|V| ,

for all a ∈ V, and no a ∈ V with PV (a) = 0 occurs in vn, where #(a|vn) denotes the number of occurrences of

a in vn. Let A
(n)
ε (PV ) denote the set of all sequences that are ε-typical with respect to PV .

The following are some of the properties of typical sequences that will be used in the proof.

Property 0: For all ε > 0, and for all sufficiently large n, we have PnV [A
(n)
ε (PV )] > 1− ε.

Property 1: Let vn ∈ A(n)
ε (PV ) for some fixed ε > 0. If a random vector Zn1 is generated from the product

distribution
∏n
i=1 PZ1|V (·|vi), then for all sufficiently large n, we have Pr[(vn, Zn1 ) 6∈ A(n)

ε̃ (PV Z1
)] < ε, where

ε̃ = ε(|V|+ |Z1|).
Property 2: Let vn ∈ A(n)

ε (PV ) for some fixed ε > 0. If a random vector Zn1 is generated from the product

distribution
∏n
i=1 PZ1|V (·|vi) and Zn2 is generated from the product distribution

∏n
i=1 PZ2|V (·|vi), then for all

sufficiently large n, we have

2−nδ(ε) 2nH(Z1Z2|V )

2nH(Z1|V ) 2nH(Z2|V )
< Pr[(vn, Zn1 , Z

n
2 ) ∈ A(n)

ε̃ (PV Z1Z2)] <
2nδ(ε) 2nH(Z1Z2|V )

2nH(Z1|V ) 2nH(Z2|V )
,

where ε̃ = ε(|V|+ |Z1||Z2|), and δ(ε) is a continuous positive function of ε that goes to 0 as ε→ 0.

7.2 Random Codebook Generation

Fix a distribution PUV ABCXY Z from P and a conditional distribution QABC|ŨṼ K̃C̃ satisfying (6), as required

by the statement of the theorem. Fix a positive integer L. There are L blocks in encoding and decoding.

Fix positive real numbers R′1, R
′
2, R0,R1, R2, ρ0, ρ1 and ρ2 such that R′1 > R1 and R′2 > R2, where these

numbers denote the rates of codebooks to be constructed as described below. Fix ε > 0 and a positive integer

n. n denotes the block length. Recall that K denotes the collection (A,B, Y, Z), and K denotes the set

A× B × Y × Z. Let ε[l] = ε(4|K|2|U|2|V|2|C|2)l for l = 0, 1, 2, . . . , L.

For l = 1, 2, 3, . . . , L independently perform the following random experiments.

• For each sequence c ∈ Cn, generate 2n(R′1−R1) sequences U[l,i,c], i = 1, 2, . . . , 2n(R′1−R1), independently

where each sequence is generated from the product distribution
∏n
i=1 PU |C(·|ci). Call this the first U -bin.

Independently repeat this experiment 2nR1 times to generate 2nR1 U -bins, and a total of 2nR
′
1 sequences.

The ith sequence in the jth bin is U[l,(j−1)2nR1+i,c].
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• For each sequence c ∈ Cn, similarly generate 2nR2 V -bins each containing 2n(R′1−R1) sequences with each

sequence being generated from the product distribution
∏n
i=1 PV |C(·|ci). The ith sequence in the jth

bin is V[l,(j−1)2nR2+i,c].

• For each sequence c̃ ∈ Cn, generate 2nρ0 sequences C[l,i,c̃], i = 1, 2, . . . , 2nρ0 , independently where each

sequence is generated from
∏n
i=1 PC|C̃(·|c̃i).

• For each (ũ, c̃, c) ∈ Un × C2n generate independently 2nρ1 sequences A[l,i,ũ,c̃,c], for i = 1, 2, . . . , 2nρ1 ,

where each sequence is generated from
∏n
j=1 PA|ŨC̃C(·|ũj , c̃j , cj).

• For each (ṽ, c̃, c) ∈ Vn × C2n generate independently 2nρ2 sequences B[l,i,ṽ,c̃,c], for i = 1, 2, . . . , 2nρ2 ,

where each sequence is generated from
∏n
j=1 PB|Ṽ C̃C(·|ṽj , c̃j , cj).

• For each (a,b, c,u,v) ∈ An × Bn ×Cn × Un × Vn generate one sequence X[l,a,b,c,u,v] using∏n
i=1 PX|ABCUV (·|ai, bi, ci, ui, vi).

Generate independently a tuple of sequences (U[0],V[0],K[0],C[0]) from the product distribution PnU,V,K,C .

These sequences are known to all terminals before transmission begins.

7.3 Encoding Operation

Let W0[l] denote the common message, and W1[l],W2[l], the private messages for block l. These are inde-

pendent random variables distributed uniformly over {1, 2, . . . , 2nR0}, {1, 2, . . . , 2nR1}, and {1, 2, . . . , 2nR2},
respectively. We set W0[0] = W1[0] = W2[0] = W0[L] = W1[L] = W2[L] = 1. For each block l, the encoder

chooses a quintuple of sequences (A[l],B[l],C[l],U[l],V[l]) from the five codebooks generated above, according

to the encoding rule described below. The channel input, and channel output sequences in block l are denoted

X[l], Y[l] and Z[l], respectively.

Blocks l = 1, 2, 3, . . . , L : The encoder performs the following sequence of operations.

• Step 1: The encoder chooses a triple of indices (G0[l], G1[l], G2[l]) such that

G0[l] mod 2nR0 = W0[l],

and the tuple (U[l − 1],V[l − 1],K[l − 1],C[l − 1]) is jointly ε[l]-typical with the triple of sequences

(C[l,G0[l],C[l−1]],A[l,G1[l],U[l−1],C[l−1],C[l,G0[l],C[l−1]]],B[l,G2[l],V[l−1],C[l−1],C[l,G0[l],C[l−1]]]),

with respect to PŨ,Ṽ ,K̃,C̃,C,A,B . If no such index triple is found, it declares error and sets (G0[l], G1[l], G2[l]) =

(1, 1, 1).

The encoder then sets

C[l] = C[l,G0[l],C[l−1]], A[l] = A[l,G1[l],U[l−1],C[l−1],C[l,G0[l],C[l−1]]], B[l] = B[l,G2[l],V[l−1],C[l−1],C[l,G0[l],C[l−1]]].

• Step 2: The encoder chooses a pair of indices (G3[l], G4[l]) such that the triple of sequences

(U[l,G3[l],C[l]],V[l,G4[l],C[l]],C[l])
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is ε-typical with respect to PUV C , and U[l,G3[l],C[l]] belongs to the U -bin with indexW1[l], and V[l,G4[l],C[l]]

belongs to the V -bin with index W2[l]. If no such index pair is found, it declares error and sets

(G3[l], G4[l]) = (1, 1).

The encoder then sets U[l] = U[l,G3[l],C[l]], V[l] = V[l,G4[l],C[l]], and X[l] = X[l,A[l],B[l],C[l],U[l],V[l]]. The

encoder sends X[l] as the channel input sequence for block l.

• Step 3: The broadcast channel produces (Y[l],Z[l]).

• Step 4: After receiving (Y[l],Z[l]) via the feedback link, the encoder sets K[l] = (A[l],B[l],Y[l],Z[l]).

7.4 Decoding Operation

Block 1:

• The first decoder receives Y[1], and the second decoder receives Z[1].

• The first decoder determines the unique index pair (Ĝ01[1], Ĝ1[1]) such that the tuples

(C[0],A[0],U[0],Y[0]) and (C̄1[1],A[1,Ĝ1[1],U[0],C[0],C̄1[1]],Y[1])

are jointly ε[l]-typical with respect to PC̃ÃŨỸ CAY , where C̄1[1] , C[1,Ĝ01[1],C[0]]. Note that C̄1[1] is the

estimate of C[1] at the first decoder.

If not successful in this operation, the first decoder declares an error and sets (Ĝ01[1], Ĝ1[1]) = (1, 1),

and C̄1[1] , C[1,Ĝ01[1],C[0]].

• The first decoder outputs Ŵ0[1] = Ĝ01[1] mod 2nR0 , and sets

Ā[1] = A[1,Ĝ1[1],U[0],C[0],C̄1[1]].

Ā[1] is the first decoder’s estimate of A[1].

• The second decoder determines the unique index pair (Ĝ02[1], Ĝ2[1]) such that the tuples

(C[0],B[0],V[0],Z[0]) and (C̄2[1],B[1,Ĝ2[1],V[0],C[0],C̄2[1]]),Z[1])

are jointly ε[l]-typical with respect to PC̃B̃Ṽ Z̃CBZ , where C̄2[1] , C[1,Ĝ02[1],C[0]]. Note that C̄2[1] is the

estimate of C[1], at the second decoder.

If not successful in this operation, the second decoder declares an error and sets (Ĝ02[1], Ĝ2[1]) = (1, 1),

and C̄2[1] , C[1,Ĝ02[1],C[0]].

• The second decoder outputs W̄0[1] = Ĝ02[1] mod 2nR0 , and sets

B̄[1] = B[1,Ĝ2[1],V[0],C[0],C̄2[1]].

B̄[1] is the second decoder’s estimate of B[1].

Block l, l = 2, 3, . . . , L:
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• The first decoder receives Y[l] and the second decoder receives Z[l].

• The first decoder determines the unique index triple (Ĝ01[l], Ĝ1[l], Ĝ3[l − 1]) such that the tuples

(C̄1[l − 1], Ā[l − 1], Ū[l − 1],Y[l − 1]) and (C̄1[l],A[l,Ĝ1[l],Ū[l−1],C̄1[l−1],C̄1[l]],Y[l])

are jointly ε[l]-typical with respect to PC̃ÃŨỸ CAY , where

Ū[l − 1] , U[(l−1),Ĝ3[l−1],C̄1[l−1]], C̄1[l] , C[l,Ĝ01[l],C̄1[l−1]].

If not successful in this operation, the first decoder declares an error and sets (Ĝ01[l], Ĝ1[l], Ĝ3[l− 1]) =

(1, 1, 1), and

Ū[l − 1] = U[(l−1),1,C̄1[l−1]], C̄1[l] , C[l,1,C̄1[l−1]].

Note that Ū[l − 1] and C̄1[l] are the estimates of U[l − 1] and C[l], respectively, at the first decoder.

• The first decoder then outputs Ŵ0[l] = Ĝ01[l] mod 2nR0 , and Ŵ1[l − 1] as the index of U -bin that

contains the sequence U[(l−1),Ĝ3[l−1],C̄1[l−1]]. The decoder sets

Ā[l] = A[l,Ĝ1[l],Ū[l−1],C̄1[l−1],C̄1[l]].

Ā[l] is the first decoder’s estimate of A[l].

• The second decoder determines the unique index triple (Ĝ02[l], Ĝ2[l], Ĝ4[l − 1]) such that the tuples

(C̄2[l − 1], B̄[l − 1], V̄[l − 1],Z[l − 1]) and (C̄2[l],B[l,Ĝ2[l],V̄[l−1],C̄2[l−1],C̄2[l]],Z[l])

are jointly ε[l]-typical with respect to PC̃B̃Ṽ Z̃CBZ , where, where

V̄[l − 1] , V[(l−1),Ĝ4[l−1],C̄2[l−1]], C̄2[l] , C[l,Ĝ02[l],C̄2[l−1]].

If not successful in this operation, the second decoder declares an error and sets (Ĝ02[l], Ĝ2[l], Ĝ4[l−1]) =

(1, 1, 1), and

V̄[l − 1] , V[(l−1),1,C̄2[l−1]], C̄2[l] , C[l,1,C̄2[l−1]];

Note that V̄[l − 1] and C̄2[l] are the estimates of V[l − 1] and C[l], respectively, at the second decoder.

• The second decoder then outputs W̄0[l] = Ĝ02[l] mod 2nR0 , and Ŵ2[l − 1] as the index of V -bin that

contains the sequence V[(l−1),Ĝ4[l−1],C̄2[l−1]]. The decoder sets

B̄[l] = B[l,Ĝ2[l],V̄[l−1],C̄2[l−1],C̄2[l]].

B̄[l] is the second decoder’s estimate of B[l].

7.5 Error Analysis

Let E[0] denote the event that (U[0],K[0],V[0],C[0]) is not ε[0]-typical with respect to PUKV C . By Property

0, we have Pr[E[0]] ≤ ε for all sufficiently large n.
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Block 1: Let E1[1] denote the event that the encoder declares error in step 1 of encoding (described in Section

7.3). Let E2[1] denote the event that the encoder declares error in the second step. Let E3[1] denote the event

that the tuples

(U[0],V[0],K[0],C[0]) and (U[1],V[1],K[1],C[1])

are not jointly ε[1]-typical with respect to PŨṼ K̃C̃UV KC . Let E4[1] denote the event that (Ĝ01[1], Ĝ1[1]) 6=
(G0[1], G1[1]) and E5[1] denote the event that (Ĝ02[1], Ĝ2[1]) 6= (G0[1], G2[1]). The error event in Block 1 is

given by E[1] = E1[1] ∪ E2[1] ∪ E3[1] ∪ E4[1] ∪ E5[1].

Lemma 7.1. Pr[E1[1]|E[0]c] ≤ ε for all sufficiently large n if R0, ρ0, ρ1, and ρ2 satisfy

ρ0 > I(Ũ Ṽ K̃;C|C̃) +R0 + 2δ(ε[1]) (74)

ρ0 + ρ1 > I(Ṽ K̃;A|CC̃Ũ) + I(Ũ Ṽ K̃;C|C̃) +R0 + 2δ(ε[1]) (75)

ρ0 + ρ2 > I(ŨK̃;B|CC̃Ṽ ) + I(Ũ Ṽ K̃;C|C̃) +R0 + 2δ(ε[1]) (76)

ρ0 + ρ1 + ρ2 > I(Ṽ K̃;A|CC̃Ũ) + I(ŨK̃;B|CC̃Ṽ ) + I(A;B|Ũ Ṽ K̃CC̃) + I(Ũ Ṽ K̃;C|C̃) +R0 + 2δ(ε[1]) (77)

Proof. See Appendix C.

Lemma 7.2. Pr[E2[1]|E[0]c] ≤ ε for all sufficiently large n if R′1, R
′
2, and R1, R2 satisfy

R′1 +R′2 −R1 −R2 > I(U ;V |C) + δ(ε[1]) (78)

Proof. Follows along the lines of the proof of Lemma 7.1. It is omitted for conciseness.

From Property 1, it follows that Pr[E3[1]|E1[1]c, E2[1]c, E[0]c] ≤ ε for all sufficiently large n.

Lemma 7.3. Pr[E4[1] ∪ E5[1] | E3[1]c, E2[1]c, E1[1]c, E[0]c] ≤ 2ε, if

ρ0 + ρ1 < I(C;Y ÃỸ Ũ |C̃) + I(A;Y ÃỸ |Ũ C̃C)− δ(ε[1]) (79)

ρ0 + ρ2 < I(C;ZB̃Z̃Ṽ |C̃) + I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[1]) (80)

ρ1 < I(A;Y ÃỸ |Ũ C̃C)− δ(ε[1]) (81)

ρ2 < I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[1]) (82)

Proof. The proof is very similar to that of Lemma 7.4 given below, and is omitted for conciseness.

Hence P [E[1]|E[0]c] < 5ε if the conditions given in Lemmas 7.1, 7.2, and 7.3 are satisfied. This implies

that Ā[1] = A[1], C̄1[1] = C̄2[1] = C[1], and similarly B̄[1] = B[1] with high probability.

Block 2: Let E1[2] denote the event that the encoder declares error in step 1 of encoding, and E2[2] the event

that the encoder declares error in step 2 of encoding. Let E3[2] denote the event that the tuples

(U[1],V[1],K[1],C[1]) and (U[2],V[2],K[2],C[2])
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are not jointly ε[2]-typical with respect to PŨṼ K̃C̃UV KC . Let E4[2] denote the event that{
(Ĝ01[2], Ĝ1[2], Ĝ3[1]) 6= (G0[2], G1[2], G3[1])

}
Similarly, let E5[2] denote the event that{

(Ĝ02[2], Ĝ2[2], Ĝ4[1]) 6= (G0[2], G2[2], G4[1])
}

Hence the error event in this block is given by E[2] = ∪5
i=1Ei[2]. In the following we show that P [E[2]|E[1]cE[0]c]

is small under certain conditions.

Using arguments similar to those used in Block 1, one can show that if ρ0, ρ1, ρ2, R′1, R
′
2, R1 and R2 satisfy

the conditions given in (78) and (74-77) with ε[1] replaced with ε[2], then for all sufficiently large n,

Pr[E1[2] ∪ E2[2] ∪ E3[2]|E[1]c, E[0]c] ≤ 3ε.

Lemma 7.4. Pr[E4[2] ∪ E5[2] | E3[2]c, E2[2]c, E1[2]c, E[1]c, E[0]c] ≤ 2ε, if

R′1 + ρ0 + ρ1 < I(Ũ ;Y Ỹ Ã|C̃) + I(C;Y ÃỸ Ũ |C̃) + I(A;Y ÃỸ |Ũ C̃C)− δ(ε[2]) (83)

R′1 + ρ1 < I(Ũ ;Y ÃỸ C|C̃) + I(A;Y ÃỸ |Ũ C̃C)− δ(ε[2]) (84)

R′2 + ρ0 + ρ2 < I(Ṽ ;ZZ̃B̃|C̃) + I(C;ZB̃Z̃Ṽ |C̃) + I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[2]) (85)

R′2 + ρ2 < I(Ṽ ;ZB̃Z̃C|C̃) + I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[2]) (86)

ρ0 + ρ1 < I(C;Y ÃỸ Ũ |C̃) + I(A;Y ÃỸ |Ũ C̃C)− δ(ε[2]) (87)

ρ0 + ρ2 < I(C;ZB̃Z̃Ṽ |C̃) + I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[2]) (88)

ρ1 < I(A;Y ÃỸ |Ũ C̃C)− δ(ε[2]) (89)

ρ2 < I(B;ZB̃Z̃|Ṽ C̃C)− δ(ε[2]) (90)

Proof. See Appendix D.

Hence Pr[E[2]|E[1]cE[0]c] < 5ε. Under the event (E[2]c ∩ E[1]c ∩ E[0]c), we have Ā[2] = A[2], C̄1[2] =

C̄2[2] = C[2], and B̄[2] = B[2].

Block l, l = 3, 4, . . . , L:

Let E1[l] denote the event that the encoder declares error in the step 1 of encoding, and E2[l] the event

that it declares error in step 2 of decoding. Let E3[l] denote the event that the tuples

(U[l − 1],V[l − 1],K[l − 1],C[l − 1]) and (U[l],V[l],K[l],C[l])

are not jointly ε[l]-typical with respect to PŨṼ K̃C̃UV KC . Let E4[l] denote the event that{
(Ĝ01[l], Ĝ1[l], Ĝ3[l − 1]) 6= (G0[l], G1[l], G3[l − 1])

}
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Similarly, let E5[l] denote the event that{
(Ĝ02[l], Ĝ2[l], Ĝ4[l − 1]) 6= (G0[l], G2[l], G4[l − 1])

}
Hence the error event in this block is given by E[l] = ∪5

i=1Ei[l]. Using the arguments similar to those used

in block 2, it can be shown that Pr[E[l]| ∩l−1
i=0 E[i]c] ≤ 5ε for all sufficiently large n if the conditions given in

(78), (74)-(77) and (83)-(90) are satisfied with ε[1] and ε[2] are replaced with ε[l].

Overall Probability of Decoding Error : Hence the probability of decoding error over L blocks

satisfies

Pr[E] = Pr
[
∪Ll=0E[l]

]
≤ 5εL

if the conditions given in (78), (74)-(77) and (83)-(90) are satisfied with δ(ε[1]) and δ(ε[2]) are replaced with

θ, where θ =
∑L
i=1 δ(ε[l]). This implies that the rate region given by (14), (15)-(18), (19)-(26) is achievable.

By applying Fourier-Motzkin elimination to these equations, we obtain that the rate region given in the

statement of the theorem is achievable. The details of this elimination are omitted since they are elementary,

but somewhat tedious.

8 Conclusion

We have derived a single-letter rate region for the two-user broadcast channel with feedback. Using the Marton

coding scheme as the starting point, our scheme uses three additional random variables (A,B,C) to cover the

correlated information generated at the end of each block. The key to obtaining a single-letter characterization

was to impose a constraint on the distribution used to generate these covering variables. A similar idea was

used in [16] for multiple-access channels with feedback. This approach to harnessing correlated information is

quite general, and it is likely that it can be used to obtain improved rate regions for other multi-user channels

with feedback such as interference and relay channels.
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APPENDIX

A Mutual Information terms for the AWGN example

With the joint distribution described in Section 5.2, we first compute the following quantities.

Mu , E[(Ũ − E[Ũ |Ỹ C̃0])2] = αP1

(
σ2 + β̄ᾱP1

P1 + σ2

)2

+ ᾱP1

(
βσ2 − αP1β̄

P1 + σ2

)2

+ σ2

(
αP1 + βᾱP1

P1 + σ2

)2

(91)

var(S̃1|C̃0Z̃) , E[(S̃1 − E[S̃1|C̃0Z̃])2] = 1− P 2
1 σ

4(α+ ᾱβ)2

Mu(P1 + σ2)3
(92)

var(S̃1|C̃0Ṽ Z̃) , E[(S̃1 − E[S̃1|C̃0Ṽ Z̃])2] = 1− (αP1σ
2 + αᾱβ̄P 2

1 )2

Mu(P1 + σ2)2(αP1 + σ2)
− ᾱP1(βσ2 − αP1β̄)2

Mu(P1 + σ2)2
(93)

In terms of the above quantities, the mutual information terms are

I(V ;Z|C0) =
1

2
log2

(
P1 + σ2

αP1 + σ2

)
I(U ;Y |C0) =

1

2
log2

(
(P1 + σ2)(α+ β2ᾱ)

(P1 + σ2)(α+ β2ᾱ)− P1(α+ βᾱ)2

)
I(U ;V ) =

1

2
log2

(
1 +

β2ᾱ

α

)
I(C0; Ũ |C̃0Ỹ ) =

1

2
log2

(
1

D

)
I(C0; Ṽ |C̃0Z̃) =

1

2
log2

(
(1−D)var(S̃1|C̃0Z̃) +D

(1−D)var(S̃1|C̃0Ṽ Z̃) +D

)

I(C0;Z|C̃0Ṽ Z̃) =
1

2
log2

(
1 +

(P − P1)((1−D)var(S̃1|C̃0Ṽ Z̃) +D)

P1 + σ2

)

I(C0;Z|C̃0Z̃) =
1

2
log2

(
1 +

(P − P1)((1−D)var(S̃1|C̃0Z̃) +D)

P1 + σ2

)

I(C0;Y |Ỹ C̃0) =
1

2
log2

(
P + σ2

P1 + σ2

)
I(Ũ Ỹ ;C0|C̃0Ṽ Z̃) =

1

2
log2

(
1 +

1−D
D

var(S̃1|C̃0Ṽ Z̃)

)
I(Ṽ Z̃;C0|C̃0Ũ Ỹ ) = 0

B Proof of Lemma 6.1

We start with the first claim of the lemma. (59) implies the following constraint for the S-W region.

R0 +R1 < I(U0U1;Y V1)− I(U0U1U2S;V0V1|Y )

= I(U0U1;Y ) + I(U0U1;V1|Y )− I(U0U1U2S;V0V1|Y )

= I(U0U1; Y) + I(U0U1; V0V1|Y)− I(U0U1U2S; V0V1|Y)− I(U0U1;V0|V1Y )

(94)
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where we observe that the part in boldface is the right hand side of (69). Therefore, (69) is implied by (59).

In a similar manner, one can show that (70) is implied by (60).

Adding (58) and (61), we get the following S-W constraint.

2R0 +R1 +R2 < I(U1;Y V1|U0) + I(U2;ZV2|U0)− I(U1;U2|U0) + 2Θ2 − 2Θ1

− I(U0U1U2S;V1|V0Y )− I(U0U1U2S;V2|V0Z)
(95)

(95) implies the following constraint for the S-W region.

2R0 +R1 +R2 < I(U1;Y V1|U0) + I(U2;ZV2|U0)− I(U1;U2|U0) + I(U0;ZV2) + I(U0;Y V1)

− I(U0U1U2S;V1V0|Y )− I(U0U1U2S;V2V0|Z)

= I(U0U1;Y V1) + I(U0U2;ZV2)− I(U1;U2|U0)− I(U0U1U2S;V1V0|Y )− I(U0U1U2S;V2V0|Z)

= I(U0U1;Y ) + I(U0U2;Z) + I(U0U1;V1|Y ) + I(U0U2;V2|Z)− I(U1;U2|U0)

− I(U0U1U2S;V1V0|Y )− I(U0U1U2S;V2V0|Z)

= I(U0U1; Y) + I(U0U2; Z) + I(U0U1; V0V1|Y) + I(U0U2; V0V2|Z)− I(U1; U2|U0)

−I(U0U1U2S; V1V0|Y)− I(U0U1U2S; V2V0|Z)− I(U0U1;V0|V1Y )− I(U0U2;V0|V2Z)

(96)

where the part in boldface is the right hand side of (73). Hence (73) is implied by (58) and (61)

Finally, (61) implies the following constraint for the S-W region.

R0 +R1 +R2 < I(U0U1;Y V1)− I(U0U1U2S;V1V0|Y )− I(U1;U2|U0) + I(U2;ZV2|U0)− I(U0U1U2S;V2|V0Z)

= I(U0U1;Y ) + I(U0U1;V1|Y )− I(U0U1U2S;V1V0|Y )− I(U1;U2|U0)

+ I(U2;Z|U0) + I(U2;V2|U0Z)− I(U0U1U2S;V2|V0Z)

= I(U0U1;Y ) + I(U0U1;V0V1|Y )− I(U0U1;V0|V1Y )− I(U0U1U2S;V1V0|Y )− I(U1;U2|U0)

+ I(U2;Z|U0) + I(U2;V2|U0Z)− I(U0U1U2S;V2|V0Z) + I(U0U2;V2|V0Z)− I(U0U2;V2|V0Z)

= I(U0U1; Y) + I(U2; Z|U0)− I(U0U1U2S; V1V0|Y)− I(U0U1U2S; V2|V0Z)− I(U1; U2|U0)

+I(U0U1; V0V1|Y) + I(U0U2; V2|V0Z) + I(U2;V2|U0Z)− I(U0U2;V2|V0Z)− I(U0U1;V0|V1Y )

(97)

where the part in bold-face is the right hand side of (71). Thus, (71) is implied by (61) if

I(U2;V2|U0Z)− I(U0U2;V2|V0Z)− I(U0U1;V0|V1Y ) < 0,

which is the first condition in (66). Similarly, one can show that (72) is implied by (61) if the second condition

in (66) holds.
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C Proof of Lemma 7.1

For a given sequence quadruple (ũn, ṽn, k̃n, c̃n) ∈ A(n)
ε[0](Ũ , Ṽ , K̃, C̃), let G(ũn, ṽn, k̃n, c̃n) denote the function

given by

G =
∑
i,j,k

φ(i, j, k)

where φ(i, j, k) = 1 if

i mod 2nR0 = W0[1] AND (ũn, ṽn, k̃n, c̃n,C[1,i,c̃n],A[1,j,ũn,c̃n,C[1,i,c̃n]]B[1,k,ṽn,c̃n,C[1,i,c̃n]]) ∈ A
(n)
ε[1](Ũ , Ṽ , K̃, C̃, A,B,C)

and equals 0 otherwise. We will show that Pr[G = 0] ≤ ε for sufficiently large n if ρ0, ρ1, and ρ2 satisfy the

conditions given in the statement of the lemma. Using Chebyshev’s inequality, we have

Pr[G = 0] ≤ var(G)

(E[G])2
=
E[G2]− (E[G])2

(E[G])2
. (98)

We will now compute E[G] and E[G2].

Using Property 2 of typical sequences in Section 7.1, we have

E[G] =
∑
i,j,k

Pr[φ(i, j, k) = 1]

≥ 2n(ρ0+ρ1+ρ2−R0−δ(ε[1]))2nH(ABC|ŨṼ K̃C̃)

2nH(C|C̃)2nH(A|ŨC̃C)2nH(B|Ṽ C̃C)

=
2n(ρ0+ρ1+ρ2−R0−δ(ε[1]))

2nI(ŨṼ K̃;C|C̃)2nI(ŨK;B|CC̃Ṽ )2nI(Ṽ K;A|CC̃Ũ)2nI(A;B|CC̃ŨṼ K̃)

= 2n(κ−δ(ε[1]))

(99)

where

κ , ρ0 + ρ1 + ρ2 −R0 − I(Ũ Ṽ K̃;C|C̃)− I(ŨK;B|CC̃Ṽ )− I(Ṽ K;A|CC̃Ũ)− I(A;B|CC̃ŨṼ K̃). (100)

E[G2] can be written as

E[G2] = Φ1 + Φ2 + Φ3 + Φ4 + Φ5 (101)

where

Φ1 ,
∑
i,j,k

Pr[φ(i, j, k) = 1] = E[G],

Φ2 ,
∑
i,j,k

∑
k′ 6=k

P [φ(i, j, k)φ(i, j, k′) = 1],

Φ3 ,
∑
i,j,k

∑
j′ 6=j

P [φ(i, j, k)φ(i, j′, k) = 1],

Φ4 ,
∑
i,j,k

∑
k′ 6=k

∑
j 6=j′

P [φ(i, j, k)φ(i, j′, k′) = 1],

Φ5 ,
∑
i,j,k

∑
i′,j′,k′
i 6=i′

P [φ(i, j, k)φ(i′, j′, k′) = 1].

(102)
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The second term Φ2 can be bounded as

Φ2 ≤
2nκ2nρ222nδ(ε[1])2nH(B|ŨK̃Ṽ C̃AC)

2nH(B|Ṽ C̃C)
=

2nκ2nρ222nδ(ε[1])

2nI(B;ŨK̃A|C̃Ṽ C)
. (103)

Similarly, the third term Φ3 is bounded as

Φ3 ≤
2nκ2nρ122nδ(ε[1])

2nI(A;ŨK̃B|C̃ŨC)
. (104)

The fourth term Φ4 can be bounded as

Φ4 ≤
2nκ2n(ρ1+ρ2)22nδ(ε[1])2nH(AB|ŨK̃Ṽ C̃C)

2nH(A|ŨC̃C)2nH(B|Ṽ C̃C)
=

2nκ2n(ρ1+ρ2)22nδ(ε[1])

2n(I(Ṽ K̃;A|ŨC̃C)+I(ŨK̃;B|Ṽ C̃C)+I(A;B|ŨK̃Ṽ C̃C))
. (105)

Finally, the fifth term satisfies

Φ5 ≤

∑
i,j,k

Pr[φ(i, j, k) = 1]

2

= (E[G])2. (106)

Using the above in (101), we can get an upper bound on E[G2]. Substituting in (98), we obtain

Pr[G = 0] ≤ 22nδ(ε[1])
[
2−nκ + 2−n(κ−ρ1+I(A;Ṽ K̃B|ŨC̃C)) + 2−n(κ−ρ2+I(B;ŨK̃A|C̃Ṽ C))

+2−n(κ−ρ1−ρ2+I(A;K̃Ṽ |CC̃Ũ)+I(B;K̃Ũ |CC̃Ṽ )+I(A;B|ŨṼ K̃CC̃))
]

≤ ε

(107)

if the conditions given in the statement of the lemma are satisfied. Hence

Pr[E1[1]|E[0]c] =
∑

ũn,ṽn,k̃n,c̃n∈A(n)

ε[1]
(Ũ,Ṽ ,K̃,C̃)

Pr[(U[0],V[0],K[0],C[0]) = (ũn, ṽn, k̃n, c̃n)] Pr[G(ũn, ṽn, k̃n, c̃n) = 0]
1

Pr[E[0]c]

≤ ε.
(108)

D Proof of Lemma 7.4

For this section alone, let Ê denote the event (E3[2]c ∩ E2[2]c ∩ E1[2]c ∩ E[1]c ∩ E[0]c). Note that Ê is the

conditioning event in the statement of Lemma 7.4, and hence Ā[1] = A[1], C̄1[1] = C̄2[1] = C[1], and similarly

B̄[1] = B[1]. For conciseness, let Ẽ(ỹn, yn, ãn, c̃n, α, β, γ) denote the event

(Y[1],Y[2], Ā[1], C̄1[1], G0[2], G1[2], G3[1]) = (ỹn, yn, ãn, c̃n, α, β, γ)

for any (ỹn, yn, ãn, c̃n) ∈ A(n)
ε[2](Ỹ , Y, Ã, C̃) and any index triple (α, β, γ).
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Now consider the following argument.

P [E4|Ê] =
P [E4 ∩ Ê]

P [Ê]
(109)

=
1

P [Ê]

∑
(ỹn,yn,ãn,c̃n)∈A(n)

ε[2]

∑
α,β,γ

P [E4 ∩ Ê ∩ Ẽ(ỹn, yn, ãn, c̃n, α, β, γ)]

=
1

P [Ê]

∑
(ỹn,yn,ãn,c̃n)∈A(n)

ε[2]

∑
α,β,γ

P [Ê ∩ Ẽ(ỹn, yn, ãn, c̃n, α, β, γ]P [E4|ẼÊ] (110)

Let us now define the following indicator random variable: ψ(i, j, k) = 1 if the tuples

(U[1,k,C1[1]],A[1],Y[1],C1[1]) and (C[2,i,C1[1]],Y[2],A[2,j,U[1,k,C1[1]],C1[1],C[2,i,C1[1]]])

are jointly ε[2]-typical with respect to PŨÃỸ C̃CAY and 0 otherwise.

Now we have

P [E4|ẼÊ] ≤
∑

(i,j,k)6=(α,β,γ)

P [ψ(i, j, k) = 1|ẼÊ] (111)

= Φ1 + Φ2 + Φ3 + Φ4, (112)

where

Φ1 =
∑
j 6=β

P [ψ(α, j, γ) = 1|ẼÊ], (113)

Φ2 =
∑
i 6=α

∑
j

P [ψ(i, j, γ) = 1|ẼÊ], (114)

Φ3 =
∑
k 6=γ

∑
j

P [ψ(α, j, k) = 1|ẼÊ], (115)

Φ4 =
∑
i 6=α

∑
k 6=γ

∑
j

P [ψ(i, j, k) = 1|ẼÊ]. (116)
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Now, using Property 2 of typical sequences in Section 7.1, we have the following bounds.

Φ1 ≤
2nρ12nδ1(ε[2])2nH(A|ŨC̃ÃỸ CY )

2nH(A|ŨC̃C)

= exp2

[
n
(
ρ1 + δ1(ε[2])− I(A;Y ÃỸ |ŨCC̃)

)]
, (117)

Φ2 ≤
2n(ρ0+ρ1)2nδ1(ε[2])2nH(CA|ŨC̃ÃỸ Y )

2n(H(C|C̃)+H(A|ŨC̃C))

= exp2

[
n
(
ρ0 + ρ1 + δ1(ε[2])− I(C; Ũ ÃỸ Y |C̃)− I(A;Y ÃỸ |ŨCC̃)

)]
, (118)

Φ3 ≤
2n(R′1+ρ1)2nδ1(ε[2])2nH(ŨA|C̃ÃỸ CY )

2n(H(Ũ |C̃)+H(A|ŨC̃C))

= exp2

[
n
(
ρ1 +R′1 + δ1(ε[2])− I(Ũ ; ÃỸ CY |C̃)− I(A;Y ÃỸ |ŨCC̃)

)]
(119)

Φ4 ≤
2n(ρ0+R′1+ρ1)2nδ1(ε[2])2nH(ŨCA|C̃ÃỸ Y )

2n(H(Ũ |C̃)+H(C|C̃)+H(A|ŨC̃C))

= exp2

[
n
(
ρ0 + ρ1 +R′1 + δ1(ε[2])− I(Ũ ;Y ÃỸ |C̃) + I(C;Y Ỹ ŨÃ|C̃) + I(A;Y ÃỸ |ŨCC̃)

)]
. (120)

Therefore we have

P [E4[2]|ÊẼ] ≤ ε

2

for all sufficiently large n if the conditions in the statement of the lemma are satisfied. Substituting back in

(110), we obtain P [E4[2]|Ê] ≤ ε for all sufficiently large n. Similarly, one can show that P [E5|Ê] ≤ ε if the

conditions in the statement of lemma are satisfied.
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