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Abstract

We consider the problem of developing coding techniques and deriving achievable rate regions for discrete

memoryless broadcast channels with 3 receivers (3−DBC). We begin by identifying a novel vector additive 3−DBC

for which we characterize an upper bound on the the largest achievable rate region based on unstructured codes,

henceforth referred to as UM−region. We propose a coding technique based on coset codes that yield an achievable

rate triple not contained within UM−region. We generalize the proposed coding technique using a new ensemble

of codes - partitioned coset codes (PCC) - containing both empirical and algebraic properties, and evaluate it’s

performance to derive an achievable rate region for the general 3−DBC. The new elements in this derivation are

binning and joint typicality encoding and decoding of statistically correlated PCCs. We validate the utility of this

technique by identifying non-additive instances of 3−DBC for which the proposed coding techniques based on PCC

yield strictly larger rates.

I. INTRODUCTION

The problem of characterizing the capacity region of a general broadcast channel (BC) was proposed by Cover

[1] in 1972, and he introduced a novel coding technique to derive achievable rate regions for particular degraded

BCs. In a seminal work aimed at deriving an achievable rate region for the general degraded BC, Bergmans [2]

generalized Cover’s technique into what is currently referred to as superposition coding. Gallager [3] and Bergmans

[4] concurrently and independently proved optimality of superposition coding for the class of degraded BCs. This

in particular yielded capacity region for the scalar additive Gaussian BC. However, the case of general discrete BC

(DBC) remained open. This led to the discovery of another ingenious coding technique by Gelfand [5]. In 1979,

Marton [6] generalized Gelfand’s technique [5] into what is currently referred to as binning. In conjunction with

superposition, she derived the largest known achievable rate region [6] for the general two user DBC (2−DBC).

A generalization [7, p.391 Problem 10(c)] of superposition and binning to incorporate a common message yields

Marton’s rate region, the current known largest achievable rate region for the general 2−DBC and its capacity is

yet unknown.1

Though the capacity region has been found for many interesting classes of BCs [1]–[20], the question of whether

the techniques of superposition and binning, in conjunction, is optimal for the general DBC has remained open.
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1It is of interest to note that though superposition and binning were known in particular settings [1], [5], its generalization led to fundamentally

new ideas.
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Gohari and Anantharam [21] have proved computability of Marton’s rate region. This enabled them identify a class

of binary 2−DBCs for which Marton’s rate region when computed is strictly smaller than the tightest known outer

bound [22], [23], which is due to Nair and El Gamal. On the other hand, Weingarten, Steinberg and Shamai [24]

have proved Marton’s binning (also referred to, in the Gaussian setting, as Costa’s dirty paper coding [25]) to be

optimal for Gaussian MIMO BC with quadratic cost constraints and arbitrary number of receivers, and thereby

characterized the capacity region. 3−DBC with degraded message sets has been studied in [20].

In this article, we begin by characterizing an achievable rate region, referred to as UM−region, for the general

3−DBC incorporating all current known coding techniques, i.e., message-splitting, superposition and binning of

unstructured codes. We identify a novel additive 3−DBC (example 1) for which we propose a technique based on

linear codes that yields an achievable rate triple not contained within UM−region. We remark that even within

the larger class of BCs that include continuous valued alphabets, any number of receivers and multiple antennae,

we have, thus far, been unaware of any BC for which the UM−region can be strictly improved upon. One of the

key elements of our work is an analytical proof of sub-optimality of UM−region for this 3−DBC.

Motivated by the above findings, we propose a general coding technique based on a new ensemble of codes

endowed with algebraic structure- partitioned coset codes [26] (PCC). We analyze the proposed coding technique

and derive an achievable rate region2- referred to as PCC−region- for the general 3−DBC expressed in terms of

single-letter information quantities. This region is a continuous function of the channel transition probability matrix.

One of the key elements of this analysis is an interplay of joint typical encoding and decoding of statistically

correlated algebraic codebooks resulting in new proof techniques. We identify a non-additive 3−DBC (example

2) for which we analytically prove the existence of rate triples that belong to PCC−region but lie outside the

UM−region. Finally, we indicate a way to combine the two coding techniques that enables one to derive an

achievable rate region that includes the UM−region.

Why do codes endowed with algebraic structure outperform traditional independent unstructured codes for a

BC? The central aspect of a coding technique designed for a BC is interference management. Marton’s coding

incorporates two techniques - superposition and binning - for tackling interference. Superposition enables each

user decode a univariate component of the other user’s signal and thus subtract it off. Binning enables the encoder

counter the component of each user’s interfering signal not decoded by the other, by precoding for the same. Except

for particular cases, the most popular being dirty paper coding, precoding results in a rate loss, and is therefore

less efficient than decoding the interfering signal at the decoder. The presence of a rate loss motivates each decoder

to decode as large a part of interference as possible.3 However decoding a large part of the interference constrains

the individual rates. In a three user BC, each user’s reception is plagued by interference caused by signals intended

for the other two users. The interference is in general a bivariate function of signals intended for the other users.

2In general this region neither subsumes nor is subsumed by the UM−region.
3For the Gaussian case, there is no rate loss. Thus the encoder can precode all the interference. Indeed, the optimal strategy does not require

any user to decode a part of signal not intended for it. Thus constraining interference patterns is superfluous. This explains why lattices are not

necessary to achieve capacity of Gaussian vector BC.
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If the signals of the two users are endowed with a structure that can help compress the range of this bivariate

function when applied to all possible signals, then the receivers can decode a larger part of the interfering signal.

This minimizes the component of the interference precoded, and therefore the rate loss. This is where codebooks

endowed with algebraic structure outperform unstructured independent codebooks. Indeed, linear codes constrain

the interference pattern to an affine subspace if the interference is the sum of user 2 and 3’s signals.

As evidenced by the non-additive example (example 2), linear codes provide gain even when the bivariate

function is not a field addition. Furthermore, we have considered a natural generalization of linear codes to sets

with looser algebraic structure such as groups. Our investigation of group codes to improve achievable rate regions

for information theoretic problems has been pursued in concurrent research threads [27]. Containing the sum of

transmitted codewords using linear codes is just the first step, and we envision an achievable rate region involving

a union over all relevant algebraic objects.

Related Works: The use of structured codes for improving information theoretic rate regions began with the

ingenious technique of Körner and Marton [28], proposed for the source coding problem of reconstructing modulo−2

sum of distributed binary sources. Ahlswede and Han [29, Section VI] proposed a universal coding technique that

brings together coding techniques based on unstructured and structured codes. More recently, there is a wider interest

[30]–[32] in developing coding techniques for particular problem instances that perform better than unstructured

codes. In [33] nested linear codes are employed to communicate over a particular binary doubly dirty multiple

access channel (MAC). The use of structured codes for interference channels (referred to as interference alignment)

toward improved achievable rate region has been addressed in several works [34]–[38].

It was shown in [39], in the setting of distributed source coding that for any non-trivial bivariate function, there

exists at least one source distribution for which linear codes outperform random codes. However, linear codes were

known to be suboptimal for arbitrary point-to-point (PTP) communication [40], and therefore, the basic building

block in the coding scheme for any multi-terminal communication problem could not be filled by linear codes. The

ensemble of nested coset codes was proposed in [41] as the basic building block of algebraic codes for distributed

lossy compression of general sources subject to arbitrary distortion criterion.

This article is organized as follows. We begin with definitions in section II. In section II-D, we present the

UM− achievable region for 3−DBC. Section III contains our first main finding - identification of a vector additive

3−DBC for which the UM−technique is proved to be strictly sub-optimal. In section IV we present our second

main finding - characterization of PCC−region for 3−DBC - in three pedagogical steps. In section V, we indicate

how to glue together UM−technique and the technique based on PCC for general 3−DBC. We conclude in section

VI by pointing to fundamental connections between several layers of coding in a three user communication problem

and common information of a triple of random variables.
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II. BROADCAST CHANNEL: DEFINITIONS AND MARTON’S RATE REGION

A. Notation

We employ notation that has now been widely accepted in the information theory literature supplemented with

the following. The empty sum has value 0, i.e,
∑
a∈φ = 0. For a set A ⊆ Rk, cocl (A) denotes closure of

convex hull of A. Throughout this article, log and exp functions are taken with respect to the base 2. Let hb(x) :

= − x log2 x − (1 − x) log2(1 − x) denote binary entropy function. Let a ∗ b : = a(1 − b) + (1 − a)b denote

binary convolution. For K ∈ N, we let [K] : = {1, 2 · · · ,K}. We let Fq denote the finite field of cardinality

q. While + denotes addition in R, we let ⊕ denote addition in a finite field. The particular finite field, which

is uniquely determined (up-to an isomorphism) by it’s cardinality, is clear from context. When ambiguous, or to

enhance clarity, we specify addition in Fq using ⊕q . For elements a, b, in a finite field, a	 b : = a⊕ (−b), where

(−b) is the additive inverse of b. In this article, we will need to define multiple objects, mostly triples, of the same

type. In order to reduce clutter, we use an underline to denote aggregates of objects of similar type. For example,

(i) if Y1,Y2,Y3 denote (finite) sets, we let Y either denote the Cartesian product Y1 × Y2 × Y3 or abbreviate the

collection (Y1,Y2,Y3) of sets, the particular reference being clear from context, (ii) if yk ∈ Yk : k = 1, 2, 3, we let

y ∈ Y abbreviate (y1, y2, y3) ∈ Y (iii) if dk : Ynk →Mk : k = 1, 2, 3 denote (decoding) maps, then we let d(yn)

denote (d1(yn1 ), d2(yn2 ), d3(yn3 )).

B. Definitions: Broadcast channel, code, achievability and capacity

A 3−DBC consists of a finite input alphabet set X and three finite output alphabet sets Y1,Y2,Y3. The discrete

time channel is (i) time invariant, i.e., the probability mass function (PMF) of Y t = (Y1t, Y2t, Y3t), the output at

time t, conditioned on Xt, the input at time t, is invariant with t, (ii) memoryless, i.e., conditioned on present

input Xt, the present output Y t is independent of past inputs X1, · · · , Xt−1, past outputs Y 1, Y 2, · · · , Y t−1, and

(iii) used without feedback, i.e., the encoder has no information of the symbols received by the decoder. Let

WY |X(y|x) = WY1Y2Y3|X(y1, y2, y3|x) denote probability of observing y ∈ Y at the respective outputs conditioned

on x ∈ X being input. Input is constrained with respect to a cost function κ : X → [0,∞). The cost function is

assumed additive, i.e., cost of transmitting the vector xn ∈ Xn is κ̄n(xn) : =
∑n
i=1 κ(xi). We refer to this 3−DBC

as (X ,Y,WY |X , κ). In this article, we restrict attention to communicating private messages to the three users. The

focus of this article therefore is the (private message) capacity region of a 3−DBC, and in particular corresponding

achievable rate regions. The following definitions make the relevant notions precise.

Definition 1: A 3−DBC code (n,M, e, d) consist of (i) finite index setsM1,M2,M3 of messages, (ii) encoder

map e :M→ Xn, and (iii) three decoder maps dk : Ynk →Mk : k = 1, 2, 3.

Definition 2: The error probability of a 3−DBC code (n,M, e, d) conditioned on message triple (m1,m2,m3) ∈

M is

ξ(e, d|m) : = 1−
∑

yn:d(yn)=m

WY |X(yn|e(m)).
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The average error probability of a 3−DBC code (n,M, e, d) is ξ̄(e, d) : =
∑
m∈M

1
|M1||M2||M3|ξ(e, d|m). Cost of

transmitting message m ∈M per symbol is τ(e|m) : = 1
n κ̄

n(e(m)) and average cost of 3−DBC code (n,M, e, d)

is τ(e) : = 1
|M1||M2||M3|

∑
m∈M τ(e|m).

Definition 3: A rate-cost quadruple (R1, R2, R3, τ) ∈ [0,∞)4 is achievable if for every η > 0, there exists

N(η) ∈ N such that for all n > N(η), there exists a 3−DBC code (n,M(n), e(n), d(n)) such that (i) log2 |M
(n)
k |

n ≥

Rk−η : k = 1, 2, 3, (ii) ξ̄(e(n), d(n)) ≤ η, and (iii) average cost τ(e(n)) ≤ τ+η. The capacity region C(WY |X , κ, τ)

(C(τ) for short) is defined as cl
{
R ∈ R3 : (R, τ) is achievable

}
.

In some cases, we consider projections of the capacity region. For any 3−DBC, if receivers 2 and 3 can

simultaneously achieve their respective capacities, then C1(τ) is defined as the maximum rate achieved by receiver

1. Otherwise C1(τ) = 0. The currently known largest achievable rate region, UM− region, for 3−DBC is obtained

via message-splitting, superposition and binning of unstructured codes.

C. Marton’s rate region

Marton’s coding for 2−DBC incorporates two fundamental techniques - superposition and precoding - accom-

plished using a two layer coding scheme. First layer, which is public, contains a codebook over W . Second layer

is private and contains two codebooks one each on V1 and V2. Precoding is accomplished by setting aside a bin

of codewords for each private message, thus enabling the encoder to choose a compatible pair of codewords in

the indexed bins. User jth message is split into two parts - public and private. The public parts together index

a codeword in W−codebook and the private part of user jth message index a codeword in Vj−codebook. Both

users decode from the public codebook and their respective private codebooks. Definition 4 and theorem 1 provide

a characterization of rate pairs achievable using Marton’s coding technique for 2−DBC. We omit restating the

definitions analogous to definitions 1, 2, 3 for a 2−DBC.

Definition 4: Let DM (WY |X , κ, τ) denote the collection of distributions pQWV1V2XY1Y2
defined on Q ×W ×

V1×V2×X ×Y1×Y2, where (i) Q, W , V1 and V2 are finite sets of cardinality at most |X |+ 4, |X |+ 4, |X |+ 1

and |X |+ 1 respectively, (ii) pY |XVWQ = pY |X = WY |X , (iii) E {κ(X)} ≤ τ . For pQWVXY ∈ DM (WY |X , κ, τ),

let αM (pQWVXY ) denote the set of (R1, R2) ∈ R2 that satisfy

0 ≤ Rk ≤ I(WVk;Yk|Q) : k = 1, 2,

R1 +R2 ≤min {I(W ;Y1|Q), I(W ;Y2|Q)}+ I(V1;Y1|QW ) + I(V2;Y2|W,Q)−I(V1;V2|W,Q)

and

αM (WY |X , κ, τ) = cocl

 ⋃
pQWVXY

∈DM (WY |X ,κ,τ)

αM (pQWVXY )


Theorem 1: For 2−DBC (X ,Y,WY |X , κ), α(WY |X , κ, τ) is achievable, i.e., α(WY |X , κ, τ) ⊆ C(WY |X , κ, τ).

Remark 1: The bounds on cardinality of W,V1 and V2 were derived by Gohari and Anantharam in [21].

We refer the reader to [6] for a proof of achievability. El Gamal and Meulen [16] provide a simplified proof using

the method of second moment.
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D. UM−region : Current known largest achievable rate region for 3−DBC

The UM−technique is a 3 layer coding technique. For simplicity, we describe the coding technique without

referring to the time sharing random variable and employ the same in characterizing UM−region. User jth message

Mj is split into four parts - two semi-private parts, and one, private and public parts each. We let message (i)

MW
j ∈MW

j of rate Kj denote it’s public part (ii) MU
ij ∈MU

ij ,M
U
jk ∈MU

jk of rates Lij ,Kjk respectively, denote

it’s semi-private parts, where (i, j, k) is an appropriate triple in {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, and (iii) MV
j ∈ MV

j

of rate Tj denote it’s private part. The first layer is public with a single codebook (wn(mW ) : mW ∈MW ) of rate

K1 +K2 +K3 over W . MW : = (MW
1 ,MW

2 ,MW
3 ) indexes a codeword in W−codebook and each user decodes

from W−codebook.

Each codeword in W−codebook is linked to a triple of codebooks - one each on Uij : (i, j) ∈

{(1, 2), (2, 3), (3, 1)}- in the second layer. The second layer is semi-private. Each of the three semi-private

codebooks is composed of bins, wherein each bin comprises a collection of codewords. For each pair (i, j) ∈

{(1, 2), (2, 3), (3, 1)} the following hold. MU
ij and MU

ij together index a bin in Uij−codebook. Each bin in

Uij−codebook is of rate Sij . Let (unij(m
W ,mU

ij ,m
U
ij , sij) : sij ∈ [exp{nSij}]) denote the bin corresponding

to semi-private messages mU
ij : = (mU

ij ,m
U
ij) in the Uij−codebook linked to public message mW . Users i, j

decode from Uij−codebook and it maybe verified that Uij−codebook is of rate Kij + Lij + Sij .

Let (i, j) and (j, k) be distinct pairs in {(1, 2), (2, 3), (3, 1)}. Every pair of codewords in Uij− and

Ujk−codebooks is linked to a codebook on Vj . The codebooks over Vj : j = 1, 2, 3 comprise the third layer

which is private. MV
j indexes a bin in Vj−codebook, each of which is of rate Sj , and thus Vj−codebook is of rate

Tj +Sj . Let (vnj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj) : sj ∈ [exp{nSj}]) denote bin corresponding to private message

mV
j in the Vj−codebook linked to codeword pair (unij(m

W ,mU
ij , sij), u

n
jk(mW ,mU

jk, sjk)). User j decodes from

the private codebook over Vj . How does the encoder map messages to a codeword? Let pWUVX be a distribution

on W×U ×V ×X such that E {κ(X)} ≤ τ . The encoder looks for (s12, s23, s31, s1, s2, s3) such that the septuple(
wn(MW ),unij(M

W ,MU
ij ,sij):(i,j)=(1,2),(2,3),(3,1),

vnj (M
W ,MU

ij ,sij ,M
U
jk,sjk,M

V
j ,sj):(i,j,k)=(1,2,3),(2,3,1),(3,1,2)

)
of codewords is jointly typical with respect to pWUV . If such a septuple is found, this is mapped to a codeword

on Xn which is input to the channel. If it does not find any such septuple, an error is declared.

Decoder j looks for all quadruples (m̂W , m̂ij
U , m̂jk

U , m̂V
j ) such that(

wn(m̂W ), unij(m̂
W , m̂U

ij , sij), u
n
jk(m̂W , m̂U

jk, sjk), vnj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj), Y

n
j

)
is jointly typical with respect to pWUVXY : = pWUVXWY |X for some (sij , sjk, sj), where (i) (i, j, k) is the

appropriate triple in {(1, 2, 3), (2, 3, 1), (3, 1, 2)} and (ii) Y nj is the received vector. If there is a unique such

quadruple, it declares m̂j : = (m̂W
j , m̂

U
ij , m̂

U
jk, m̂

V
j ) as user jth message. Otherwise, i.e., none or more than one

such quadruple is found, it declares an error.

We incorporate the time sharing random variable, average the error probability over the ensemble of codebooks,

and provide upper bounds on the same using the second moment method [16]. Let Q, taking values over
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the finite alphabet Q, denote the time sharing random variable. Let pQ be a PMF on Q and qn ∈ Qn

denote a sequence picked according to pnQ. qn is revealed to the encoder and all decoders. The codewords in

W−codebook are identically and independently distributed according to pnW |Q(·|qn). Conditioned on entire public

codebook (Wn(mW ) = wn(mW ) : mW ∈ MW ) and the time sharing sequence qn, each of the codewords

Unij(m
W ,mU

ij , sij) : (mU
ij , sij) ∈ Mij

U × [exp{nSij}] are independent and identically distributed according to

pnUij |WQ(·|wn(mW ), qn). Conditioned on a realization of the entire collection of public and semi-private codebooks,

the private codewords (V nj (mW ,mU
ij , sij ,m

U
jk, sjk,m

V
j , sj) : sj ∈ [exp{nSj}]) are independent and identically

distributed according to

pnVj |UijUjkWQ

(
·|wn(mW ), unij(m

W ,mU
ij , sij), u

n
jk(mW ,mU

jk, sjk), qn
)
.

The probability of the error event at the encoder decays exponentially with n if for each triple (i, j, k) ∈

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Si > 0 (1)

Sij + Sjk > I(Uij ;Ujk|WQ) (2)

Sij + Sjk + Ski > I(Uij ;Ujk;Uki|WQ)4 (3)

Si + Sij + Sjk + Ski > I(Uij ;Ujk;Uki|WQ) + I(Vi;Ujk|Uij , Uki,WQ) (4)

Si + Sj + Sij + Sjk + Ski > I(Vi;Ujk|Uij , Uki,WQ) + I(Vj ;Uki|Uij , Ujk,WQ)

+I(Uij ;Ujk;Uki|WQ) + I(Vi;Vj |Ujk, Uij , Uki,WQ) (5)

S1 + S2 + S3 + S12 + S23 + S31 > I(V1;U23|U12, U31,WQ) + I(V2;U31|U12, U23,WQ) + I(V1;V2;V3|QWU)

+I(U12;U23;U31|WQ) + I(V3;U12|U23, U31,WQ). (6)

The probability of decoder error event decays exponentially if for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

I(Vi;Yi|QWUijUki) > Ti + Si (7)

I(UijVi;Yi|QWUki) + I(Uij ;Uki|QW ) > Kij + Lij + Sij + Ti + Si (8)

I(UkiVi;Yi|QWUij) + I(Uij ;Uki|QW ) > Kki + Lki + Ski + Ti + Si (9)

I(UijUkiVi;Yi|QW ) + I(Uij ;Uki|QW ) > Kij + Lij + Sij +Kki + Lki + Ski + Ti + Si (10)

I(WUijUkiVi;Yi|Q) + I(Uij ;Uki|QW ) > Ki +Kj +Kk +Kij + Lij + Sij +Kki + Lki + Ski + Ti + Si

(11)

For each PMF pQWUVXWY |X defined on Q ×W × U × V × X × Y , let αU (pQWUVXY ) denote the set of

all triples (R1, R2, R3) ∈ [0,∞)4 such that (i) there exists non-negative real numbers Kij , Lij , Sij ,Kj , Tj , Sj that

satisfies (1)-(11) for each pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)} and (ii) Rj = Tj + Kjk + Lij + Kj for each triple

4For three random variables, A,B,C, we have I(A;B;C) = I(A;B) + I(AB;C).
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Fig. 1. A 3−DBC with octonary input and binary outputs described in example 1.

(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The UM−region is

αU (WY |X , κ, τ) = cocl

 ⋃
pQWUVXY

∈DU (WY |X ,κ,τ)

αU (pQWUVXY )

 ,

where DU (WY |X , κ, τ) denote the collection of distributions pQWUVXY defined on Q ×W × U × V × X × Y ,

where (i) Q,W,U ,V are finite sets, (ii) pY |XV UWQ = pY |X = WY |X , (iii) E {κ(X)} ≤ τ .

Theorem 2: For 3−DBC (X ,Y,WY |X , κ), UM−region αU (WY |X , κ, τ) is achievable, i.e., αU (WY |X , κ, τ) ⊆

C(WY |X , κ, τ).

III. STRICT SUB-OPTIMALITY OF UM−TECHNIQUE

In this section, we present our first main finding - strict sub-optimality of UM−technique. In particular, we

identify a vector additive 3−DBC (example 1) and propose a linear coding technique for the same. In section VII,

we prove strict sub-optimality of UM−technique for this vector additive 3−DBC.

Example 1: Consider the 3−DBC depicted in figure 1. Let the input alphabet X = X1 × X2 × X3 be a triple

Cartesian product of the binary field X1 = X2 = X3 = F2 and the output alphabets Y1 = Y2 = Y3 = F2 be

binary fields. If X = X1X2X3 denote the three binary digits input to the channel, then the outputs are Y1 =

X1 ⊕X2 ⊕X3 ⊕ N1, Y2 = X2 ⊕ N2 and Y3 = X3 ⊕ N3, where (i) N1, N2, N3 are independent binary random

variables with P (Nj = 1) = δj ∈ (0, 12 ) and (ii) (N1, N2, N3) is independent of the input X . The binary digit X1 is

constrained to an average Hamming weight of τ ∈ (0, 12 ). In other words, κ(x1x2x3) = 1{x1=1} and the average cost

of input is constrained to τ ∈ (0, 12 ). For the sake of clarity, we provide a formal description of this channel in terms

of section II-B. This 3−DBC maybe referred to as (X ,Y,WY |X , κ) where X : = {0, 1} × {0, 1} × {0, 1} ,Y1 =

Y2 = Y3 = {0, 1} ,WY |X(y1, y2, y3|x1x2x3) = BSCδ1(y1|x1 ⊕ x2 ⊕ x3)BSCδ2(y2|x2)BSCδ3(y3|x3), where

δj ∈ (0, 12 ) : j = 1, 2, 3, BSCη(1|0) = BSCη(0|1) = 1 − BSCη(0|0) = 1 − BSCη(1|1) = η for any η ∈ (0, 12 )

and the cost function κ(x1x2x3) = 1{x1=1}.

We begin with some observations for the above channel. Users 2 and 3 see interference free point-to-point (PTP)

links from the input. It is therefore possible to communicate to them simultaneously at their PTP capacities using
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any PTP channel codes achieving their respective capacities. For the purpose of this discussion, let us assume

δ : = δ2 = δ3. This enables us to employ the same capacity achieving code of rate 1− hb(δ) for both users 2 and

3. What about user 1? Three observations are in order. Firstly, if users 2 and 3 are being fed at their respective PTP

capacities, then information can be pumped to user 1 only through the first binary digit, henceforth referred to as

X1. In this case, we recognize that the sum of user 2 and 3’s transmissions interferes at receiver 1. Thirdly, the first

binary digit X1 is costed, and therefore cannot cancel the interference caused by users 2 and 3 at the transmitters.

Since average Hamming weight of X1 is restricted to τ , X1⊕N1 is restricted to an average Hamming weight of

τ ∗ δ1. If the rates of users 2 and 3 are sufficiently small, receiver 1 can attempt to decode codewords transmitted to

users 2 and 3, cancel the interference and decode the desired codeword. This will require 2−2hb(δ) ≤ 1−hb(δ1∗τ)

or equivalently 1+hb(δ1∗τ)
2 ≤ hb(δ). What if this were not the case?

In the case 1+hb(δ1∗τ)
2 > hb(δ), we are left with two choices. The first choice is to enable decoder 1 to decode

as large a part of the interference as possible and precode for the rest of the uncertainty.5 The second choice is to

attempt decoding the sum of user 2 and 3’s codewords, instead of the pair. In the sequel, we pursue the second

choice using linear codes. In section VII, we prove UM−technique is forced to take the first choice which results

in it’s sub-optimality.

Since linear codes achieve the capacity of binary symmetric channels, there exists a single linear code, or a

coset thereof, of rate 1 − hb(δ) that achieves capacity of both user 2 and 3 channels. Let us employ this linear

code for communicating to users 2 and 3. The code being linear or affine, the collection of sums of all possible

pairs of codewords is restricted to a coset of rate 1 − hb(δ). This suggests that decoder 1 decode the sum of

user 2 and 3 codewords. Indeed, if 1 − hb(δ) ≤ 1 − hb(τ ∗ δ1), or equivalently τ ∗ δ1 ≤ δ, then user 1 can

first decode the interference, peel it off, and then go on to decode the desired signal. Under this case, a rate

hb(τ ∗ δ1)− hb(δ1) is achievable for user 1 even while communicating independent information at rate 1− hb(δ)

for both users 2 and 3. We have therefore proposed a coding technique based on linear codes that achieves the rate

triple (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ), 1− hb(δ)) if τ ∗ δ1 ≤ δ = δ2 = δ3.

Let us now consider the general case with respect to δ2, δ3. Without loss of generality we may assume δ2 ≤ δ3.

We employ a capacity achieving linear code to communicate to user 2. This code is sub sampled (uniformly and

randomly) to yield a capacity achieving code for user 3. This construction ensures the sum of all pairs of user 2 and

3 codewords to lie within user 2’s linear code, or a coset thereof, of rate 1−hb(δ2). If 1−hb(δ2) ≤ 1−hb(τ ∗ δ1),

or equivalently τ ∗ δ1 ≤ δ2, then decoder 1 can decode the sum of user 2 and 3’s codewords, i.e., the interfering

signal, peel it off and decode the desired message at rate hb(τ ∗ δ1)−hb(δ1). The above arguments are summarized

in the following lemma.

Lemma 1: Consider the vector additive 3−DBC in example 1. If τ ∗ δ1 ≤ min {δ2, δ3}, then (hb(τ ∗ δ1) −

hb(δ1), 1− hb(δ2), 1− hb(δ3)) ∈ C(τ). Moreover C1(τ) = hb(τ ∗ δ1)− hb(δ1).

5Since X1 is costed, precoding results in a rate loss, i.e., in terms of rate achieved, the technique of precoding is in general inferior to the

technique of decoding interference. This motivates a preference for decoding the interference as against to precoding.
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In the above discussion, we have argued (hb(τ ∗ δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) ∈ C(τ) for the vector additive

3−DBC in example 1. It can be easily argued that C1(τ) ≤ hb(τ ∗ δ1)−hb(δ1), and in conjunction with the former

statement, the proof of lemma 1 is complete.

We now state the conditions under which (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1− hb(δ3)) /∈ αU (τ). In particular,

we show below in Theorem 3 that if 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3), then (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1−

hb(δ3)) /∈ αU (τ). We therefore conclude that if τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) and

min {δ2, δ3} ≥ δ1 ∗ τ , then UM−technique is strictly suboptimal for the 3−DBC presented in example 1. We

prove the theorem in section VII.

Theorem 3: Consider the 3−DBC in example 1. If hb(δ2)+hb(δ3) < 1+hb(δ1∗τ), then (hb(τ ∗δ1)−hb(δ1), 1−

hb(δ2), 1− hb(δ3)) /∈ αU (τ).

Corollary 1: Consider the 3−DBC in example 1 with δ = δ2 = δ3. If hb(τ ∗ δ1) ≤ hb(δ) <
1+hb(δ1∗τ)

2 , then

(hb(τ ∗ δ1) − hb(δ1), 1 − hb(δ), 1 − hb(δ)) /∈ αU (τ) but (hb(τ ∗ δ1) − hb(δ1), 1 − hb(δ), 1 − hb(δ)) ∈ C(τ) and

thus αU (τ) 6= C(τ). In particular, if δ1 = 0.01 and δ ∈ (0.1325, 0.21), then αU ( 1
8 ) 6= C( 1

8 ).

IV. ACHIEVABLE RATE REGIONS FOR 3−DBC USING PARTITIONED COSET CODES

In this section we present our second main finding - a new coding technique based on PCC for communicating

over an arbitrary 3−DBC - that enables us to derive PCC−region, a new achievable rate region for 3−DBC. We

present this in three pedagogical steps. Step I, presented in section IV-A, describes all the new elements of our

framework in a simple setting. In particular, we employ PCC to manage interference seen by one receiver, and

derive a corresponding achievable rate region. For this step, we also provide a complete proof of achievability. Step

II (section IV-B) builds on step I by incorporating private codebooks. Finally in step III (section IV-C), we employ

PCC to manage interference seen by all receivers, and thereby derive PCC−region.

A. Step I: Using PCC to manage interference seen by a single receiver

1) Description of the coding technique: The essential aspect of the linear coding strategy proposed for example 1

is that users 2 and 3 employ a code that is closed under addition, the linear code being the simplest such example.

Since linear codes only achieve symmetric capacity, we are forced to bin codewords from a larger linear code

in order to find codewords that are typical with respect to a nonuniform distribution. This is akin to binning for

channels with state information, wherein exp {nI(U ;S)} codewords, each picked according to
∏n
t=1 pU , are chosen

for each message in order to find a codeword in Tδ(U |sn) jointly typical with state sequence sn.

We now generalize the coding technique proposed for example 1. Consider auxiliary alphabet sets V1,U2,U3
where U2 = U3 = Fπ be the finite field of cardinality π and let pV1U2U3XY be a PMF on V1 ×U2 ×U3 ×X ×Y .

For j = 2, 3, let λj ⊆ Unj be coset of a linear code λj ⊆ Fnπ of rate Sj log π. The linear codes are contained in

one another, i.e., if Sj1 ≤ Sj2 , then λj1 ⊆ λj2 . Codewords of λj are partitioned independently and uniformly into

exp {nTj} bins. A codebook C1 of rate K1 + R1 is built over V1. The codewords of C1 are independently and

uniformly partitioned into exp {nR1} bins. Messages of users 1, 2, 3 at rates L1, T2 log π, T3 log π are used to index
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bins in C1, λ2, λ3 respectively. The encoder looks for a jointly typical triple, with respect to pV1U2U3
, of codewords

in the indexed triple of bins. Following a second moment method similar to that employed in [42, Appendix A], it

can be proved that the encoder finds at least one jointly typical triple if

K1 > 0, (Sj − Tj) log π > log π −H(Uj), (Sj − Tj) log π +K1 > log π −H(Uj) + I(Uj ;V1), : j = 2, 3 (12)
3∑
j=2

(Sj − Tj) log π > 2 log π −H(U2)−H(U3) + I(U2;U3) (13)

K1 + max{S2, S3} log π > log π −H(U2 ⊕ U3) + I(V1;U2 ⊕ U3), max{S2, S3} log π ≥ log π −H(U2 ⊕ U3)(14)
3∑
j=2

(Sj − Tj) log π +K1 > 2 log π −
3∑
j=2

H(Uj) + I(U2;U3;V1). (15)

Having chosen one such jointly typical triple, say V n1 , U
n
2 , U

n
3 , it generates a vector Xn according to

pnX|V1U2U3
(·|V n1 , Un2 , Un3 ) =

n∏
t=1

pX|V1U2U3
(·|V1t, U2t, U3t)

and feeds the same as input on the channel.

Decoders 2 and 3 perform a standard PTP decoding. For example, decoder 2 receives Y n2 and looks for all

codewords in Λ2 that are jointly typical with Y n2 . If it finds all such codewords in a unique bin it declares the

corresponding bin index as the decoded message. It can be proved by following the technique similar to [26, Proof

of Theorem 1] that if

Sj log π < log π −H(Uj |Yj) for j = 2, 3 (16)

then probability of decoding error at decoders 2 and 3 can be made arbitrarily small for sufficiently large n. Having

received Y n1 , decoder 1 looks for all codewords vn1 ∈ C1 for which there exists a codeword un2⊕3 ∈ Λ2 ⊕ Λ3 such

that (vn1 , u
n
2⊕3, Y

n
1 ) is jointly typical with respect to pV1,U2⊕U3,Y1

. Here

Λ2 ⊕ Λ3 : =
{
Un2 ⊕ Un3 : Unj ∈ Λnj : j = 2, 3

}
.

If all such codewords in C1 belong to a unique bin, the corresponding bin index is declared as the decoded message.

Again following the technique similar to [26, Proof of Theorem 1], it can be proved, that if, for j = 2, 3

K1+R1<H(V1)−H(V1|U2 ⊕ U3, Y1), K1+R1+Sj log π < log π +H(V1)−H(V1, U2 ⊕ U3|Y1), (17)

then probability of decoding error at decoder 1 falls exponentially with n. In the sequel, we provide a formal proof

of achievability.

2) Proof of achievability:

Definition 5: For a = 2, 3, let Df1a(WY |X , κ, τ) denote the collection of PMF’s pQU2U3V1XY defined on Q ×

U2×U3×V1×X ×Y , where (i) U2 = U3 = Fπ is the finite field of cardinality π, V1 is a finite set, (ii) pY |XV1U =

pY |X = WY |X , and (iii) E {κ(X)} ≤ τ and (iv) H(Ua|YaQ) < H(U2⊕U3|Q). For pQUV1XY ∈ Df1a(WY |X , κ, τ),
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let β1a(pQUV1XY ) be defined as the set of triples (R1, R2, R3) that satisfy

0 < R1 < I(V1;U2 ⊕ U3, Y1|Q), 0 < Rj < I(Uj ;Yj |Q) : j = 2, 3,

R1 +Ra < I(Ua;Ya|Q)− I(Ua;V1|Q) + I(V1, U2 ⊕ U3;Y1|Q) + I(V1;U2 ⊕ U3|Q)

R2 +R3 < I(U2;Y2|Q) + I(U3;Y3|Q)− I(U2;U3|Q)

R1 +Rj < H(V1, Uj |Q)−H(V1, U2 ⊕ U3|Y1Q) + min{0, H(U2 ⊕ U3, Y1|Q)−H(Uj |YjQ)} : j = 2, 3

3∑
k=1

Rk < H(U2, U3, V1|Q)−H(V1, U2 ⊕ U3|Y1Q)−max {H(U2|Y2Q), H(U3|Y3Q)}

3∑
k=1

Rk < H(U2, U3, V1|Q)−H(V1|QU2⊕U3, Y1)−
3∑
k=2

H(Uk|QYk)

R1 +

3∑
k=1

Rk < H(V1|Q) +H(U2U3V1|Q)−2H(V1, U2⊕U3|QY1)

Rj +

3∑
k=1

Rk < H(V1, Uj |Q) +H(U2, U3|Q)− 2H(Uj |QYj)−H(V1, U2 ⊕ U3|QY1) : j = 2, 3

and

β1(WY |X , κ, τ) = cocl


3⋃
a=2

⋃
pUV1XY

∈Df1a(WY |X ,κ,τ)

β1a(pQUV1XY )

 .

Theorem 4: For a 3−DBC (X ,Y,WY |X , κ), β1(WY |X , κ, τ) is achievable, i.e., β1(WY |X , κ, τ) ⊆

C(WY |X , κ, τ).

Proof: Given pQV1UXY ∈ Df1a(WY |X , κ, τ), for some a = 2, 3, R ∈ β1(pQV1UXY ), η̃ > 0, our task is to

identify a 3−DBC code (n,M, e, d) of rate logMj

n ≥ Rj − η̃ : j = 1, 2, 3, average error probability ξ(e, d) ≤ η̃,

and average cost τ(e) ≤ τ + η̃. Taking a cue from the above coding technique, we begin with an alternate

characterization of β1a(pQV1UXY ) in terms of the parameters of the code.

Definition 6: Consider pQV1UXY ∈ Df1a(WY |X , κ, τ) and let π : = |U2| = |U3|. For a = 2, 3, let β̃1a(pQV1UXY )

be defined as the set of rate triples R : = (R1, R2, R3) ∈ [0,∞)3 for which ∪
δ>0
Sa(R, pQV1UXY , δ) is non-empty,

where, for any δ > 0, Sa(R, pQV1UXY , δ) is defined as the set of vectors (K1, R1, S2, T2, S3, T3) ∈ [0,∞)6 that

satisfy Rj = Tj log π,

K1 > δ, (Sj − Tj) log π > log π −H(Uj |Q) + δ, (18)

K1 + (Sj − Tj) log π > log π −H(Uj |Q,V1) + δ,
3∑
l=2

(Sl − Tl) log π > 2 log π −H(U |Q) + δ, (19)

K1 +
3∑
l=2

(Sl − Tl) log π > 2 log π −H(U |Q,V1) + δ, Sa log π > log π −H(U2 ⊕ U3|Q) + δ, (20)
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K1 + Sa log π
(a)
> log π −H(U2 ⊕ U3|Q,V1) + δ, K1 +R1 < I(V1;Y1, U2 ⊕ U3|Q)− δ, (21)

K1 +R1 + max {S2, S3} log π < log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1)− δ

Sj log π < log π −H(Uj |Q,Yj)− δ,

for j = 2, 3.

Lemma 2: β̃1a(pQV1UXY ) = β1a(pQV1UXY ) for every pQV1UXY ∈ Df1a(WY |X , κ, τ) and a = 2, 3.

Proof: The proof follows by substituting Rj = Tj log π for j = 2, 3 in the bounds characterizing

Sa(R, pQV1UXY , δ) and eliminating K1, Sj : j = 2, 3 via the technique proposed in [43]. The presence of

strict inequalities in the bounds characterizing β1a(pQV1UXY ) and Sa(R, pQV1UXY , δ) enables one to prove

∪
δ>0
Sa(R, pQV1UXY , δ) is non-empty for every R ∈ β1a(pQV1UXY ).

For the given rate triple R ∈ β1a(pQV1UXY ), we have δ1 > 0 and (K1, R1, S2, T2, S3, T3) ∈ Sa(R, pQV1UXY , δ1).

Set η : = min {η̃, δ1}. Consider a codebook C1 = (vn1 (m1, b1) : m1 ∈ M1, b1 ∈ B1) built over V1 consisting of

|M1| bins, each consisting of |B1| codewords. We letM1 = [bexp
{
n(R1 − η

2 )
}
c] and B1 = [dexp

{
n(K1 + η

8 )
}
e].

C1 is employed to encode user 1’s message. Codebooks employed to encode user 2 and 3’s messages are partitioned

coset codes which are described in the sequel. Henceforth, we let π : = |U2| = |U3| and therefore Fπ = U2 = U3.

Consider a linear code λ ⊆ Fnπ with generator matrix g ∈ Fs×nπ and let λ ⊆ Fnπ denote the coset of λ with

respect to shift bn ∈ Fnπ . Clearly, the codewords of λ are given by u(as) : = asg ⊕ bn : as ∈ Fsπ . Consider

a partition of λ into πt bins. Each codeword u(as) is assigned a bin index i(as) ∈ F tπ . For every mt ∈ F tπ ,

c(mt) : = {as : i(as) = mt} denotes the set of indices whose codewords are assigned to bin mt. The coset code

λ with it’s partitions is called a partitioned coset code (PCC) and is referred to as the PCC (n, s, t, g, bn, i).

For j = 2, 3, user j is provided the PCC (n, sj , tj , gj , b
n
j , ij), where sj = bnSjc, tj : = dn(Tj − η

4 log π )e. Let

unj (a
sj
j ) : = a

sj
j gj⊕bnj denote a generic codeword in λj and cj(m

tj
j ) : =

{
a
sj
j : ij(a

sj
j ) = m

tj
j

}
denote the indices

of codewords in bin corresponding to message mtj
j . These codes are such that if sj1 ≤ sj2 , then gtj2 =

[
gtj1 gtj2/j1

]
.

In other words, the linear code corresponding to the larger coset code contains the linear code corresponding to

the smaller coset code. Without loss of generality, we henceforth assume s2 ≤ s3 and therefore gt3 =
[
gt2 gt3/2

]
. It

is now appropriate to derive some relationships between the code parameters that would be of use at a later time.

There exists N1(η) ∈ N such that for all n ≥ N1(η)

nSj − 1 ≤ sj ≤ nSj and therefore Sj − η
8 log π ≤ Sj −

1
n ≤

sj
n ≤ Sj , (22)

n
(
Tj − η

4 log π

)
≤ tj ≤ n

(
Tj − η

4 log π

)
+ 1 and therefore Tj − η

4 log π ≤
tj
n ≤ Tj −

η
8 log π + 1

n , (23)

R1 − η ≤ log |M1|
n ≤ R1 − η

2 and K1 + η
8 ≤

log |B1|
n ≤ K1 + η

4 . (24)

We now describe the encoding and decoding rules. A vector qn ∈ Tη2(Q) is chosen to be the time-sharing vector,

where η2 will be specified in due course. Without loss of generality, we assume the message sets are Mj : = F tjπ
for j = 2, 3 and as stated before M1 : = [bexp

{
n(R1 − η

2 )
}
c]. Let (M1,M

t2
2 ,M

t3
3 ) ∈ M denote the uniformly

distributed triple of message random variables to be communicated to the respective users. The encoder looks for a
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triplet (b1, a
s2
2 , a

s3
3 ) ∈ B1 × c2(M t2

2 )× c3(M t3
3 ) such that (vn1 (M1, b1), un2 (as22 ), un3 (as33 )) ∈ T2η2(V1, U2, U3|qn).6

If it finds at least one such triple, one of them is chosen according to a predefined rule. Otherwise, i.e, if it finds

no triple of codewords in the indexed triple of bins that is jointly typical, it chooses a fixed triple of codewords

in C1 × λ2 × λ3. In either case, let (vn1 (M1, B1), un2 (As22 ), u3(As33 )) denote the chosen triple of codewords. In the

former case, the encoder maps the triple to a vector in T4η2(X|vn1 (M1, B1), un2 (As22 ), u3(As33 )) and feeds the same

as input on the channel. In the latter case, it picks a fixed vector in Xn and feeds the same as input on the channel.

In either case, let xn(M1,M
t2
2 ,M

t3
3 ) denote the vector input on the channel.

The operations of decoders 2 and 3 are identical and we describe the same through the generic index j.

Having received vector Y nj , it looks for all messages m̂tj
j ∈ Mj such that for some asjj ∈ cj(m̂

tj
j ), uj(a

sj
j ) ∈

T8η2(Uj |qn, Y nj ). If it finds exactly one such message, this is declared as the decoded message. Otherwise, an error

is declared. Decoder 1 is provided with the codebook λ2 ⊕ λ3 : =
{
un2 (as22 )⊕ un3 (as33 ) : a

sj
j ∈ F

sj
π : j = 2, 3

}
.

Note that λ2 ⊕ λ3 = {u⊕(as33 ) : = as33 g3 ⊕ bn2 ⊕ bn3 : as33 ∈ Fs3π }. Having received Y n1 , decoder 1 looks for all

messages m̂1 ∈ M1 such that (vn1 (m̂1, b1), u⊕(as33 )) ∈ T8η2(V1, U2 ⊕ U3|qn, Y n1 ) for some (b1, a
s3
3 ) ∈ B1 × Fs3π .

If it finds exactly one such m̂1 ∈M1, this is declared as the decoded message. Otherwise, an error is declared.

The above encoding and decoding rules map a triplet C1, λ2, λ3 of codebooks into a 3−DBC code7. Moreover,

(23) and (24) imply that the rates of the corresponding 3−DBC code satisfy logM1

n ≥ R1−η, tj log πn ≥ Rj− η̃
4 for

j = 2, 3. Since every triple C1, λ2, λ3 of codebooks, and a choice for the predefined rules map to a corresponding

3−DBC code, we have characterized an ensemble of 3−DBC codes, one for each n ∈ N. We now induce a

distribution over this ensemble of 3−DBC codes.

Consider a random triple C1,Λ2,Λ3 of codebooks, where C1 = (V n1 (m1, b1) : (m1, b1) ∈M1 × B1) and

Λj is the random PCC (n, sj , tj , Gj , B
n
j , Ij). Note that the joint distribution of V n1 (m1, b1) : (m1, b1) ∈

M1 × B1, G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π uniquely characterizes the distribution of

C1,Λ2,Λ3. We let V n1 (m1, b1) : (m1, b1) ∈ M1 × B1, G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π

be mutually independent. For every (m1, b1) ∈ M1 × B1, vn1 ∈ Vn1 , let P (V n1 (m1) = vn1 ) =
∏n
t=1 pV1|Q(v1t|qt).

The rest of the random objects G2, G3/2, B
n
2 , B

n
3 , I2(as22 ) : as22 ∈ Fs2π , I3(as33 ) : as33 ∈ Fs3π are uniformly

distributed over their respective range spaces. We have therefore specified the distribution of the random triple

C1,Λ2,Λ3 of codebooks. For j = 2, 3, we let Unj (a
sj
j ) = a

sj
j Gj ⊕ Bnj denote a generic random codeword in the

random codebook Λj . Likewise, we let Un⊕(as33 ) = as33 G3 ⊕Bn2 ⊕Bn3 denote a generic codeword in Λ2 ⊕Λ3. Let

(V n1 (M1, B1), Un2 (As22 ), Un3 (As33 )) denote the triple of codewords chosen by the encoder and Xn(M1,M
t2
2 ,M

t3
3 )

denote the vector input on the channel.

While the above specifies the distribution of the random triple of C1,Λ2,Λ3 of codebooks, the predefined rules that

map it to a 3−DBC code is yet unspecified. In other words, the distribution of (V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ))

6Here, the typicality is with respect to pQV1UXY .
7This map also relies on a ‘predefined’ rule to choose among many jointly typical triples within an indexed pair of bins and furthermore, a

rule to decide among many input sequences that is conditionally typical with this chosen triple of codewords.
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and Xn(M1,M
t2
2 ,M

t3
3 ) need to be specified. All the 3−DBC codes that a particular triplet of codebooks C1, λ2, λ3

map to, are uniformly distributed. Alternatively, the encoder picks a triple in{
(V n1 (M1, b1), U2(as22 ), U3(as33 )) ∈ T2η2(V1, U |qn) : (b1, a

s2
2 , a

s3
3 ) ∈ B1 × C2(M t2

2 )× C3(M t3
3 )
}

uniformly at random and independent of other choices. Denoting this random triple as (V n1 (M1, B1), Un2 (As22 ),

Un3 (As33 )), the encoder picks an input sequence in T2η2(X|(V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ))) uniformly at random

and independent of other choices. We have therefore specified the distribution induced on the corresponding ensemble

of 3−DBC codes. In the sequel, we characterize error events associated with this random 3−DBC code.

If

ε1 : =
⋂

(b1,a
s2
2 ,a

s3
3 )

B1×C2(M
t2
2 )×C3(M

t3
3 )

{(V1(M1, b1), U2(as22 ), U3(as33 )) /∈ T2η2(V1, U2, U3|qn)}

ε31 : =
⋂

(b1,a
s3
3 )

∈B1×Fs3π

{
(V1(M1, b1), Un⊕(as33 ), Y n1 ) /∈ T8η2(V1, U2 ⊕ U3, Y1|qn)

}
,

ε3j : =
⋂

a
sj
j ∈Cj(M

tj
j )

{
(Uj(a

sj
j ), Y nj ) /∈ T8η2(Uj , Yj |qn)

}
ε41 : =

⋃
(b1,a

s3
3 )

∈B1×Fs3π

⋃
m̂1 6=M1

{
(V1(m̂1, b1), Un⊕(as33 ), Y n1 ) ∈ T8η2(V1, Y1|qn)

}
,

ε4j : =
⋃

a
sj
j ∈Cj(m̂

tj
j )

m̂
tj
j 6=M

tj
j

{
(Uj(a

sj
j ), Y nj ) ∈ T8η2(Uj , Yj |qn)

}
,

then ε : =
3
∪
j=1

(ε1 ∪ ε3j ∪ ε4j) contains the error event. Our next task is to derive an upper bound on P (ε).

Let

φ(m1,m
t2
2 ,m

t3
3 ) : =

∑
(b1,a

s2 ,as3 )∈
B1×Fs2π ×F

s3
π

1{
(V n1 (m1,b1),U2(as2 ),U3(as3 ))∈T2η2

(V1,U2,U3|qn),I(asj )=m
tj
j :j=2,3

},

εl : =
{
φ(M1,M

t2
2 ,M

t3
3 ) < L(n)

}
, where L(n) : =

1

2
E
{
φ(M1,M

t2
2 ,M

t3
3 )
}
.

Clearly P (ε) ≤ P (εl) + P (εcl ∩ ε), and it therefore suffices to derive upper bounds on each of these terms.

Upper bound on P (εl):- Substituting for L(n), we have

P (εl) ≤ P (

{
|φ(M1,M

t2
2 ,M

t3
3 )− E

{
φ(M1,M

t2
2 ,M

t3
3 )
}
| ≥

E
{
φ(M1,M

t2
2 ,M

t3
3 )
}

2

}
)

≤
4Var

{
φ(M1,M

t2
2 ,M

t3
3 )
}(

E
{
φ(M1,M

t2
2 ,M

t3
3 )
})2 (25)

from the Cheybyshev inequality. In appendix A, we evaluate the variance and expectation of φ(M1,M
t2
2 ,M

t3
3 ) and
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derive an upper bound on P (εl). In particular, we prove for n ≥ max{N1(η), N2(η2)},

P (ε1) ≤ (28 + 8π) exp
{
−n
(
δ1 −

η

8
− 48η2

)}
. (26)

Now consider εcl ∩ ε1. Note that P (ε1) = P (φ(M1,M
t2
2 ,M

t3
3 ) = 0), and hence εcl ∩ ε1 = φ, the empty set, if

L(n) > 1. At the end of appendix A, we prove L(n) > 1 for sufficiently large n. We are left to derive an upper

bound on P (εcl ∩
3
∪
j=1

(ε3j ∪ ε4j)).

Since L(n) > 1, εcl ⊆ εc1, it suffices to derive an upper bound on the terms P (εc1 ∩ (ε31 ∪ ε32 ∪ ε33)), P (εcl ∩

(ε31 ∪ ε32 ∪ ε33)
c ∩ ε4j) : j = 1, 2, 3.

Upper bound on P (εc1 ∩ (ε31 ∪ ε32 ∪ ε33)):- Consider P (εc1 ∩ ε2), where

ε2 : = {(V1(M1, B1), U2(As22 ), U3(As33 ), Xn) /∈ T4η2(V1, U,X|qn)} .

By the encoding rule P (εc1 ∩ ε2) = 0. Since the encoding rule also ensures εc1 ∩ (ε31 ∪ ε32 ∪ ε33) ⊆ εc1 ∩ ε3, where

ε3 : =
{

(V n1 (M1, B1), Un2 (As22 ), Un3 (As33 ), Xn(M1,M
t2
2 ,M

t3
3 ), Y n) /∈ T8η2(V1, U,X, Y )

}
,

it suffices to derive an upper bound on P ((ε1 ∪ ε2)c ∩ ε3). This follows from conditional frequency typicality and

pY |XV1UQ = pY |X = WY |X . We conclude the existence of N3(η2) such that for all n ≥ N4(η2), P ((ε1∪ε2)c∩ε3) ≤
η
32 .

Upper bound on P ((εl∪ ε2∪ ε3)c∩ ε41) : We refer the reader to appendix B for the derivation of an upper bound

on P ((ε1∪ε2∪ε3)c∩ε41). Therein, we prove existence of N4(η2) ∈ N such that for all n ≥ max {N1(η), N4(η2)},

we have

P ((εl ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp
{
−n
(
δ1 +

η

4
− 56η2

)}
. (27)

Upper bound on P ((εl ∪ ε2 ∪ ε3)c ∩ ε4j) : For j = 2, 3, decoder j performs a simple PTP decoding and therefore

the reader might expect the analysis here to be quite standard. The partitioned coset code structure of user j’s

codebook that involves correlated codewords and bins lends some technical complexities. We flesh out the details

in appendix C. In particular, we prove (84) existence of N5(η2) ∈ N such that for all n ≥ max{N1(η), N5(η2)}

P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4j) ≤ 2 exp {−n (δ1 − 32η2)} . (28)

Let us now compile the upper bounds derived in (26), (27) and (28). For n ≥ max{N1(η), N2(η2)N3(η2), N4(η2),

N5(η2)}, we have

P (ε1 ∪ ε2 ∪ ε3 ∪ ε41 ∪ ε42) ≤ η

32
+ (34 + 8π) exp

{
−n
(
δ1 −

η

8
− 56η2

)}
. (29)

Recall that η is chosen to be min {η̃, δ1}. By choosing η2 = η
56×8 , we have δ1− η

8 −
η
8 >

3η
4 and we can drive the

probability of error below η̃ by choosing n sufficiently large.

The only element left to argue is the random code satisfies the cost constraint. Since P (ε1 ∪ ε2) is lesser than η̃
2

for sufficiently large n, the encoder inputs a vector on the channel that is typical with respect pX with probability

1 − η̃
2 . Since E {κ(X)} ≤ τ , a standard argument proves that the expected cost of the input vector can be made
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Fig. 2. The 3−BC described in example 2.

arbitrarily close to τ by choosing n sufficiently large and η2 sufficiently small. We leave the details to the reader.

For example 1, if τ∗δ1 ≤ min {δ2, δ3}, then (hb(τ∗δ1)−hb(δ1), 1−hb(δ2), 1−hb(δ3)) ∈ β1(WY |X , κ, τ). Indeed,

it can be verified that if τ ∗ δ1 ≤ min {δ2, δ3}, then (hb(τ ∗ δ1)− hb(δ1), 1− hb(δ2), 1− hb(δ3)) ∈ β1(pUV1XY ),

where pUV1X = pV1
pU21

pU31
1{X1=V1}1{X2=U21}1{X3=U31}, pU21

(1) = pU31
(1) = 1

2 and pV1
(1) = τ .

3) Non-additive example: We now present a non-additive example for which we analytically prove strict sub-

optimality of UM−technique.

Example 2: Consider the 3−DBC (X ,Y,WY |X , κ) depicted in figure 2, where X : = {0, 1} ×

{0, 1} × {0, 1} ,Y1 = Y2 = Y3 = {0, 1} ,WY |X(y1, y2, y3|x1x2x3) = BSCδ1(y1|x1 ⊕ (x2 ∨

x3))BSCδ2(y2|x2)BSCδ3(y3|x3), where δj ∈ (0, 12 ) : j = 1, 2, 3, BSCη(1|0) = BSCη(0|1) = 1−BSCη(0|0) =

1−BSCη(1|1) = η for any η ∈ (0, 12 ) and the cost function κ = (κ1, κ2, κ3), where κj(x1x2x3) = 1{xj=1}.

We begin by stating the conditions for sub-optimality of UM−technique.

Lemma 3: Consider example 2 with δ : = δ2 = δ3 ∈ (0, 12 ) and τ : = τ2 = τ3 ∈ (0, 12 ). Let β : = δ1 ∗ (2τ − τ2).

The rate triple (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) /∈ αU (τ) if

hb(τ1 ∗ δ1)− hb(δ1) + 2(hb(τ ∗ δ)− hb(δ)) > hb(τ1(1− β) + (1− τ1)β)− hb(δ1). (30)

Proof: Please refer to appendix G

We now derive conditions under which (hb(τ1 ∗δ1)−hb(δ1), hb(τ ∗δ)−hb(δ), hb(τ ∗δ)−hb(δ)) ∈ β1(WY |X , κ, τ).

Lemma 4: Consider example 2 with δ : = δ2 = δ3 ∈ (0, 12 ) and τ : = τ2 = τ3 ∈ (0, 12 ). Let β : = δ1 ∗ (2τ − τ2).

The rate triple (hb(τ1 ∗ δ1)− hb(δ1), hb(τ ∗ δ)− hb(δ), hb(τ ∗ δ)− hb(δ)) ∈ β1(WY |X , κ, τ) i.e., achievable using

coset codes, if,

hb(τ ∗ δ)− hb(δ) ≤ θ, (31)

where θ = hb(τ)−hb((1−τ)2)−(2τ−τ2)hb(
τ2

2τ−τ2 )−hb(τ1∗δ1)+hb(τ1∗β). Moreover C1(τ) = hb(τ1∗δ1)−hb(δ1).

Proof: The proof only involves identifying the appropriate test channel pUV1
∈ D1(WY |X , κ, τ). Let Q = φ

be empty, U21 = U31 = F3. Let pX1
(1) = 1 − pX1

(0) = τ1. Let pUj1Xj (0, 0) = 1 − pUj1Xj (1, 1) = 1 − τ and

therefore P (Uj1 = 2) = P (Xj 6= Uj) = 0 for j = 2, 3. It is easily verified that pUV1XY ∈ D1(WY |X , κ, τ), i.e, in

particular respects the cost constraints.
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The choice of this test channel, particularly the ternary field, is motivated by H(X2 ∨ X3|U21 ⊕3 U31) = 0.

The decoder 1 can reconstruct the interfering pattern after having decoded the ternary sum of the codewords.

It maybe verified that for this test channel pQU21U31XY , β1(pQU21U31XY ) is defined as the set of rate triples

(R1, R2, R3) ∈ [0,∞)3 that satisfy

R1 < min {0, θ}+ hb(τ1 ∗ δ1)− hb(δ1), Rj < hb(τ ∗ δ)− hb(δ) : j = 2, 3

R1 +Rj < hb(τ1 ∗ δ1)− hb(δ1) + θ, (32)

where θ is as defined in the statement of the lemma. Clearly, (hb(τ1∗δ1)−hb(δ1), hb(τ∗δ)−hb(δ), hb(τ∗δ)−hb(δ)) ∈

cocl(β1(pUV1XY )) if (31) is satisfied. Using standard information-theoretic arguments, one can easily establish that

C1(τ) ≤ hb(τ1 ∗ δ1)− hb(δ1). This completes the proof.

Conditions (30) and (31) are not mutually exclusive. It maybe verified that the choice τ1 = 1
90 , τ = 0.15,

δ1 = 0.01 and δ = 0.067 satisfies both conditions. We therefore conclude the existence of non-additive 3−DBC’s

for which PCC yield strictly larger achievable rate regions. We extract the key elements of lemmas 3 and 4 in the

following theorem.

Theorem 5: For a vector 3−DBC studied in example 2 that satisfies (30) and (31), linear coding technique

achieves C1(τ) = hb(τ1 ∗ δ1)−hb(δ1), and UM−technique cannot achieve this performance. In particular, for the

choice τ1 = 1
90 , τ = 0.15, δ1 = 0.01 and δ = 0.067, these conditions are satisfied.

B. Step II: Incorporating private codebooks

We revisit the coding technique proposed in section IV-A. Observe that (i) user 1 decodes a sum of the entire

codewords transmitted to users 2 and 3 and (ii) users 2 and 3 decode only their respective codewords. This technique

may be enhanced in the following way. User 1 can decode the sum of one component of user 2 and 3 signals each.

In other words, we may include private codebooks for users 2 and 3.

Specifically, in addition to auxiliary alphabet sets V1,U2,U3 introduced in section IV-A, let V2,V3 denote arbitrary

finite sets and pU2U3V1V2V3 denote a PMF on U2 × U3 × V1 × V2 × V3. For j = 2, 3, consider a random codebook

Cj ⊆ Vnj of rate Kj + Lj whose codewords are independently chosen according to pnVj . Codewords of Cj are

independently and uniformly partitioned into exp {nLj} bins. The distribution induced on C1,Λ2,Λ3 is identical

to that in section IV-A. Moreover, the triplet C2, C3, (C1,Λ2,Λ3) are mutually independent.8 Having specified the

distribution of codewords of Cj : j = 2, 3, we have thus specified the distribution of quintuple of random codebooks.

Messages of users’ 2 and 3 are split into two parts each. One part of user 2’s (3’s) message, of rate T2 log π (T3 log π),

index a bin in Λ2 (Λ3), and the other part, of rate L2 (L3), index a bin in C2 (C3). User 1’s message indexes a

bin in C1. The encoder looks for a quintuple of jointly typical codewords with respect to pUV , in the quintuple of

indexed bins. Following a second moment method similar to that employed in appendix A, it can be proved that

8Here (C1,Λ2,Λ3) is treated as a single random object.
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the encoder finds at least one jointly typical triple if

(SA − TA) log π +KB > |A| log2 π +
∑
b∈B

H(Vb)−H(UA, VB)9 (33)

max{S2, S3} log π +KB > log π +
∑
b∈B

H(Vb)− min
θ∈Fπ\{0}

H(U2 ⊕ θU3, VB) (34)

for all A ⊆ {2, 3} , B ⊆ {1, 2, 3}, where SA =
∑
j∈A Sj , KB =

∑
b∈BKb, UA = (Uj : j ∈ A) and VB = (Vb :

b ∈ B).10 Having chosen one such jointly typical quintuple, say (Un2 , U
n
3 , V

n), the encoder generates a vector Xn

according to pnX|V U2U3
(·|V n, Un2 , Un3 ) and inputs the same on the channel.

The operations of decoders 2 and 3 are identical and we describe one of them. Decoder 3 receives Y n3 and looks

for all pairs of codewords in the Cartesian product Λ3×C3 that are jointly typical with Y n3 with respect to pU3V3Y3
.

If all such pairs belong to a unique pair of bins, the corresponding pair of bin indices is declared as the decoded

message of user 3. Else an error is declared. It can be proved that if

Sj log π < log2 π −H(Uj |Vj , Yj), Kj + Lj < H(Vj)−H(Vj |Yj , Uj) (35)

Sj log π +Kj + Lj < log2 π +H(Vj)−H(Vj , Uj |Yj) (36)

for j = 2, 3, then probability of users 2 or 3 decoding into an incorrect message falls exponentially with n.

Operation of decoder 1 is identical to that described in section IV-A. If (17) holds, then probability of error

at decoder 1 falls exponentially with n. Substituting R1 = K1, R2 = T2 log π + L2, R3 = T3 log π + L3

and eliminating S2 log π, S3 log π,K1,K2,K3 in (17), (33)-(36) yields an achievable rate region. We provide a

mathematical characterization of this achievable rate region.

Definition 7: Let Df2 (WY |X , κ, τ) denote the collection of PMFs pQU2U3V1V2V3XY defined on Q × U2 × U3 ×

V1×V2×V3×X ×Y , where (i) U2 = U3 = Fπ is the finite field of cardinality π, Q,V1,V2,V3 are finite sets, (ii)

pY |XV UQ = pY |X = WY |X , and (iii) E {κ(X)} ≤ τ . For pQUVXY ∈ Df2 (WY |X , κ, τ), let β2(pQUVXY ) be defined

as the set of triples (R1, R2, R3) ∈ [0,∞)3 for which there exists nonnegative numbers S2, T2, S3, T3,Kj , Lj : j =

1, 2, 3 such that R1 = K1, R2 = T2 log π + L2, R3 = T3 log π + L3,

(SA − TA) log π +KB > |A| log2 π +
∑
b∈B H(Vb|Q)−H(UA, VB |Q), 11

max{S2, S3} log π +KB > log π +
∑
b∈B H(Vb|Q)−minθ∈Fπ\{0}H(U2 ⊕ θU3, VB |Q),

K1+R1<I(V1;U2 ⊕ U3, Y1|Q), K1+R1+Sj log π < log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1) : j = 2, 3,

Sj log π < log2 π −H(Uj |Q,Vj , Yj) : j = 2, 3, Kj + Lj < H(Vj |Q)−H(Vj |Q,Yj , Uj) : j = 2, 3

Sj log π +Kj + Lj < log2 π +H(Vj |Q)−H(Vj , Uj |Q,Yj) : j = 2, 3

for all A ⊆ {2, 3} , B ⊆ {1, 2, 3}, where SA =
∑
j∈A Sj , KB =

∑
b∈BKb, UA = (Uj : j ∈ A) and VB = (Vb :

9We remind the reader that the empty sum has value 0, i.e,
∑
a∈φ = 0

10Recall that Fπ = U2 = U3.
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b ∈ B). Let

β2(WY |X , κ, τ) = cocl

 ⋃
pQUVXY

∈Df2 (WY |X ,κ,τ)

β2(pQUVXY )

 .

Theorem 6: For a 3−DBC (X ,Y,WY |X , κ), β2(WY |X , κ, τ) is achievable, i.e., β2(WY |X , κ, τ) ⊆

C(WY |X , κ, τ).

The proof is similar to that of theorem 4. The only differences being (i) the encoder looks for a quintuple of

codewords instead of a triple, and (ii) decoders 2 and 3 decode from a pair of codebooks. These can be handled

using the techniques developed in proof of 4. The reader in need of an elaboration is referred to [42, Thm. 5].

C. Step III: PCC−region : Using PCC to manage interference over a 3−DBC

Here we employ PCC to manage interference seen by each receiver. In the sequel, we propose a simple

extension of the technique presented in section IV-B to enable each user decode a bivariate interference component.

Throughout the following discussion i, j, k denote distinct indices in {1, 2, 3}. Let Uji = Fπi ,Ujk = Fπk be

finite fields and Vj be an arbitrary finite set. User j splits it’s message Mj into three parts (MU
ji ,M

U
jk,M

V
j )

of rates Tji log πi, Tjk log πk, Lj respectively. User j’s message indexes three codebooks - Cj ,Λji,Λjk - whose

structure is described in the following. Consider a random codebook Cj ⊆ Vnj of rate Kj + Lj whose codewords

are independently chosen according to pnVj . Codewords of Cj are independently and uniformly partitioned into

exp {nLj} bins. Consider random PCC (n, nSji, nTji, Gji, B
n
ji, Iji) and (n, nSjk, nTjk, Gjk, B

n
jk, Ijk) denoted

Λji and Λjk respectively. Observe that PCC Λji and Λki are built over the same finite field Fπi . The corresponding

linear codes are nested, i.e., if Sji ≤ Ski, then Gtki =
[
Gtji G

t
ki/ji

]
where Gki/ji ∈ F

n(Sji−Ski)×n
π , and vice versa.

We have thus specified the structure of 9 random codebooks. We now specify the distribution of these random

codebooks.

The random PCCs are independent of Cj : j = 1, 2, 3. C1, C2, C3 are mutually independent. We now specify the

distribution of the PCCs. The triplet (Λ12,Λ32), (Λ21,Λ31), (Λ23,Λ13) are mutually independent. All of the bias

vectors are mutually independent and uniformly distributed. The collection of generator matrices is independent of

the collection of bias vectors. We only need to specify the distribution of the generator matrices. The rows of the

larger of the two generator matrices Gji and Gki are uniformly and independently distributed. This specifies the

distribution of the 9 random codebooks.

MU
ji ,M

U
jk and MV

j index bins in Λji, Λjk and Cj respectively. The encoder looks for a collection of 9 codewords

from the indexed bins that are jointly typical with respect to a PMF pUV defined on U × V .12 We now state

the bounds that ensure the probability of encoder not finding a jointly typical collection of codewords from the

indexed bins. We introduce some notation to aid reduce clutter. Throughout the following, in every instance i, j, k

will denote distinct indices in {1, 2, 3}. For every A ⊆ {12, 13, 21, 23, 31, 32}, B ⊆ {1, 2, 3}, C ⊆ {1, 2, 3},

12U abbreviates U12U13U21U23U31U32.
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let SA =
∑
jk∈A Sjk,MB : =

∑
j∈B max{Sij + Tij , Skj + Tkj},KC =

∑
c∈C Kc. For every B ⊆ {1, 2, 3}, let

A(B) = ∪j∈B{ji, jk}. Following a second moment method similar to that employed in appendix A, it can be proved

that the encoder finds at least one jointly typical collection if (37) is satisfied for all A ⊆ {12, 13, 21, 23, 31, 32} , B ⊆

{1, 2, 3} , C ⊆ {1, 2, 3}, that satisfy A ∩ A(B) = φ, where UA = (Ujk : jk ∈ A) and VC = (Vc : c ∈ C).

Having chosen one such jointly typical collection, say (Un, V n), the encoder generates a vector Xn according to

pnX|UV (·|Un, V n) and feeds the same as input on the channel.

Decoder j receives Y nj and looks for all triples (unji, u
n
jk, v

n
j ) of codewords in λji×λjk×Cj such that there exists

a unij⊕kj ∈ (λij⊕λkj) such that (unij⊕kj , u
n
ji, u

n
jk, v

n
j , Y

n
j ) are jointly typical with respect to pUij⊕Ukj ,Uji,Ujk,Vj ,Yj .

If it finds all such triples in a unique triple of bins, the corresponding triple of bin indices is declared as decoded

message of user j. Else an error is declared. The probability of error at decoder j can be made arbitrarily small

for sufficiently large block length if (37) holds for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3},

where SAj : =
∑
a∈Aj Sa, TAj : =

∑
a∈Aj Ta, UAj = (Ua : a ∈ Aj). . Recognize that user j’s rate Rj =

Tji log πi + Tjk log πk + Lj . We are now equipped to state PCC−region for a general 3−DBC.

Definition 8: Let Df (WY |X , κ, τ) denote the collection of probability mass functions pQUVXY defined on Q×

U×V×X×Y , where (i)Q,V1,V2,V3 are arbitrary finite sets, V : = V1×V2×V3, (ii) Uij = Fπj 13 for each 1 ≤ i, j ≤

3, and U : = U12×U13×U21×U23×U31×U32, (iii) V : = (V1, V2, V3) and U : = (U12, U13, U21, U23, U31, U32),

such that (i) pY |XV U = pY |X = WY |X , (ii) E {κ(X)} ≤ τ .

For pUVXY ∈ Df (WY |X , κ, τ), let β(pUVXY ) be defined as the set of rate triples (R1, R2, R3) ∈ [0,∞)3 for

which there exists nonnegative numbers Sij , Tij : ij ∈ {12, 13, 21, 23, 31, 32} ,Kj , Lj : j ∈ {1, 2, 3} such that

R1 = T12 log π2 + T13 log π3 + L1, R2 = T21 log π1 + T23 log π3 + L2, R3 = T31 log π1 + T32 log π2 + L3 and

SA +MB +KC > Θ(A,B,C) where,

Θ(A,B,C) : = max
(θj :j∈B)∈

∏
j∈B
Fπj
{
∑
a∈A

log |Ua|+
∑
j∈B

log πj +
∑
c∈C

H(Vc|Q)−H(UA, Uji ⊕ θjUjk : j ∈ B, VC |Q)}

for all A ⊆ {12, 13, 21, 23, 31, 32} , B ⊆ {1, 2, 3} , C ⊆ {1, 2, 3}, that satisfy A ∩ A(B) = φ, where A(B) =

∪j∈B{ji, jk}, UA = (Ujk : jk ∈ A), VC = (Vc : c ∈ C), SA =
∑
jk∈A Sjk,MB : =

∑
j∈B max{Sij +Tij , Skj +

Tkj},KC =
∑
c∈C Kc, and

SAj + TAj ≤
∑
a∈Aj

log |Ua| −H(UAj |Q,UAcj , Uij ⊕ Ukj , Vj , Yj)

SAj + TAj + Sij + Tij ≤
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj + Skj + Tkj ≤
∑
a∈Aj

log |Ua|+ log πj −H(UAj , Uij ⊕ Ukj |Q,UAcj , Vj , Yj)

SAj + TAj +Kj + Lj ≤
∑
a∈Aj

log |Ua|+H(Vj)−H(UAj , Vj |Q,UAcj , Uij ⊕ Ukj , Yj)

13Recall Fπj is the finite field of cardinality πj .
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SAj + TAj +Kj + Lj + Sij + Tij ≤
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj)

SAj + TAj +Kj + Lj + Skj + Tkj ≤
∑
a∈Aj

log |Ua|+ log πj +H(Vj)−H(UAj , Vj , Uij ⊕ Ukj |Q,UAcj , Yj),

for every Aj ⊆ {ji, jk} with distinct indices i, j, k in {1, 2, 3}, where SAj : =
∑
a∈Aj Sa, TAj :

=
∑
a∈Aj Ta, UAj = (Ua : a ∈ Aj). Let PCC−rate region be defined as

β(WY |X , κ, τ) = cocl

 ⋃
pQUVXY ∈

Df (WY |X ,κ,τ)

β(pQUVXY )

 .

Theorem 7: For 3−DBC (X ,Y,WY |X , κ), PCC−region β(WY |X , κ, τ) is achievable, i.e., β(WY |X , κ, τ) ⊆

C(WY |X , κ, τ).

All the non-trivial elements of this proof being illustrated in considerable detail in the context of proof of theorem

4, we omit a proof of theorem 7.

Remark 2: The PCC−region is a continuous function of the channel transition probability matrix. Therefore,

gains obtained by the proposed coding technique are robust to small perturbations of 3−DBC.

V. ENLARGING UM−REGION USING PARTITIONED COSET CODES

The natural question that arises is whether PCC−region β(WY |X , κ, τ) contains UM−region αU (WY |X , κ, τ).

The coding techniques based on structured codes do not substitute those based on unstructured codes, but enhance

the latter. Indeed, the technique proposed by Körner and Marton [28], in the context of distributed source coding,

is strictly suboptimal to that studied by Berger and Tung [44] if the function is not sufficiently compressive, i.e.,

entropy of the sum is larger than one half of the joint entropy of the sources.14 The penalty paid in terms of the

binning rate for endowing structure is not sufficiently compensated for by the function. This was recognized by

Ahlswede and Han [29, Section VI] for the problem studied by Körner and Marton.

We follow the approach of Ahlswede and Han [29, Section VI] to build upon UM−region by gluing to it

the coding technique proposed herein. In essence the coding techniques studied in section II-D and IV-C are

glued together.15 Indeed, a description of the resulting rate region is quite involved and we do not provide it’s

characterization. The resulting coding technique will involve each user split it’s message into six parts - one

public and private part each, two semi-private and bivariate parts each. This can be understood by splitting the

message as proposed in sections II-D and IV-C and identifying the private parts. In essence each user decodes

a univariate component of every other user’s transmission particularly set apart for it, and furthermore decodes a

14If X and Y are the distributed binary sources whose modulo−2 sum is to be reconstructed at the decoder, then Körner and Marton technique

is strictly suboptimal if H(X ⊕ Y ) >
H(X,Y )

2
.

15This is akin to the use of superposition and binning in Marton’s coding.
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WY1Y2Y3|X

U12 U13 T12 T13 V1

U21 U23 T21 T23 V2

U31 U32 T31 T32 V3

Y1   W T21 T31 U21U31 U12 U13 T12 T13 V1

Y2   W T12 T32 U12U32 U21 U23 T21 T23 V2

Y3   W T13 T23 U13U23 U31 U32 T31 T32 V3

W X

Fig. 3. Illustration of coding technique that incorporates unstructured and coset codes.

bivariate component of the other two user’s transmissions.16 Please refer to figure 3 for an illustration of the coding

technique. Herein, V denotes the private part, U , the bivariate part, T , the semi-private part and W , the public part.

VI. CONCLUDING REMARKS : COMMON PARTS OF RANDOM VARIABLES AND THE NEED FOR STRUCTURE

Let us revisit Marton’s coding technique for 2−BC. Define the pair Vj : = (W,Vj) : j = 1, 2 of random

variables decoded by the two users and let Vj : = W × Vj : j = 1, 2. Let us stack the collection of compatible

codewords as V1
n×V2

n
. The encoder can work with this stack, being oblivious to the distinction between W and

Vj : j = 1, 2. In other words, it does not recognize that a symbol over Vj is indeed a pair of symbols. A few

key observations of this stack of codewords is in order. Recognize that many pairs of compatible codewords agree

in their ‘W−coordinate’. In other words, they share the same codeword on the W−codebook. W is the common

part [45] of the pair (V1, V2). Being a common part, it can be realized through univariate functions. Let us say

W = f1(V1) = f2(V2). This indicates that W−codebook is built such that, the range of these univariate functions

when applied on the collection of codewords in this stack, is contained.

How did Marton accomplish this containment? Marton proposed building the W−codebook first, followed by

conditional codebooks over V1, V2. Conditional coding with a careful choice of order therefore contained the range

under the action of univariate function. How is all of this related to the need for containing bivariate functions

of a pair of random variables? The fundamental underlying thread is the notion of common part [45]. What

are the common parts of a triple of random variables? Clearly, one can simply extend the notion of common

part defined for a pair of random variables. This yields four common parts - one part that is simultaneously

common to all three random variables and one common part corresponding to each pair in the triple. Indeed, if

V1 = (W,U12, U31, V1), V2 = (W,U12, U23, V2), V3 = (W,U23, U31, V3), then W is the part simultaneously to

common to V1, V2, V3 and Uij : ij ∈ {12, 23, 31} are the pairwise common parts. The UM−technique suggests a

way to handle these common parts.

This does not yet answer the need for containment under bivariate function. We recognize a richer notion of

common part for a triple of random variables. Indeed, three nontrivial binary random variables X,Y, Z = X ⊕ Y

16An informed and inquisitive reader may begin to see a relationship emerge between the several layers of coding and common parts of a

collection of random variables. Please refer to section VI for a discussion.
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have no common parts as defined earlier. Yet, the degeneracy in the joint probability matrix hints at a common

part. Indeed, they possess a conferencing common part. For example, the pair (X,Y ), Z have a common part. In

other words, there exists a bivariate function of X,Y and a univariate function of Z that agree with probability

1. Containment of this bivariate function brings in the need for structured codes. Indeed, the resemblance to the

problem studied by Körner and Marton [28] is striking. We therefore believe the need for structured codes for three

(multi) user communication problems is closely linked to the notion of common parts of a triple (collection) of

random variables. Analogous to conditional coding that contained univariate functions, endowing codebooks with

structure is an inherent need to carefully handle additional degrees of freedom prevalent in larger dimensions.

VII. PROOF OF THEOREM 3

In this section, we prove strict sub-optimality of UM−technique for the 3−DBC presented in example 1. In

particular, we prove that if parameters τ, δ1, δ2, δ3 are such that 1 + hb(δ1 ∗ τ) > hb(δ2) + hb(δ3) and (R1, 1 −

hb(δ2), 1− hb(δ3)) ∈ αU (τ), then R1 < hb(τ ∗ δ1)− hb(δ1).

Why is UM−technique suboptimal for the case described above. As mentioned in section III, in this case,

receiver 1 is unable to decode the pair of codewords transmitted to users 2 and 3. Furthermore, based on unstructured

independent coding, it does not attempt to decode a function of transmitted codewords - in this case the modulo−2

sum. This forces decoder 1 to be content by decoding only individual components of user 2 and 3’s transmissions,

leaving residual uncertainty in the interference. The encoder helps out by precoding for this residual uncertainty.

However, as a consequence of the cost constraint on X1, it is forced to live with a rate loss.

Our proof traces through the above arguments in three stages and is therefore instructive. In the first stage,

we characterize all test channels pQWUVXY for which (R1, 1 − hb(δ2), 1 − hb(δ3)) ∈ αU (pQWUVXY ). This

stage enables us identify ‘active’ codebooks, their corresponding rates and characterize two upper bounds on R1.

One of these contains the rate loss due to precoding. In the second stage, we therefore characterize the condition

under which there is no rate loss. As expected, it turns out that there is no rate loss only if decoder 1 has decoded

codewords of users 2 and 3. This gets us to the third stage, where we conclude that 1+hb(δ1 ∗τ) > hb(δ2)+hb(δ3)

precludes this possibility. The first stage is presented in lemma 5, second stage is stated in lemma 10 and proved

in appendices D and E. Third stage can be found in arguments following lemma 10.

We begin with a characterization of a test channel pQWUVXY for which (R1, 1 − hb(δ2), 1 − hb(δ3)) ∈

αU (pQWUVXY ). Since independent information needs to be communicated to users 2 and 3 at their respective

PTP capacities, it is expected that their codebooks are not precoded for each other’s signal, and moreover none

of users 2 and 3 decode a part of the other users’ signal. The following lemma establishes this. We remind the

reader that X1X2X3 = X denote the three digits at the input, where Yj , the output at receiver j is obtained by

passing Xj through a BSC with cross over probability δj for j = 2, 3. Y1 is obtained by passing X1 ⊕X2 ⊕X3

through a BSC with cross over probability δ1. Moreover, the binary symmetric channels (BSCs) are independent.

Input symbol X1 is constrained with respect to a Hamming cost function and the constraint on the average cost

per symbol is τ . Formally, κ(x1x2x3) = 1{x1=1} is the cost function and the average cost per symbol is not to
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exceed τ .

Lemma 5: If there exists a test channel pQWUVXY ∈ DU (τ) and nonnegative numbers Ki, Sij ,Kij , Lij , Si, Ti

that satisfy (1)-(11) for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} such that R2 = K2 +K23 +L12 + T2 =

1− hb(δ2), R3 = K3 +K31 + L23 + T3 = 1− hb(δ3), then

1) K1 = K2 = K3 = K23 = L23 = K12 = L31 = S2 = S3 = 0 and I(U31V1V3;Y2|QWU23U12V2) = 0,

2) S31 = I(U31;U23|QW ), S12 = I(U12;U23|QW ), S23 = I(U12;U31|QWU23) = 0,

3) I(V2U12;V3U31|QWU23) = 0, I(WU23;Yj |Q) = 0 : j = 2, 3, I(V2U12;Y2|QWU23) = 1 − hb(δ2) and

I(V3U31;Y3|QWU23) = 1− hb(δ3),

4) (V3, X3, V1, U31)−(QWU23U12V2)−(X2, Y2) and (V2, X2, V1, U12)−(QWU23U31V3)−(X3, Y3) are Markov

chains,

5) X2 −QWU12U23U31 −X3 is a Markov chain,

6) U12 −QWU23U31 −X3 and U31 −QWU23U12 −X2 are Markov chains.

Proof: Substituting (i) (2, 3, 1) for (i, j, k) in (11), (ii) (1, 2, 3) for (i, j, k) in (2) and combining the resulting

bounds yields

I(WU23U12V2;Y2|Q) ≥ I(WU23U12V2;Y2|Q) + I(U12;U23|W,Q)− S12 − S23

≥ R2 +K3 +K1 + L23 +K12 + S2 ≥ R2 = 1− hb(δ2), (37)

where the second inequality follows from non-negativity of K3,K1, L23,K12, S2. Moreover,

1− hb(δ2) ≥ I(X2;Y2) = I(QWUVX1Y1X3Y3X2;Y2) ≥ I(WU23U12V2;Y2|Q) (38)

≥ R2+K3+K1+L23+K12+S2 ≥ R2 = 1− hb(δ2), (39)

where (i) equality in (38) follows from Markov chain QWUVX1Y1X3Y3 −X2 − Y2. Since all the terms involved

are non-negative, equality holds through the above chain of inequalities to yield

S12 + S23 = I(U12;U23|QW ),K1 =K3 =L23 =K12 =S2 =I(Q;Y2)=0 (40)

I(U31V1X1Y1V3X3Y3X2;Y2|QWU12U23V2)=0 (41)

and therefore (V1, V3, X3, U31)− (QWU12U23V2)− Y2 is a Markov chain (42)

where the first equality in (40) follows from condition for equality in the first inequality of (37). The above sequence

of steps are repeated by substituting (i) (3, 1, 2) for (i, j, k) in (11), (ii) (2, 3, 1) for (i, j, k) in (2). It can be verified

that

S31 + S23 = I(U31;U23|QW ),K1 =K2 =L31 =K23 =S3 =I(Q;Y3)=0, (43)

I(U12V1X1Y1V2X2Y2X3;Y3|QWU23U31V3)=0 (44)

and therefore (V1, V2, X2, U12)− (QWU23U31V3)− Y3 is a Markov chain. (45)
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The second set of equalities in (40), (43) lets us conclude

R1 = T1, R2 = L12 + T2 and R3 = K31 + T3. (46)

From I(U12;U23|QW ) + I(U31;U23|QW ) = S12 + S23 + S31 + S23, and (3), we have I(U12;U23|QW ) +

I(U31;U23|QW ) ≥ I(U12;U23;U31|QW ) + S23. The non-negativity of S23 implies S23 = 0 and

I(U31;U12|QWU23) = 0. We therefore conclude

S12 = I(U12;U23|QW ), S31 = I(U31;U23|QW ), S23 = 0, I(U31;U12|QWU23) = 0 (47)

Substituting (40), (43), (47) in (4) for (i, j, k) = (2, 3, 1) and (i, j, k) = (3, 1, 2) and (5) for (i, j, k) = (2, 3, 1), we

obtain

I(V2;U31|QWU12U23) = I(V3;U12|QWU23U31) = I(V2;V3|QWU12U23U31) = 0. (48)

(48) and last equality in (47) yield

I(V2U12;V3U31|QWU23) = 0. (49)

Substituting (46), (47) in (8) with (i, j, k) = (2, 3, 1) yields the upper bound R2 ≤ I(U12V2;Y2|QWU23). Since

1− hb(δ2)=R2≤I(U12V2;Y2|QWU23)≤I(WU12U23V2;Y2|Q) ≤ 1− hb(δ2),

where the last inequality follows from (38), equality holds in all of the above inequalities to yield

I(WU23;Y2|Q) = 0 and I(U12V2;Y2|QWU23) = 1 − hb(δ2). A similar argument proves I(WU23;Y3|Q) = 0

and I(U31V3;Y3|QWU23) = 1− hb(δ3).

We have proved the Markov chains in items (1)-(3). In order to prove Markov chains in item 4, we prove the

following lemma.

Lemma 6: If A,B,X, Y are discrete random variables such that (i) X,Y take values in {0, 1} with P (Y =

0|X = 1) = P (Y = 1|X = 0) = η ∈ (0, 12 ), (ii) A − B − Y and AB − X − Y are Markov chains, then

A−B −XY is also a Markov chain.

Please refer to appendix F for a proof. Markov chains in (42), (45) in conjunction with lemma 6 establishes Markov

chains in item 4.

(49) and (41) imply I(U31V3;U12V2Y2|QWU23) = 0. This in conjunction with (44) implies

I(U31V3Y3;U12V2Y2|QWU23) = 0 and thus U31V3Y3 −QWU23 − U12V2Y2 is a Markov chain. (50)

(50) implies that U31Y3−QWU23−U12Y2 is a Markov chain, and therefore Y3−QWU12U23U31−Y2 is a Markov

chain. Employing lemma 6 twice we observe Y3X3 −QWU12U23U31 −X2Y2 is a Markov chain and furthermore

X3 −QWU12U23U31 −X2 is a Markov chain, thus proving item 5.

Finally, we prove Markov chains in item 6. From Markov chain (V3, X3, V1, U31)− (QWU23U12V2)− (X2, Y2)

proved in item 4, we have I(X2;U31|QWU23U12V2) = 0. From (49), we have I(V2;U31|QWU23U12) = 0.

Summing these two, we have I(X2V2;U31|QWU23U12) = 0 and therefore I(X2;U31|QWU23U12) = 0 implying

the Markov chain X2 −QWU23U12 − U31. Similarly, we get the Markov chain X3 −QWU23U31 − U12.
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Lemma 5 enables us to simplify the bounds (1)-(11) for the particular test channel under consideration. Substituting

(40)-(48) in (1)-(11) and employing statements of lemma 5, we conclude that if (R1, 1 − hb(δ2), 1 − hb(δ3)) ∈

αU (pQWUVXY ), then there exists nonnegative numbers S1, T1, L12,K31 that satisfy R1 = T1, R2 = L12 + T2 =

1− hb(δ2), R3 = K31 + T3 = 1− hb(δ3),

S1 ≥ I(V1;U23V2V3|QWU12U31), T1 + S1 ≤ I(V1;Y1|QWU12U31) (51)

L12 +K31 + T1 + S1 ≤ I(U12;U31|QW )− I(U23;U12|QW ) + I(V1U12U31;Y1|QW )− I(U23;U31|QW )(52)

0 ≤ T2 ≤ I(V2;Y2|QWU12U23), 1− hb(δ2) = T2 + L12 = I(U12V2;Y2|QWU23) (53)

0 ≤ T3 ≤ I(V3;Y3|QWU31U23), 1− hb(δ3) = T3 +K31 = I(U31V3;Y3|QWU23). (54)

(53), (54) imply

L12 ≥ I(U12;Y2|QWU23), K31 ≥ I(U31;Y3|QWU23), (55)

(51) implies

T1 = R1 ≤ I(V1;Y1|QWU12U31)− I(V1;U23V2V3|QWU12U31),

≤ I(V1;Y1U23|QWU12U31)− I(V1;U23V2V3|QWU12U31) = I(V1;Y1|QWU)− I(V1;V2V3|QWU), (56)

and (52) in conjunction with (55), and the lower bound on S1 in (51) imply

R1≤ I(U12U31V1;Y1|QW )− I(V1;U23V2V3|QWU12U31)− I(U12;Y2|QWU23)− I(U31;Y3|QWU23)

+I(U12;U31|QW )− I(U23;U12|QW )− I(U23;U31|QW )

≤ I(U12U31V1;Y1U23|QW )− I(V1;U23V2V3|QWU12U31)− I(U12;Y2|QWU23)− I(U31;Y3|QWU23)

+I(U12;U31|QW )− I(U23;U12|QW )− I(U23;U31|QW )

= I(V1;Y1|QWU)−I(V1;V2V3|QWU)+I(U12U31;Y1|QWU23)−I(U12;Y2|QWU23)

−I(U31;Y3|QWU23), (57)

where (57) follows from the last equality in (47). Combining (56) and (57), we have

R1 ≤ I(V1;Y1|QWU)− I(V1;V2V3|QWU) + min

 0, I(U12U31;Y1|QWU23)− I(U12;Y2|QWU23)

−I(U31;Y3|QWU23)

 . (58)

We have thus obtained (56) and (57), two upper bounds on R1 we were seeking, and this concludes the first

stage of our proof. In the sequel, we prove the minimum of the above upper bounds on R1 is strictly lesser than

hb(τ ∗ δ1)− hb(δ1). Towards, that end, note that upper bound (56) contains the rate loss due to precoding. In the

second stage, we work on (56) and derive conditions under which there is no rate loss.

Markov chains of item (4) in lemma 5 imply V1 − QWUV2V3 − X2 and V1 − QWUV2V3X2 − X3 are

Markov chains. Therefore, I(V1;X2|QWUV2V3) = 0 and I(V1;X3|QWUV2V3X2) = 0. Summing these, we
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have I(V1;X2X3|QWUV2V3) = 0. Employing this in (56), we note

R1 ≤ I(V1;Y1|QWU)− I(V1;V2V3|QWU) = I(V1;Y1|QWU)− I(V1;V2V3X2X3|QWU) (59)

≤ I(V1;Y1|QWU)− I(V1;X2, X3|QWU) ≤ I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU) (60)

By now, an informed reader must have made the connection to capacity of the PTP channel with non-causal state

[46]. In the sequel, we state the import of this connection.17 This will require us to define a few mathematical

objects that may initially seem unrelated to a reader unaware of findings in [46]. Very soon, we argue the relevance.

An informed reader will find the following development natural.

Let DT (τ, δ, ε) denote the collection of all probability mass functions pṼ S̃X̃Ỹ defined on Ṽ × {0, 1} × {0, 1} ×

{0, 1}, where Ṽ is an arbitrary finite set such that (i) pỸ |X̃S̃Ṽ (x⊕ s|x, s, v) = pỸ |X̃S̃(x⊕ s|x, s) = 1− δ, where

δ ∈ (0, 12 ), (ii) pS̃(1) = ε ∈ [0, 1], and (iii) pX̃(1) ≤ τ ∈ (0, 12 ). For pṼ S̃X̃Ỹ ∈ DT (τ, δ, ε), let

αT (pṼ S̃X̃Ỹ ) = I(Ṽ ; Ỹ )− I(Ṽ ; S̃) and αT (τ, δ, ε) = sup
pṼ S̃X̃Ỹ ∈DT (τ,δ,ε)

αT (pṼ S̃X̃Ỹ ).

For every (q, w, u) ∈ Q × W × U that satisfies pQWU (q, w, u) > 0, we note pY1|X1,X2⊕X3V1QWU (x1 ⊕

x2 ⊕ x3|x1, x2 ⊕ x3, v1, q, w, u) = pY1|X1,X2⊕X3QWU (x1 ⊕ x2 ⊕ x3|x1, x2 ⊕ x3, q, w, u) = 1 − δ1. In

other words, conditioned on the event {(Q,W,U) = (q, w, u)}, V1 − X1, X2 ⊕ X3 − Y1 is a Markov chain.

We conclude pV1X2⊕X3X1Y1|QWU (· · · |q, w, u) ∈ DT (τq,w,u, δ1, εq,w,u), where τq,w,u = pX1|QWU (1|q, w, u),

εq,w,u = pX2⊕X3|QWU (1|q, w, u). Hence

I(V1;Y1|(Q,W,U) = (q, w, u))−I(V1;X2 ⊕X3|(Q,W,U) = (q, w, u)) ≤ αT (τq,w,u, δ1, εq,w,u). (61)

We now characterize αT (τ, δ, ε). Verify that αT (τ, δ, 0) = αT (τ, δ, 1) = hb(τ ∗ δ) − hb(δ). The following lemma

states that αT (τ, δ, ε) is strictly lower for non-trivial values of ε. Please refer to appendices D and E for a proof.

Lemma 7: If τ, δ ∈ (0, 12 ) and ε ∈ (0, 1), then αT (τ, δ, ε) < hb(τ ∗ δ)− hb(δ). Alternatively, if τ, δ ∈ (0, 12 ) and

ε ∈ [0, 1], then either αT (τ, δ, ε) < hb(τ ∗ δ)− hb(δ) or ε ∈ {0, 1}.

(60), (61) and lemma 7 in conjunction with Jensen’s inequality enables us to conclude

R1 ≤ I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU)
(i)

≤
∑

(q,w,u)

pQWU (q, w, u)hb(τq,w,u ∗ δ1)− hb(δ1) (62)

(ii)

≤ hb[δ1 + (1− 2δ1)
∑

(q,w,u)

pQWU (q, w, u)τq,w,u]− hb(δ1)

= hb (δ1 + (1− 2δ1)pX1
(1))− hb(δ1)

(iii)

≤ hb (δ1 + (1− 2δ1)τ)− hb(δ1) = hb (τ ∗ δ1)− hb(δ1),

where equality holds in (62)(i), (ii) and (iii) only if εq,w,u ∈ {0, 1} and τq,w,u = pX1|QWU (1|q, w, u) = pX1
(1) = τ

for every (q, w, u) for which pQWU (q, w, u) > 0. We conclude that R1 = hb (τ ∗ δ1)− hb(δ1) only if τq,w,u = τ

for every such (q, w, u), and

I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU) = hb(τ ∗ δ1)− hb(δ1) and H(X2 ⊕X3|QWU) = 0. (63)

17The proof is relegated to appendix D
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This has got us to the third and final stage. Here we argue (63) implies RHS of (57) is strictly smaller than

hb(τ ∗ δ1)−hb(δ1). Towards that end, note that Markov chain X2−QWU23U12U31−X3 proved in lemma 5, item

5 and (63) imply H(X2|QWU) = H(X3|QWU) = 0.18 Furthermore, Markov chains U12−QWU23U31−X3 and

U31 −QWU23U12 −X2 proved in lemma 5 item 6 imply

H(X2|QWU23U12) = H(X3|QWU23U31) = 0. (64)

Observe that

hb(τ ∗ δ1)− hb(δ1) = I(V1;Y1|QWU)− I(V1;X2 ⊕X3|QWU) = I(V1;Y1|QWU) = I(V1;Y1|QWU,X2, X3) (65)

= H(Y1|QWUX2X3)−H(Y1|QWUV1X2X3) ≤ H(Y1|QWUX2X3)−H(Y1|QWUV1X1X2X3)

= H(Y1|QWU,X2, X3)− hb(δ1) (66)

where the first two equalities in (65) follows from (63) and the last equality follows from (64). (66) and first equality

in (65) enables us to conclude

H(Y1|QWU,X2, X3) ≥ hb(τ ∗ δ1) (67)

We now provide an upper bound on the right hand side of (57). Note that it suffices to prove I(U12U31;Y1|QWU23)−

I(U12;Y2|QWU23)− I(U31;Y3|QWU23) is negative. Observe that

I(U12U31;Y1|QWU23)− I(U12;Y2|QWU23)− I(U31;Y3|QWU23)

= H(Y1|QWU23)−H(Y1|QWU)−H(Y2|QWU23) +H(Y2|QWU23U12)−H(Y3|QWU23) +H(Y3|QWU23U31)

= H(Y1|QWU23)−H(Y1|QWX2X3U)−H(Y2) +H(Y2|QWU23U12X2)−H(Y3) +H(Y3|QWU23U31X3) (68)

= H(Y1|QWU23)−H(Y1|QWX2X3U)− 2 + hb(δ2) + hb(δ3)

≤ 1−H(Y1|QWX2X3U)− 2 + hb(δ2) + hb(δ3) ≤ hb(δ2) + hb(δ3)− hb(δ1 ∗ τ)− 1 (69)

where (68) follows from (63) and (64), second inequality in (69) follows from (67). If τ, δ1, δ2, δ3 are such that

hb(δ2) + hb(δ3) < 1 + hb(δ1 ∗ τ), then right hand side of (69) is negative. This concludes the proof.

18Indeed, for any (q, w, u) ∈ Q×W ×U that satisfies P ((Q,W,U) = (q, w, u)) > 0, if P (Xj = 1|(Q,W,U) = (q, w, u)) = αj : j =

2, 3, then 0 = H(X2⊕X3|(Q,W,U) = (q, w, u)) = hb(α2 ∗α3) ≥ α2hb(1−α3) + (1−α2)hb(α3) = α2hb(α3) + (1−α2)hb(α3) =

hb(α3) ≥ 0, where the first inequality follows from concavity of binary entropy function, and similarly, interchanging the roles of α2, α3, we

obtain 0 = H(X2 ⊕X3|(Q,W,U) = (q, w, u)) ≥ hb(α2) ≥ 0.
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APPENDIX A

UPPER BOUND ON P (εl)

From (25), it suffices to derive upper and lower bounds on Var
{
φ(M1,M

t2
2 ,M

t3
3 )
}

and E
{
φ(M1,M

t2
2 ,M

t3
3 )
}

respectively. Note that E
{
φ2(m1,m

t2
2 ,m

t3
3 )
}

=
∑7
l=0 Tl, where

T0 = E
{
φ(M1,M

t2
2 ,M

t3
3 )
}

=
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U2,U3|qn)

P
(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3

)
,(70)

T1 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
ã
s3
3 ∈F

s3
π

ã
s3
3 6=a

s3
3

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2 (V1,U |qn)

∑
ũn3∈

T2η2 (U3|qn,vn1 ,u
n
2 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

Un3 (ã
s3
3 )=ũn3 ,I(ã

s3
3 )=m

t3
3

)

T2 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
ã
s2
2 ∈F

s2
π

ã
s2
2 6=a

s2
2

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U |qn)

∑
ũn2∈

T2η2 (U2|qn,vn1 ,u
n
3 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

Un2 (ã
s2
2 )=ũn2 ,I(ã

s2
2 )=m

t2
2

)

T3 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(ã
s2
2 ,ã

s3
3 )∈Fs2π ×F

s3
π

ã
s2
2 6=a

s2
2 ,ã

s3
3 6=a

s3
3

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2 (V1,U |qn)

∑
(ũn2 ,ũ

n
3 )∈

T2η2 (U |q
n,vn1 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

Uj(ã
sj
j )=ũnj ,I(ã

sj
j )=m

tj
j :j=2,3

)

T4 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
b̃1∈B1

b̃1 6=b1

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2 (V1,U |qn)

∑
ṽn1 ∈

T2η2
(V1|qn,un)

P
(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,V n1 (m1,b̃1)=ṽ

n
1

)

T5 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(b̃1,ã

s3
3 )∈B1×Fs3π

b̃1 6=b1ã
s3
3 6=a

s3
3

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U |qn)

∑
ṽn1 ,ũ

n
3∈

T2η2
(V1,U3|qn,un2 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
3 (ã

s3
3 )=ũn3 ,I(ã

s3
3 )=m

t3
3

)

T6 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(b̃1,ã

s2
2 )∈B1×Fs2π

b̃1 6=b1ã
s2
2 6=a

s2
2

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U |qn)

∑
ṽn1 ,ũ

n
2∈

T2η2 (V1,U2|qn,un3 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
2 (ã

s2
2 )=ũn2 ,I(ã

s2
2 )=m

t2
2

)

T7 =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(b̃1,ã

s2
2 ,ã

s3
3 )∈B1×Fs2π ×F

s3
π

b̃1 6=b1,ã
s2
2 6=a

s2
2 ,ã

s3
3 6=a

s3
3

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2
(V1,U |qn)

∑
(ṽn1 ,ũ

n
2 ,ũ

n
3 )∈

T2η2
(V1,U |qn)

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
j (ã

sj
j )=ũnj ,I(ã

sj
j )=m

tj
j :j=2,3

)
.

We have
4Var

{
φ(M1,M

t2
2 ,M

t3
3 )
}(

E
{
φ(M1,M

t2
2 ,M

t3
3 )
})2 = 4

(∑7
l=0 Tl

)
−T 2

0

T 2
0

.

We take a closer look at T7. For θ ∈ Fπ , let

Dθ(a
s2
2 , a

s3
3 ) : = {(ãs22 , ã

s3
3 ) : ãs33l − a

s3
3l = θ(ãs22l − a

s2
2l ) for 1 ≤ l ≤ s2 and ãs33l − a

s3
3l = 0 for s2 + 1 ≤ l ≤ s3} ,

D(as22 , a
s3
3 ) : = ∪

θ∈Fπ
Dθ(a

s2
2 , a

s3
3 ) and I (as22 , a

s3
3 ) = Fs2π × Fs3π \ D(as22 , a

s3
3 ). The reader may verify that for

(ãs22 , ã
s3
3 ) ∈ Dθ(a

s2
2 , a

s3
3 )

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
j (ã

sj
j )=ũnj ,I(ã

sj
j )=m

tj
j :j=2,3

)
=


P (V n1 (m1,b1)=v

n
1 ,V1(m1,b̃1)=ṽ

n
1 )

π3n+2t2+2t3
if ũn3 	 θũn2 = un3 	 θun2

0 otherwise
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For (ãs22 , ã
s3
3 ) ∈ I (as22 , a

s3
3 ), we claim

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
j (ã

sj
j )=ũnj ,I(ã

sj
j )=m

tj
j :j=2,3

)
= P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj

I(a
sj
j )=m

tj
j :j=2,3

)
P

(
V1(m1,b̃1)=ṽ

n
1 ,U

n
j (ã

sj
j )=ũnj

I(ã
sj
j )=m

tj
j :j=2,3

)
.

In order to prove this claim, it suffices to prove

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj ,I(a

sj
j )=m

tj
j :j=2,3,

V1(m1,b̃1)=ṽ
n
1 ,U

n
j (ã

sj
j )=ũnj ,I(ã

sj
j )=m

tj
j :j=2,3

)
=
P (V n1 (m1, b1) = vn1 , V1(m1, b̃1) = ṽn1 )

π4n+2t2+2t3
.

which can be verified through a counting process. We therefore have T7 = T7I + T7D, where

T7I =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(b̃1,ã

s2
2 ,ã

s3
3 )∈

B1×I (a
s2
2 ,a

s3
3 )

∑
(vn1 ,u

n
2 ,u

n
3 )∈

T2η2 (V1,U |qn)

∑
(ṽn1 ,ũ

n
2 ,ũ

n
3 )∈

T2η2 (V1,U |qn)

P

(
V n1 (m1,b1)=v

n
1 ,Uj(a

sj
j )=unj

I(a
sj
j )=m

tj
j :j=2,3

)
P

(
V1(m1,b̃1)=ṽ

n
1 ,U

n
j (ã

sj
j )=ũnj

I(ã
sj
j )=m

tj
j :j=2,3

)
(71)

T7D =
∑

(b1,a
s2
2 ,a

s3
3 )∈

B1×Fs2π ×F
s3
π

∑
(b̃1,ã

s2
2 ,ã

s3
3 )∈

B1×D(a
s2
2 ,a

s3
3 )

∑
un∈

T2η2
(U3	θU2|qn)

∑
(vn1 ,u

n
2 ,u

n⊕θun2 )∈
T2η2

(V1,U |qn)

∑
(ṽn1 ,ũ

n
2 ,u

n⊕θũn2 )∈
T2η2 (V1,U |qn)

P (V n1 (m1, b1) = vn1 , V1(m1, b̃1) = ṽn1 )

π3n+2t2+2t3
.

Verify that T7I ≤ T 2
0 . We therefore have

4Var
{
φ(M1,M

t2
2 ,M

t3
3 )
}

E
{
φ(M1,M

t2
2 ,M

t3
3 )
} ≤ 4

(∑6
l=0 Tl

)
+ T7D

T 2
0

. (72)

and it suffices to derive lower bound on T0 and upper bounds on Tl : l ∈ [6] and T7D.

Just as we split T7, we split T3 as T3 = T3I + T3D. We let the reader fill in the details and confirm the

following bounds. From conditional typicality results, there exists N2(η2) ∈ N, such that for all n ≥ N2(η2),

T0 ≥ |B1|πs2+s3 exp {nH(V1, U |Q)− 4nη2}
π2n+t2+t3 exp {nH(V1|Q) + 4nη2}

T1 ≤ |B1|πs2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(U3|Q,V1, U2) + 8nη2}
π3n+t2+2t3 exp {nH(V1|Q)− 4nη2}

T2 ≤ |B1|π2s2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(U2|Q,V1, U3) + 8nη2}
π3n+2t2+t3 exp {nH(V1|Q)− 4nη2}

T3I ≤ |B1|π2s2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(U2, U3|Q,V1) + 8nη2}
π4n+2t2+2t3 exp {nH(V1|Q)− 4nη2}

T3D ≤ π
|B1|π2s2+s3 exp {nH(V1, U |Q,U3 	 θU2) + 8nη2 + nH(U3 	 θU2|Q) + 4nη2}
π3n+2t2+2t3 exp {nH(V1|Q)− 4nη2 − nH(U |Q,V1, U3 	 θU2)− 16nη2}

T4 ≤ |B1|2πs2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1|Q,U2, U3) + 8nη2}
π2n+t2+t3 exp {2nH(V1|Q)− 8nη2}

T5 ≤ |B1|2πs2+2s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1, U3|Q,U2) + 8nη2}
π3n+t2+2t3 exp {2nH(V1|Q)− 8nη2}

T6 ≤ |B1|2π2s2+s3 exp {nH(V1, U |Q) + 4nη2 + nH(V1, U2|Q,U3) + 8nη2}
π3n+2t2+t3 exp {2nH(V1|Q)− 8nη2}

T7D ≤ |B1|2π2s2+s3 exp {2nH(V1, U |Q,U3 	 θU2) + 16nη2 + nH(U3 	 θU2|Q) + 4nη2}
π3n+2t2+2t3 exp {2nH(V1|Q)− 8nη2}

We now employ the bounds on the parameters of the code ((22) - (24)). It maybe verified that, for n ≥
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max{N1(η), N2(η2)},

T0

T 2
0

≤ exp

{
−n

(
log |B1|
n

+

(
3∑
l=2

sl − tl
n

)
log π − [2 log π −H(U |Q,V1) + 16η2]

)}
≤ exp

{
−n
(
δ1+

η
8

−16η2

)}
(73)

T1

T 2
0

≤ exp

{
−n
(

log |B1|
n

+
s2 − t2
n

log π − [log π −H(U2|Q,V1) + 32η2]

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T2

T 2
0

≤ exp

{
−n
(

log |B1|
n

+
s3 − t3
n

log π − [log π −H(U3|Q,V1) + 32η2]

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T3I

T 2
0

≤ exp

{
−n
(

log |B1|
n

− 32η2

)}
≤ exp

{
−n
(
δ1 +

η

8
− 32η2

)}
T3D

T 2
0

≤ max
θ 6=0

exp

{
−n
(

log |B1|
n

+
s3
n

log π − [log π −H(U3 	 θU2|Q,V1) + 48η2]

)}
≤ π exp {−n (δ1 − 48η2)}

T4

T 2
0

≤ exp

{
−n

((
3∑
l=2

sl − tl
n

)
log π − [log π −H(U |Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T5

T 2
0

≤ exp

{
−n
(
s2 − t2
n

log π − [log π −H(U2|Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T6

T 2
0

≤ exp

{
−n
(
s3 − t3
n

log π − [log π −H(U3|Q) + 36η2]

)}
≤ exp {−n (δ1 − 36η2)}

T7D

T 2
0

≤ max
θ 6=0

exp
{
−n
(s3
n

log π − [log π −H(U3 	 θU2|Q) + 48η2]
)}
≤ exp

{
−n
(
δ1 −

η

8
− 48η2

)}
.

Substituting, the above bounds in (72), we conclude P (εl) ≤ (28 + 8 log π) exp
{
−n
(
δ1 − η

8 − 48η2
)}

for n ≥

max{N1(η), N2(η2)}. In the sequel, we derive a lower bound on L(n) and prove that for large n, L(n) > 1,

thereby establishing ε1 ⊆ εl. From the definition of L(n), (70), we have

L(n) =
T0

2
≥ |B1|πs2+s3 |T2η2(V1, U |qn)|

2π2n+t2+t3 exp {nH(V1|Q) + 4nη2}
, (74)

for sufficiently large n. Moreover, from (73), we note that L(n) ≥ 1
2 exp

{
n
(
δ1 + η

8 − 16η2
)}

for n ≥ max{N1(η),

N2(η2)}. By our choice of η, η2, for sufficiently large n, we have L(n) > 1.

APPENDIX B

UPPER BOUND ON P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε41)

We begin by introducing some compact notation. We let M t denote the pair (M t2
2 ,M

t3
3 ) of message random

variables. We let mt denote a generic element (mt2
2 ,m

t3
3 ) ∈ F tπ : = F t2π ×F t3π , and similarly as denote (as22 , a

s3
3 ) ∈

Fsπ : = Fs2π ×Fs3π . We abbreviate T8η2(V1, U2⊕U3|qn, yn1 ) as T8η2(V1,⊕|qn, yn1 ) and the vector Xn(M1,M
t2
2 ,M

t3
3 )

input on the channel as Xn. Let

T̃η2(qn) : = {(vn1 , un, xn, yn1 ) ∈ T8η2(V1, U,X, Y1|qn) : (vn1 , u
n) ∈ T2η2(V1, U |qn), (vn1 , u

n, xn) ∈ T4η2(V1, U,X|qn)} ,

T̃η2(qn|vn1 , un) =
{

(xn, yn1 ) : (vn1 , u
n, xn, yn1 ) ∈ T̃η2(qn)

}
.

We begin by characterizing the event under question. Denoting ε̃41 = (εl ∪ ε2 ∪ ε3)c ∩ ε41, we have

P (ε̃41) ≤
∑
m1

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2 (q
n)

∑
(v̂n1 ,û

n)∈
T8η2

(V1,⊕|qn,yn1 )

P
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M1=m1,V

n
1 (m1,B1)=v

n
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n
l (A

sl
l )=unl

Il(A
sl
l )=M

tl
l :l=2,3,Y n1 =yn1 ,X

n=xn

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

}
∩ εcl

)
(75)
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We consider a generic term in the above sum. Observe that

P
(
Y n1 =yn1
Xn=xn

∣∣∣{ M1=m1,V
n
1 (m1,B1)=v

n
1 ,U

n
l (A

sl
l )=unl

Il(A
sl
l )=M

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

}
∩ εcl

)
= P

(
Y n1 =yn1
Xn=xn

∣∣∣ V n1 (M1,B1)=v
n
1

Unl (A
sl
l )=unl :l=2,3

)
=: θ(yn1 , x

n|vn1 , un),(76)

P

({
M1=m1,V

n
1 (m1,B1)=v

n
1

Unl (A
sl
l )=unl ,Il(A

sl
l )=M

tl
l :l=2,3

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

}
∩ εcl

)
=

∑
mt∈Ftπ

∑
(b1,a

s)∈
B1×Fsπ

P

({
M1=m1,V

n
1 (m1,b1)=v

n
1 ,U

n
l (a

sl
l )=unl

M
tl
l =m

tl
l ,A

sl
l =a

sl
l ,Il(a

sl
l )=m

tl
l :l=2,3

B1=b1,U
n
⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

}
∩ εcl

)
, (77)

and the product of left hand sides of (76) and (77) is a generic term in (75). We now consider a generic term on

the right hand side of (77). Note that

P (E ∩ {B1=b1,A
sl
l =a

sl
l } ∩ εcl ) ≤ P (E)P ({B1=b1,A

sl
l =a

sl
l } |E ∩ εcl ) ≤

P (E)

L(n)
,

where E abbreviates the event {M1=m1,V
n
1 (m1,b1)=v

n
1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l ,Il(a

sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1 }.

Substituting the above in (77), we have

P

({
M1=m1,V

n
1 (m1,B1)=v

n
1

Unl (A
sl
l )=unl ,Il(A

sl
l )=M

tl
l :l=2,3

Un⊕(â
s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

}
∩ εcl

)
≤ 1

L(n)

∑
mt∈Ftπ

∑
(b1,a

s)
∈B1×D(âs3 )

P

(
M1=m1,V

n
1 (m1,b1)=v

n
1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

)

+
1

L(n)

∑
mt∈Ftπ

∑
(b1,a

s)
∈B1×I (âs3 )

P

(
M1=m1,V

n
1 (m1,b1)=v

n
1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

)
. (78)

where D(âs3) : = {as : (as22 0s+)⊕ as33 = âs3}, s+ = s3−s2 and I (âs3) : = Fs2π ×Fs3π \D(âs3). Let us evaluate

a generic term in the right hand side of (78). The collection M1,M
t2
2 ,M

t3
3 , V

n
1 (m1, b1), I2(as2), I3(as3), (Ul(a

sl
l ) :

l = 2, 3, U⊕(âs33 )), V n1 (m̂1, b̂1) are mutually independent, where (Ul(a
sl
l ) : l = 2, 3, U⊕(âs33 )) is treated as a single

random object. If (as22 , a
s3
3 ) ∈ D(âs3), then

P (Ul(a
sl
l ) = unl : l = 2, 3, U⊕(âs33 ) = ûn) =

 1
π2n if un2 ⊕ un3 = ûn

0 otherwise.
.

Otherwise, i.e., (as22 , a
s3
3 ) ∈ I (âs3), a counting argument similar to that employed in appendix C proves

P (Ul(a
sl
l ) = unl : l = 2, 3, U⊕(âs33 ) = ûn) = 1

π3n . We therefore have

P

(
M1=m1,V

n
1 (m1,b1)=v

n
1 ,U

n
l (a

sl
l )=unl ,M

tl
l =m

tl
l

Il(a
sl
l )=m

tl
l :l=2,3,Un⊕(â

s3
3 )=ûn,V n1 (m̂1,b̂1)=v̂

n
1

)
=



P

(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π2n+t2+t3

if (as22 , a
s3
3 ) ∈ D(âs3)

and un2 ⊕ un3 = ûn

P

(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π3n+t2+t3

if (as22 , a
s3
3 ) ∈ I (âs3)

(79)

Substituting (79) in (78) and recognizing that product of right hand sides of (77), (76) is a generic term in the sum

(75), we have

P (ε̃41) ≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)
∈B1×D(âs3 )

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2 (q
n)

θ(yn1 , x
n|vn1 , un)

∑
(v̂n1 ,u

n
2⊕u

n
3 )∈

T8η2
(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π2n+t2+t3L(n)

+
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)
∈B1×I (âs3 )

∑
(vn1 ,u

n,xn,yn1 )

∈T̃η2 (q
n)

θ(yn1 , x
n|vn1 , un)

∑
(v̂n1 ,û

n)∈
T8η2

(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π3n+t2+t3L(n)
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The codewords over Vn are picked independently and identically with respect to pnV1|Q(·|qn) and hence by

conditional frequency typicality, we have

P
(
M1 = m1, V

n
1 (m1, b1) = vn1 ,M

t = mt, V n1 (m̂1, b̂1) = v̂n1

)
≤ exp {−n(2H(V1|Q)− 20η2)}P (M1 = m1,M

t = mt)

for the pairs (vn1 , v̂
n
1 ) in question. This upper bound being independent of the arguments in the summation,

we only need to compute the number of terms in the summations. For a fixed pair (un2 , u
n
3 ), conditional

frequency typicality results guaranty existence of N4(η2) ∈ N such that for all n ≥ N4(η2), we have

| {vn1 : (vn1 , u2 ⊕ un3 ) ∈ T8η2(V1, U2 ⊕ U3|qn, yn1 )} | ≤ exp {n(H(V1|Q,U2 ⊕ U3, Y1) + 32η2)} and |T8η2(V1, U2⊕

U3|qn, yn1 )| ≤ exp {n(H(V1, U2 ⊕ U3|Q,Y1) + 32η2)}. Substituting this upper bound, the inner most summation

turns out to be∑
(v̂n1 ,u

n
2⊕u

n
3 )∈

T8η2 (V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π2n+t2+t3

≤ exp
{
−n
(

2H(V1|Q)−52η2
−H(V1|Q,U2⊕U3,Y1)

)} P (M1 = m1,M
t = mt)

π2n+t2+t3L(n)
=: β1,

∑
(v̂n1 ,û

n)∈
T8η2

(V1,⊕|qn,yn1 )

P
(
M1=m1,V

n
1 (m1,b1)=v

n
1

Mt=mt,V n1 (m̂1,b̂1)=v̂
n
1

)
π3n+t2+t3

≤ exp
{
−n
(

2H(V1|Q)−52η2
−H(V1,U2⊕U3|Q,Y1)

)} P (M1 = m1,M
t = mt)

π3n+t2+t3L(n)
=: β2

Substituting β1 and β2, we have

P (ε̃41) ≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1
âs3∈Fs3π

∑
(b1,a

s)∈
B1×D(âs3 )

∑
(vn1 ,u

n)∈
T2η2

(V1,U |qn)

∑
(xn,yn1 )∈

T̃η2 (q
n|vn1 ,u

n)

θ(yn1 , x
n|vn1 , un)β1

+
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)∈
B1×I (âs3 )

∑
(vn1 ,u

n)∈
T2η2 (V1,U |qn)

∑
(xn,yn1 )∈

T̃η2 (q
n|vn1 ,u

n)

θ(yn1 , x
n|vn1 , un)β2

≤
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1
âs3∈Fs3π

∑
(b1,a

s)∈
B1×D(âs3 )

∑
(vn1 ,u

n)∈
T2η2

(V1,U |qn)

β1 +
∑

(m1,mt)

∑
m̂1 6=m1

∑
b̂1∈B1

∑
â
s3
3

∑
(b1,a

s)∈
B1×I (âs3 )

∑
(vn1 ,u

n)∈
T2η2

(V1,U |qn)

β2

The terms in the first and second summation are identical to β1 and β2 respectively. Multiplying each with the

corresponding number of terms, employing the lower bound for L(n) derived in (74), it maybe verified that

P (ε̃41) ≤ T1 + T2, where

T1 = 2 exp

{
−n
(

[I(V1;U2 ⊕ U3, Y1|Q)− 56η2]−
[

log |B1|
n

+
log |M1|

n

])}
T2 = 2 exp

{
−n
(

[log π +H(V1|Q)−H(V1, U2 ⊕ U3|Q,Y1)− 56η2]−
[

log |B1|
n

+
log |M1|

n
+
s3 log π

n

])}
.

From bounds on the parameters of the code ((22) - (24)), it maybe verified that for n ≥ max{N1(η), Nj(η2) : j =

2, 3, 4}, P ((εl ∪ ε2 ∪ ε3)c ∩ ε41) ≤ 4 exp
{
−n
(
δ1 + η

4 − 56η2
)}

.

APPENDIX C

UPPER BOUND ON P ((ε1 ∪ ε2 ∪ ε3)c ∩ ε4j) FOR 3−DBC

We begin by introducing some compact notation similar to that introduced in appendix B. We let M t denote the

pair (M t2
2 ,M

t3
3 ) of message random variables. We let mt denote a generic element (mt2

2 ,m
t3
3 ) ∈ F tπ : = F t2π ×F t3π ,
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and similarly as denote (as22 , a
s3
3 ) ∈ Fsπ : = Fs2π ×Fs3π . We let

T̂η2(qn) : =
{

(vn1 , u
n, xn, ynj ) ∈ T8η2(V1, U,X, Yj |qn) : (vn1 , u

n) ∈ T2η2(V1, U |qn), (vn1 , u
n, xn) ∈ T4η2(V1, U,X|qn)

}
,

T̂η2(qn|vn1 , un) =
{

(xn, ynj ) : (vn1 , u
n, xn, ynj ) ∈ T̂η2(qn)

}
We begin by characterizing the event under question. For j = 2, 3, denoting ε̃4j : = (εl ∪ ε2 ∪ ε3)c ∩ ε4j , we have

P (ε̃4j) ≤
∑

(m1,mt)

∑
m̂
tj
j 6=M

tj
j

∑
â
sj
j

∑
(vn1 ,u

n,xn,ynj )

∈T̂η2 (q
n)

∑
û
sj
j ∈

T8η2
(Uj |qn,ynj )

P

({
M1=m1,M

t=mt,V n1 (m1,B1)=v
n
1

Unl (A
sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3,Y nj =ynj

Xn=xn,Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
, (80)

where Xn abbreviates Xn(M1,M
t), the random vector input on the channel. We consider a generic term in the

above sum. Observe that

P

(
Y nj =ynj
Xn=xn

∣∣∣∣∣
{
M1=m1,M

t=mt,V n1 (m1,B1)=v
n
1

Unl (A
sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
= P

(
Y nj =ynj
Xn=xn

∣∣∣ V n1 (M1,B1)=v
n
1

Unl (A
sl
l )=unl :l=2,3

)
=: θ(yn, xn|vn1 , un), (81)

P

({
M1=m1,M

t=mt,V n1 (m1,B1)=v
n
1

Unl (A
sl
l )=unl ,Il(A

sl )=m
tl
l :l=2,3

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

}
∩ εcl

)
=

∑
(b1,a

s)
∈B1×Fsπ

P
(
E ∩

{
B1=b1
As=as

}
∩ εcl

)
≤

∑
(b1,a

s)
∈B1×Fsπ

P (E)P
({

B1=b1
As=as

}
|E ∩ εcl

)
, (82)

where E abbreviates the event
{
M1=m1, M

t=mt, V n1 (m1,b1)=v
n
1 , U

n
l (a

sl
l )=unl , Il(a

sl )=m
tl
l :l=2,3, Unj (â

sj
j )=ûnj , Ij(â

sj
j )=m̂

tj
j

}
.

We now focus on the terms on the right hand side of (82). By the encoding rule, P ({B1=b1, A
s =as} |E ∩ εcl ) = 1

L(n) .

We are left to evaluate P (E). The collection M1,M
t2
2 ,M

t3
3 , V

n
1 (m1, b1), I2(as2), I3(as3), Ij(â

sj ), (Ul(a
sl
l ) : l =

2, 3, Uj(â
sj
j )) are mutually independent, where (Ul(a

sl
l ) : l = 2, 3, Uj(â

sj
j )) is treated as a single random object.

The following counting argument proves the triplet Ul(asll ) : l = 2, 3, Uj(â
sj
j ) also to be mutually independent.

Let {j, j} = {2, 3}. For any unj , u
n
j and ûnj , let us study∣∣{(g2, g3/2, b

n
2 , b

n
3 ) : a

sj
j gj ⊕ b

n
j = unj , a

sj
j gj ⊕ b

n
j = unj , (â

sj
j 	 a

sj
j )gj = ûnj − unj

}∣∣ .
There exists a t such that âsjjt 6= a

sj
jt . For any choice of rows 1, 2, · · · , t−1, t+ 1, · · · , s3 of g3, one can choose the

tth row of gj and bn2 , b
n
3 such that the above conditions are satisfied. The cardinality of the above set is π(s3−1)n.

The uniform distribution and mutual independence guarantee P (Ul(a
sl
l ) = unl : l = 2, 3, Uj(â

sj
j ) = ûnj ) = 1

π3n .

We therefore have

P

(
M1=m1,M

t=mt,V n1 (m1,b1)=v
n
1 ,

Unl (a
sl
l )=unl ,Il(a

sl )=m
tl
l :l=2,3,

Unj (â
sj
j )=ûnj ,Ij(â

sj
j )=m̂

tj
j

)
=
P (M1 = m1,M

t = mt, V n1 (m1, b1) = vn1 )

π3n+t2+t3+tj
(83)

Substituting (83), (82) and (81) in (80), we have

P (ε̃4j) ≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n,xn,ynj )

∈T̂η2 (q
n)

θ(yn, xn|vn1 , un)
∑
ûnj ∈

T16η2
(Uj |qn,ynj )

P (M1 = m1,M
t = mt, V n1 (m1, b1) = vn1 )

π3n+t2+t3+tjL(n)
.

Note that terms in the innermost sum do not depend on the arguments of the sum. We now employ the bounds

on the cardinality of conditional typical sets. There exists N5(η2) ∈ N such that for all n ≥ N5(η2), we have

|T16η2(Uj |qn, ynj )| ≤ exp{n(H(Uj |Q,Yj) + 32η2)} for all (qn, ynj ) ∈ T8η2(Q,Yj). For n ≥ max{N1(η), N5(η2)},
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we therefore have

P (ε̃4j) ≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n)
∈T2η2

(V1,U |qn)

P
(
V1(m1,b1)=v

n
1 ,M1=m1

M
tl
l =m

tl
l :l=2,3

)
exp {n32η2}

π3n+t2+t3+tj exp {−nH(Uj |Q,Yj)}
∑

(xn,ynj )∈
T̂η2 (q

n|vn1 ,u
n)

θ(yn, xn|vn1 , un)

L(n)

≤
∑

(m1,mt)

∑
(b1,as)

∑
m̂
tj
j 6=m

tj
j

∑
â
sj
j

∑
(vn1 ,u

n)
∈T2η2 (V1,U |qn)

P
(
V1(m1,b1)=v

n
1 ,M1=m1

M
tl
l =m

tl
l :l=2,3

)
exp {n32η2}

π3n+t2+t3+tj exp {−nH(Uj |Q,Yj)}
1

L(n)

≤ 2 exp {sj log π − n (log π −H(Uj |Q,Yj)− 32η2)} ≤ 2 exp {−n(δ1 − 32η2)} , (84)

where (84) follows from definition of L(n), (70) and the bounds on the parameters of the code derived in (22) -

(24).

APPENDIX D

CHARACTERIZATION FOR NO RATE LOSS IN POINT-TO-POINT CHANNELS WITH CHANNEL STATE INFORMATION

We now develop the connection between upper bound (56) and the capacity of a PTP channel with non-causal

state [46]. We only describe the relevant additive channel herein and refer the interested reader to either to [46]

or [47, Chapter 7] for a detailed study. The notation employed in this section and appendix E are specific to these

sections.

Consider the discrete memoryless PTP channel with binary input and output alphabets X = Y = {0, 1}. The

channel transition probabilities depend on a random parameter, called state that takes values in the binary alphabet

S = {0, 1}. The channel is additive, i.e., if S,X and Y denote channel state, input and output respectively, then

P (Y = x ⊕ s|X = x, S = s) = 1 − δ, where ⊕ denotes addition in binary field and δ ∈ (0, 12 ). The state is

independent and identically distributed across time with P (S = 1) = ε ∈ (0, 1).19 The input is constrained by

an additive Hamming cost, i.e., the cost of transmitting xn ∈ Xn is
∑n
t=1 1{xt=1} and average cost of input per

symbol is constrained to be τ ∈ (0, 12 ).

The quantities of interest - left and right hand sides of (62)(i) - are related to two scenarios with regard to

knowledge of state for the above channel. In the first scenario we assume the state sequence is available to the

encoder non-causally and the decoder has no knowledge of the same. In the second scenario, we assume knowledge

of state is available to both the encoder and decoder non-causally. Let CT (τ, δ, ε), CTR(τ, δ, ε) denote the capacity

of the channel in the first and second scenarios respectively. It turns out, the left hand side of (62)(i) is upper

bounded by C(τ, δ, ε) and the right hand side of (62)(i) is CTR(τ, δ, ε). A necessary condition for (62)(i) to hold, is

therefore CT (τ, δ, ε) = CTR(τ, δ, ε). For the PTP channel with non-causal state, this equality is popularly referred

to as no rate loss. We therefore seek the condition for no rate loss.

19Through appendices D,E we prove if δ, τ ∈ (0, 1
2

) and ε ∈ (0, 1), then αT (τ, η, ε) < hb(τ ∗η)−hb(η). This implies statement of lemma

10.
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The objective of this section and appendix E is to study the condition under which CT (τ, δ, ε) = CTR(τ, δ, ε).

In this section, we characterize each of these quantities, in the standard information theoretic way, in terms of a

maximization of an objective function over a particular collection of probability mass functions.

We begin with a characterization of CT (τ, δ, ε) and CTR(τ, δ, ε).

Definition 9: Let DT (τ, δ, ε) denote the set of all probability mass functions pUSXY defined on U ×S ×X ×Y

that satisfy (i) pS(1) = ε, (ii) pY |XSU (x ⊕ s|x, s, u) = pY |XS(x ⊕ s|x, s) = 1 − δ, (iii) P (X = 1) ≤ τ . For

pUSXY ∈ DT (τ, δ, ε), let αT (pUSXY ) = I(U ;Y )− I(U ;S) and αT (τ, δ, ε) = sup
pUSXY ∈DT (τ,δ,ε)

αT (pUSXY ).

Theorem 8: CT (τ, δ, ε) = αT (τ, δ, ε)

This is a well known result in information theory and we refer the reader to [46] or [47, Section 7.6, Theorem 7.3]

for a proof.

Definition 10: Let DTR(τ, δ, ε) denote the set of all probability mass functions pSXY defined on S × X × Y

that satisfy (i) pS(1) = ε, (ii) pY |XS(x ⊕ s|x, s) = 1 − δ, (iii) P (X = 1) ≤ τ . For pSXY ∈ DTR(τ, δ, ε), let

αTR(pSXY ) = I(X;Y |S) and αTR(τ, δ, ε) = sup
pSXY ∈DTR(τ,δ,ε)

αTR(pSXY ).

Theorem 9: CTR(τ, δ, ε) = αTR(τ, δ, ε)

This can be argued using Shannon’s characterization of PTP channel capacity [48] and we refer the reader to [47,

Section 7.4.1] for a proof.

Remark 3: From the definition of CT (τ, δ, ε) and CTR(τ, δ, ε), it is obvious that CT (τ, δ, ε) ≤ CTR(τ, δ, ε), we

provide an alternative argument based on theorems 8, 9. For any pUSXY ∈ DT (τ, δ, ε), it is easy to verify the

corresponding marginal pSXY ∈ DTR(τ, δ, ε) and moreover αT (pUSXY ) = I(U ;Y ) − I(U ;S) ≤ I(U ;Y S) −

I(U ;S) = I(U ;Y |S) = H(Y |S)−H(Y |US) ≤ H(Y |S)−H(Y |USX)
(a)
= H(Y |S)−H(Y |SX) = I(X;Y |S) =

αTR(pSXY ) ≤ CTR(τ, δ, ε), where (a) follows from Markov chain U − (S,X)−Y ((ii) of definition 9). Since this

this true for every pUSXY ∈ DT (τ, δ, ε), we have CT (τ, δ, ε) ≤ CTR(τ, δ, ε).

We provide an alternate characterization for CTR(τ, δ, ε).

Lemma 8: For pUSXY ∈ DT (τ, δ, ε), let βTR(pUSXY ) = I(U ;Y |S) and βTR(τ, δ, ε) =

sup
pUSXY ∈DT (τ,δ,ε)

βTR(pUSXY ). Then βTR(τ, δ, ε) = αTR(τ, δ, ε) = CTR(τ, δ, ε).

Proof: We first prove βTR(τ, δ, ε) ≤ αTR(τ, δ, ε). Note that for any pUSXY ∈ DT (τ, δ, ε), the corre-

sponding marginal pSXY ∈ DTR(τ, δ, ε). Moreover, βTR(pUSXY ) = I(U ;Y |S) = H(Y |S) − H(Y |US) ≤

H(Y |S) − H(Y |USX)
(a)
= H(Y |S) − H(Y |SX) = I(X;Y |S) = αTR(pSXY ), where (a) follows from

Markov chain U − (S,X) − Y ((ii) of definition 9). Therefore, βTR(τ, δ, ε) ≤ αTR(τ, δ, ε). Conversely, given

pSXY ∈ DTR(τ, δ, ε), define U = {0, 1} and a probability mass function qUSXY defined on U × S × X × Y as

qUSXY (u, s, x, y) = pSXY (s, x, y)1{u=x}. Clearly qSXY = pSXY and hence (i) and (iii) of definition 9 are satisfied.

Note that qUSX(x, s, x) = pSX(s, x), and hence qY |XSU (y|x, s, x) = pY |XS(y|x, s) = WY |XS(y|x, s). Hence

qUSXY ∈ DTR(τ, δ, ε). It is easy to verify βTR(qUSXY ) = αTR(pSXY ) and therefore βTR(τ, δ, ε) ≥ αTR(τ, δ, ε).

We now derive a characterization of the condition under which CTR(τ, δ, ε) = CT (τ, δ, ε). Towards that end, we

first prove uniqueness of the PMF that achieves CTR(τ, δ, ε).
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Lemma 9: Suppose pSXY , qSXY ∈ DTR(τ, δ, ε) are such that αTR(pSXY ) = αTR(qSXY ) = CTR(τ, δ, ε), then

pSXY = qSXY . Moreover, if αTR(pSXY ) = CTR(τ, δ, ε), then pSX = pSpX , i.e., S and X are independent.

Proof: Clearly, if qSXY ∈ DTR(τ, δ, ε) satisfies qSX = qSqX with qX(1) = τ , then αTR(qSXY ) = hb(τ ∗δ)−

hb(δ) and since CTR(τ, δ, ε) ≤ hb(τ∗δ)−hb(δ),20 we have CTR(τ, δ, ε) = hb(τ∗δ)−hb(δ). Let pSXY ∈ DTR(τ, δ, ε)

be another PMF for which αTR(pSXY ) = hb(τ ∗ δ) − hb(δ). Let χ0 : = pX|S(1|0) and χ1 : = pX|S(1|1).

αTR(pSXY ) = I(X;Y |S) = H(Y |S)−H(Y |X,S) = H(X ⊕ S ⊕N |S)− hb(δ). We focus on the first term

H(X ⊕ S ⊕N |S) = (1− ε)H(X ⊕ 0⊕N |S = 0) + εH(X ⊕ 1⊕N |S = 1)

= (1− ε)hb(χ0(1− δ) + (1− χ0)δ) + εhb(χ1(1− δ) + (1− χ1)δ)

≤ hb((1− ε)χ0(1− δ) + (1− ε)(1− χ0)δ + εχ1(1− δ) + ε(1− χ1)δ) (85)

= hb(pX(1)(1− δ) + (1− pX(1))δ) = hb(δ + pX(1)(1− 2δ)) ≤ hb(δ + τ(1− 2δ)) = hb(τ ∗ δ) (86)

where (85) follows from concavity of binary entropy function hb(·) and inequality in (86) follows from δ ∈ (0, 12 ).

We therefore have αTR(pSXY ) = hb(τ ∗ δ)− hb(δ) if and only if equality holds in (85), (86). hb(·) being strictly

concave, equality holds in (85) if and only if ε ∈ {0, 1} or χ0 = χ1. The range of ε precludes the former and

therefore χ0 = χ1. This proves pSX = pSpX and pX(1) = τ . Given pSXY ∈ DTR(τ, δ, ε), these constrains

completely determine pSXY and we have pSXY = qSXY .

Following is the main result of this section.

Lemma 10: CTR(τ, δ, ε) = CT (τ, δ, ε) if and only if there exists a PMF pUSXY ∈ DT (τ, δ, ε) such that

1) the corresponding marginal achieves CTR(τ, δ, ε), i.e., αTR(pSXY ) = CTR(τ, δ, ε),

2) S − Y − U is a Markov chain.

3) X − (U, S)− Y is a Markov chain.

Proof: We first prove the reverse implication, i.e., the if statement. Note that CTR(τ, δ, ε) = αTR(pSXY ) =

I(X;Y |S) = H(Y |S) − H(Y |XS)
(a)
= H(Y |S) − H(Y |XSU)

(b)
= H(Y |S) − H(Y |US) = I(U ;Y |S) =

I(U ;Y S) − I(U ;S)
(c)
= I(U ;Y ) − I(U ;S) ≤ CT (τ, δ, ε), where (a) follows from (ii) of definition 9, (b) follows

from hypothesis 3) and (c) follows from hypothesis 2). We therefore have CTR(τ, δ, ε) ≤ CT (τ, δ, ε), and the reverse

inequality follows from remark 3.

Conversely, let pUSXY ∈ DT (τ, δ, ε) achieve CT (τ, δ, ε), i.e., αT (pUSXY ) = CT (τ, δ, ε). We have CT (τ, δ, ε) =

αT (pUSXY ) = I(U ;Y ) − I(U ;S)
(b)

≤ I(U ;Y S) − I(U ;S) = I(U ;Y |S) = H(Y |S) − H(Y |US)
(c)

≤ H(Y |S) −

H(Y |USX)
(a)
= H(Y |S)−H(Y |SX) = I(X;Y |S) = αTR(pSXY ) ≤ CTR(τ, δ, ε), where (a) follows from Markov

chain U − (S,X)−Y ((ii) of definition 9). Equality of CTR(τ, δ, ε), CT (τ, δ, ε) implies equality in (b), (c) and thus

I(U ;S|Y ) = 0 and H(Y |US) = H(Y |USX) and moreover αTR(pSXY ) = CTR(τ, δ, ε).

For the particular binary additive PTP channel with state, we strengthen the condition for no rate loss in the

following lemma.

20This can be easily verified using standard information theoretic arguments.
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Lemma 11: If pUSXY ∈ DT (τ, δ, ε) satisfies (i) S − Y − U is a Markov chain, and (ii) X − (U, S) − Y is

a Markov chain, then H(X|U, S) = 0, or in other words, there exists a function f : U × S → X such that

P (X = f(U, S)) = 1.

Proof: We prove this by contradiction. In particular, we prove H(X|U, S) > 0 violates Markov chain X −

(U, S) − Y . If H(X|U, S) > 0, then H(X ⊕ S|U, S) > 0. Indeed, 0 < H(X|U, S) ≤ H(X,S|U, S) = H(X ⊕

S, S|U, S) = H(S|U, S) + H(X ⊕ S|U, S) = H(X ⊕ S|U, S). Since (U, S,X) is independent of X ⊕ S ⊕ Y

and in particular, (U, S, S ⊕ X) is independent of X ⊕ S ⊕ Y , we have H((X ⊕ S) ⊕ (X ⊕ S ⊕ Y )|U, S) >

H(X ⊕S⊕Y |U, S) = hb(δ) = H(Y |U, S,X), where the first inequality follows from concavity of binary entropy

function. But (X⊕S)⊕(X⊕S⊕Y ) = Y and we have therefore proved H(Y |U, S) > H(Y |U, S,X) contradicting

Markov chain X − (U, S)− Y .

We summarize the conditions for no rate loss below.

Theorem 10: CTR(τ, δ, ε) = CT (τ, δ, ε) if and only if there exists a PMF pUSXY ∈ DT (τ, δ, ε) such that

1) the corresponding marginal achieves CTR(τ, δ, ε), i.e., αTR(pSXY ) = CTR(τ, δ, ε), and in particular S and

X are independent,

2) S − Y − U is a Markov chain.

3) X − (U, S)− Y is a Markov chain,

4) H(X|U, S) = 0, or in other words, there exists a function f : U × S → X such that P (X = f(U, S)) = 1.

APPENDIX E

THE BINARY ADDITIVE DIRTY POINT-TO-POINT CHANNEL SUFFERS A RATE LOSS

This section is dedicated to proving proposition 1. We begin with an upper bound on cardinality of auxiliary set

involved in characterization of CT (τ, δ, ε).

Lemma 12: Consider a PTP channel with state information available at transmitter. Let S,X and Y denote

state, input and output alphabets respectively. Let WS ,WY |XS denote PMF of state, channel transition probabilities

respectively. The input is constrained with respect to a cost function κ : X × S → [0,∞). Let DT (τ) denote the

collection of all probability mass functions pUXSY defined on U × X × S × Y , where U is an arbitrary set, such

that (i) pS = WS , (ii) pY |XSU = pY |XS = WY |XS and (iii) E {κ(X,S)} ≤ τ . Moreover, let

DT (τ) =
{
pUXSY ∈ DT (τ) : |U| ≤ min

{
|X |·|S|,

|X |+|S|+|Y|−2

}}
.

For pUXSY ∈ DT (τ), let α(pUXSY ) = I(U ;Y )− I(U ;S). Let

αT (τ) = sup
pUXSY ∈DT (τ)

α(pUXSY ), αT (τ) = sup
pUXSY ∈DT (τ)

α(pUXSY ).

Then αT (τ) = αT (τ).

Proof: The proof is based on Fenchel-Eggelston-Carathéodory [49], [47, Appendix C] theorem which is stated

here for ease of reference.

Lemma 13: let A be a finite set and Q be an arbitrary set. Let P be a connected compact subset of PMF’s on

A and pA|Q(·|q) ∈ P for each q ∈ Q. For j = 1, 2, · · · , d let gj : P → R be continuous functions. Then for
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every Q ∼ FQ defined on Q, there exist a random variable Q ∼ pQ with |Q| ≤ d and a collection of PMF’s

pA|Q(·|q) ∈ P , one for each q ∈ Q, such that∫
Q
gj(pA|Q(a|q))dFQ(q) =

∑
q∈Q

gj(pA|Q(a|q))pQ(q).

The proof involves identifying gj : j = 1, 2 · · · , d such that rate achievable and cost expended are preserved. We

first prove the bound |U| ≤ |X | · |S|.

Set Q = U and A = X × S and P denote the connected compact subset of PMF’s on X × S. Without loss

of generality, let X = {1, 2, · · · , |X |} and S = {1, 2, · · · , |S|}. For i = 1, 2, · · · , |X | and k = 1, 2, · · · , |S| − 1,

let gi,k(πX,S) = πX,S(i, k) and gl,|S|(πX,S) = πX,S(l, |S|) for l = 1, 2, · · · , |X | − 1. Let g|X |·|S|(πX,S) =

H(S)−H(Y ). It can be verified that

g|X |·|S|(πX,S) =−
∑
s∈S

(
∑
x∈X

πX,S(x, s)) log2(
∑
x∈X

πX,S(x, s)) +
∑
y∈Y

θ(y) log2(θ(y)), where

θ(y) =
∑

(x,s)∈X×S

πX,S(x, s)WY |XS(y|x, s) (87)

where, is continuous. An application of lemma 13 using the above set of functions, the upper bound |X | · |S| on

|U| can be verified.

We now outline proof of upper bound |X | + |S| + |Y| − 2 on |U|. Without loss of generality, we assume

X = {1, · · · , |X |}, S = {1, · · · , |S|} and Y = {1, · · · , |Y|}. As earlier, set Q = U and A = X ×S and P denote

the connected compact subset of PMF’s on X × S. For j = 1, · · · , |S| − 1, let gj(πX,S) =
∑
x∈X πX,S(x, j). For

j = |S|, · · · , |S|+ |Y| − 2, let gj(πX,S) =
∑

(x,s)∈X×S πX,S(x, s)WY |X,S(j − |S|+ 1|x, s). For j = |S|+ |Y| −

1, · · · , |S|+ |Y|+ |X | − 3, let gj(πX,S) =
∑
s∈S πX,S(j − |S| − |Y|+ 2, s). Let gt(πX,S) = H(S)−H(Y ), i.e.,

gt(πX,S) = −
∑
s∈S

(
∑
x∈X

πX,S(x, s)) log2(
∑
x∈X

πX,S(x, s)) +
∑
y∈Y

θ(y) log2(θ(y)),

where t = |S|+ |Y|+ |X | − 2, and θ(y) as is in (87). The rest of the proof follows by simple verification.

Proposition 1: There exists no probability mass function pUXSY defined on U × S × X × Y where U =

{0, 1, 2, 3} ,X = S = Y = {0, 1}, such that

1) X and S are independent with P (S = 1) = ε, P (X = 1) = τ , where ε ∈ (0, 1), τ ∈ (0, 12 ),

2) pY |X,S,U (x⊕s|x, s, u) = pY |X,S(x⊕s|x, s) = 1−δ for every (u, x, s, y) ∈ U×S×X ×Y , where δ ∈ (0, 12 ),

3) U − Y − S and X − (U, S)− Y are Markov chains, and

4) pX|US(x|u, s) ∈ {0, 1} for each (u, s, x) ∈ U × S × X .

Proof: The proof is by contradiction. If there exists such a PMF pUSXY then conditions 1) and 2) completely

specify it’s marginal on S × X × Y and it maybe verified that pSY (0, 0) = (1 − ε)(1 − θ), pSY (0, 1) = (1 −

ε)θ, pSY (1, 0) = εθ, pSY (1, 1) = ε(1− θ), where θ : = δ(1− τ) + (1− δ)τ takes a value in (0, 1). Since ε ∈ (0, 1),

pSY (s, y) ∈ (0, 1) for each (s, y) ∈ S × Y . If we let βi : = pU |Y (i|0) : i = 0, 1, 2, 3 and γj : = pU |Y (j|1) : j =

0, 1, 2, 3, then Markov chain U − Y − S implies pUSY is as in table I. Since X is a function of (U, S)21, there
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USY pUSY USY pUSY

000 (1− ε)(1− θ)β0 200 (1− ε)(1− θ)β2
001 (1− ε)θγ0 201 (1− ε)θγ2
010 εθβ0 210 εθβ2

011 ε(1− θ)γ0 211 ε(1− θ)γ2
100 (1− ε)(1− θ)β1 300 (1− ε)(1− θ)β3
101 (1− ε)θγ1 301 (1− ε)θγ3
110 εθβ1 310 εθβ3

111 ε(1− θ)γ1 311 ε(1− θ)γ3

TABLE I

pUSY

pUSX(0, 0, 0) = pUS(0, 0)z0 pUSX(0, 1, 0) = pUS(0, 1)z4

pUSX(1, 0, 0) = pUS(1, 0)z1 pUSX(1, 1, 0) = pUS(1, 1)z5

pUSX(2, 0, 0) = pUS(2, 0)z2 pUSX(2, 1, 0) = pUS(2, 1)z6

pUSX(3, 0, 0) = pUS(3, 0)z3 pUSX(3, 1, 0) = pUS(3, 1)z7

TABLE II

pUSX

exist zi ∈ {0, 1} : i = 0, 1, · · · , 7 such that entries of table II hold true. Moreover, condition 4) and Markov chain

X − (U, S) − Y implies pUSXY is completely determined in terms of entries of table I and zi : i = 0, 1, · · · , 7.

For example pUSXY (3, 0, 1, 1) = pUSY (3, 0, 1)(1 − z3). This enables us to compute the marginal pSXY in terms

of entries of table I and zi : i = 0, 1, · · · , 7. This marginal must satisfy conditions 1) and 2) which implies that the

last two columns of table III are equal.

pSY X(0, 0, 0) = (1− ε)(1− θ) [β0z0 + β1z1 + β2z2 + β3z3] = (1− τ)(1− ε)(1− δ) (88)

pSY X(0, 0, 1) = (1− ε)(1− θ) [1− β0z0 − β1z1 − β2z2 − β3z3] = τ(1− ε)δ

pSY X(0, 1, 0) = (1− ε)θ [γ0z0 + γ1z1 + γ2z2 + γ3z3] = (1− τ)(1− ε)δ (89)

pSY X(0, 1, 1) = (1− ε)θ [1− γ0z0 − γ1z1 − γ2z2 − γ3z3] = τ(1− ε)(1− δ)

pSY X(1, 0, 0) = εθ [β0z4 + β1z5 + β2z6 + β3z7] = (1− τ)εδ (90)

pSY X(1, 0, 1) = εθ [1− β0z4 − β1z5 − β2z6 − β3z7] = τε(1− δ)

pSY X(1, 1, 0) = ε(1− θ) [γ0z4 + γ1z5 + γ2z6 + γ3z7] = (1− τ)ε(1− δ) (91)

pSY X(1, 1, 1) = ε(1− θ) [1− γ0z4 − γ1z5 − γ2z6 − γ3z7] = τεδ

21With probability 1
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SYX pSYX

000 (1− ε)(1− θ) [β0z0 + β1z1 + β2z2 + β3z3] (1− τ)(1− ε)(1− δ)

001 (1− ε)(1− θ) [1− β0z0 − β1z1 − β2z2 − β3z3] τ(1− ε)δ

010 (1− ε)θ [γ0z0 + γ1z1 + γ2z2 + γ3z3] (1− τ)(1− ε)δ

011 (1− ε)θ [1− γ0z0 − γ1z1 − γ2z2 − γ3z3] τ(1− ε)(1− δ)

100 εθ [β0z4 + β1z5 + β2z6 + β3z7] (1− τ)εδ

101 εθ [1− β0z4 − β1z5 − β2z6 − β3z7] τε(1− δ)

110 ε(1− θ) [γ0z4 + γ1z5 + γ2z6 + γ3z7] (1− τ)ε(1− δ)

111 ε(1− θ) [1− γ0z4 − γ1z5 − γ2z6 − γ3z7] τεδ

TABLE III

ENFORCING CONDITIONS 1) AND 2) FOR pSXY

Since ε /∈ {0, 1}, (88),(91) imply

β0z0 + β1z1 + β2z2 + β3z3 = γ0z4 + γ1z5 + γ2z6 + γ3z7 =: ψ1

Similarly (89),(90) imply

γ0z0 + γ1z1 + γ2z2 + γ3z3 = β0z4 + β1z5 + β2z6 + β3z7 =: ψ2

We now argue there exists no choice of values for zi : i = 0, 1 · · · , 7. Towards that end, we make a couple of

observations. Firstly, we argue ψ1 6= ψ2. Since ε 6= 1 and θ ∈ (0, 1), we have ψ1 = (1−τ)(1−δ)
(1−θ) and ψ2 = (1−τ)δ

θ

from (88) and (89) respectively. Equating ψ1 and ψ2, we obtain either τ = 1 or τ = 0 or δ = 1
2 . Since none

of the conditions hold, we conclude ψ1 6= ψ2. Secondly, one can verify that ψ1 + ψ2 − 1 = δ(1−δ)(1−2τ)
θ(1−θ) . Since

δ ∈ (0, 12 ), θ ∈ (0, 1) and τ ∈ (0, 12 ), ψ1 + ψ2 > 1. We now eliminate the possible choices for zi : i = 0, 1 · · · , 7

through the following cases. let m : = |{i ∈ {0, 1, 2, 3} : zi = 1}| and l : = |{i ∈ {4, 5, 6, 7} : zi = 1}|.

Case 1: All of z0, z1, z2, z3 or all of z4, z5, z6, z7 are equal to 0, i.e., m = 0 or l = 0. This implies ψ1 = ψ2 = 0

contradicting ψ1 6= ψ2.

Case 2: All of z0, z1, z2, z3 or all of z4, z5, z6, z7 are equal to 1, i.e., m = 4 or l = 4. This implies ψ1 = ψ2 = 1

contradicting ψ1 6= ψ2.

Cases 1 and 2 imply m, l ∈ {1, 2, 3}.

Case 3: m = l = 3. If i1, i2, i3 are distinct indices in {0, 1, 2, 3} such that zi1 = zi2 = zi3 = 1, then one among

zi1+4, zi2+4, zi3+4 has to be 0. Else ψ1 = βi1 +βi2 +βi3 and ψ2 = βi1zi1+4+βi2zi2+4+βi3zi3+4 = βi1 +βi2 +βi3 =

ψ1 contradicting ψ1 6= ψ2. Let us consider the case z0 = z1 = z2 = 1, z3 = z4 = 0 and z5 = z6 = z7 = 1. Table

IV tabulates pUSXY for this case. We have ψ1 = β0 +β1 +β2 = γ1 +γ2 +γ3 or equivalently ψ1 = 1−β3 = 1−γ0
and ψ2 = γ0 + γ1 + γ2 = β1 + β2 + β3 or equivalently ψ2 = 1 − γ3 = 1 − β0. These imply γ3 = β0, γ0 = β3

which further imply γ1 + γ2 = β1 + β2 (since 1 = γ0 + γ1 + γ2 + γ3 = β0 + β1 + β2+β3). From table IV, one can
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UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2000 (1− ε)(1− θ)β2
0001 (1− ε)θβ3 2001 (1− ε)θγ2
0110 εθβ0 2010 εθβ2

0111 ε(1− θ)β3 2011 ε(1− θ)γ2
1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3
1001 (1− ε)θγ1 3101 (1− ε)θβ0
1010 εθβ1 3010 εθβ3

1011 ε(1− θ)γ1 3011 ε(1− θ)β0

TABLE IV

pUXSY

UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2000 (1− ε)(1− θ)β2
0001 (1− ε)θγ0 2001 (1− ε)θγ2
0110 εθβ0 2010 εθβ2

0111 ε(1− θ)γ0 2011 ε(1− θ)γ2
1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3
1001 (1− ε)θγ1 3101 (1− ε)θγ3
1110 εθβ1 3010 εθβ3

1111 ε(1− θ)γ1 3011 ε(1− θ)γ3

TABLE V

pUXSY

verify

pU |XSY (0|0, 0, 1) = β3(1−ε)θ
(1−ε)θ(β3+γ1+γ2)

= β3

β1+β2+β3
,

pU |XS(0|0, 0) =
(1− θ)β0 + θβ3

(1− θ)(β0 + β1 + β2) + θ(β3 + γ1 + γ2)
.

The Markov chain U − (X,S)−Y implies pU |XSY (0|0, 0, 1) = pU |XS(0|0, 0). Equating the right hand sides of the

above equations, we obtain (1− θ)(β0−β3)(β1 +β2) = 0. Since θ 6= 0, β1 +β2 = 0 or β0 = β3. If β0 = β3, then

1− β3 = ψ1 = ψ2 = 1− β0 thus contradicting ψ1 6= ψ2. If β1 + β2 = 0, then β0 + β3 = 1 implying ψ1 + ψ2 = 1

contradicting ψ1 + ψ2 > 1.

Case 4: m = 3, l = 2. Let us assume z0 = z1 = z2 = z6 = z7 = 1, z3 = z4 = z5 = 0. We then have

ψ1 = β0+β1+β2 = γ2+γ3 and ψ2 = γ0+γ1+γ2 = β2+β3. Since β0+β1+β2 = 1−β3 and γ0+γ1+γ2 = 1−γ3,

we have γ2 + γ3 = 1 − β3 and β2 + β3 = 1 − γ3 and therefore γ2 = β2.Table V tabulates pUSXY for this case.

From table V, one can verify
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UXSY pUXSY UXSY pUXSY

0000 (1− ε)(1− θ)β0 2100 (1− ε)(1− θ)β2
0001 (1− ε)θγ0 2101 (1− ε)θγ2
0110 εθβ0 2010 εθβ2

0111 ε(1− θ)γ0 2011 ε(1− θ)γ2
1000 (1− ε)(1− θ)β1 3100 (1− ε)(1− θ)β3
1001 (1− ε)θγ1 3101 (1− ε)θγ3
1010 εθβ1 3110 εθβ3

1011 ε(1− θ)γ1 3111 ε(1− θ)γ3

TABLE VI

pUXSY

pU |XSY (2|0, 0, 1) = β2(1−ε)θ
(1−ε)θ(β2+γ0+γ1)

= β2

β2+γ0+γ1
,

pU |XS(2|0, 0) =
β2

(1− θ)(β0 + β1) + θ(γ0 + γ1) + β2
.

The Markov chain U − (X,S) − Y implies pU |XSY (2|0, 0, 1) = pU |XS(2|0, 0). Equating the RHS of the above

equations, we obtain β0 +β1 = γ0 +γ1. This implies β2 +β3 = γ2 +γ3. However ψ2 = β2 +β3 and ψ1 = γ2 +γ3,

this contradicting ψ 6= ψ2.

Let us assume z0 = z1 = z2 = z5 = z6 = 1 and z3 = z4 = z7 = 0. It can be verified that ψ1 = β0 + β1 + β2 =

γ1 + γ2 and ψ2 = γ0 + γ1 + γ2 = β1 + β2. This implies ψ1 − ψ2 = β0 = −γ0. Since β0 and γ0 are non-negative,

β0 = γ0 = 0 implying ψ1 − ψ2 = 0, contradicting ψ1 6= ψ2.

Case 5: m = 3, l = 1. Assume z0 = z1 = z2 = z4 = 1, z3 = z5 = z6 = z7 = 0. It can be verified that

ψ1 = β0 + β1 + β2 = γ0 and ψ2 = γ0 + γ1 + γ2 = β0. Therefore ψ1 − ψ2 = β1 + β2 and ψ2 − ψ1 = γ1 + γ2.

Since βi, γi : i ∈ {0, 1, 2, 3} are non-negative, ψ1 − ψ2 ≥ 0 and ψ2 − ψ1 ≥ 0 contradicting ψ1 6= ψ2.

Assume z0 = z1 = z2 = z7 = 1 and z3 = z4 = z5 = z6 = 0. In this case, ψ1 = β0 + β1 + β2 = γ3,

ψ2 = γ0 + γ1 + γ2 = 1− γ3. We have ψ1 + ψ2 = 1 contradicting ψ1 + ψ2 > 1.

Case 6: m = 2, l = 2. Assume z0 = z1 = z4 = z5 = 1, z2 = z3 = z6 = z7 = 0. Note that ψ1 = β0 +β1 = γ0 +γ1,

ψ2 = γ0 + γ1 = β0 + β1 contradicting ψ1 6= ψ2.

Assume z0 = z1 = z6 = z7 = 1, z2 = z3 = z4 = z5 = 0. Note that ψ1 = β0 + β1 = γ2 + γ3, ψ2 = γ0 + γ1 =

β2 + β3 contradicting ψ1 + ψ2 > 1.

Assume z0 = z1 = z5 = z6 = 1, z2 = z3 = z4 = z7 = 0. Note that ψ1 = β0 + β1 = γ1 + γ2, ψ2 = γ0 + γ1 =

β1 + β2 and therefore β2 + β3 = γ0 + γ3 and β0 + β3 = γ2 + γ3. We observe

ψ1 − ψ2 = β0 − β2 = γ2 − γ0. (92)

PMF pUXSY is tabulated in VI for this case. Table VI enables us to compute conditional PMF pU |XSY which

is tabulated in table VII. Markov chain U − (X,S)− Y implies columns 2 and 4 of table VII are identical. This
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UXSY pU|XSY UXSY pU|XSY

0000 β0
β0+β1

0001 γ0
γ0+γ1

0110 β0
β0+β3

0111 γ0
γ0+γ3

1000 β1
β0+β1

1001 γ1
γ0+γ1

1010 β1
β1+β2

1011 γ1
γ1+γ2

2100 β2
β2+β3

2101 γ2
γ2+γ3

2010 β2
β1+β2

2011 γ2
γ1+γ2

3100 β3
β2+β3

3101 γ3
γ2+γ3

3110 β3
β0+β3

3111 γ3
γ0+γ3

TABLE VII

pU|XSY

implies

β0
γ0

(a)
=

β0 + β1
γ0 + γ1

(b)
=
β1
γ1
,
β2
γ2

(c)
=
β2 + β3
γ2 + γ3

(d)
=

β3
γ3
, and

β0
γ0

(e)
=
β0 + β3
γ0 + γ3

(f)
=

β3
γ3
, (93)

where (a),(b),(c),(d) in (93) is obtained by equating rows 1, 3, 5, 7 of columns 2 and 4 respectively and (e) and (f)

in (93) are obtained by equating rows 2 and 8 of columns 2 and 4 respectively. (93), enables us to conclude

β0
γ0

=
β1
γ1

=
β2
γ2

=
β3
γ3
.

Since β0 + β1 + β2 + β3 = γ0 + γ1 + γ2 + γ3 = 1, we have βi = γi for each i ∈ {0, 1, 2, 3} which yields ψ1 = ψ2

in (92) contradicting ψ1 6= ψ2.

Case 7: m = 2, l = 1. Assume z0 = z1 = z4 = 1, z2 = z3 = z5 = z6 = z7 = 0. Note that ψ1 = β0 + β1 =

γ0, ψ2 = γ0 + γ1 = β0 and hence ψ1 − ψ2 = β1 and ψ2 − ψ1 = γ1. Since γ1 and β1 are non-negative, we have

ψ1 = ψ2 contradicting ψ1 6= ψ2.

Assume z0 = z1 = z7 = 1, z2 = z3 = z4 = z5 = z6 = 0. Note that ψ1 = β0 + β1 = γ3, ψ2 = γ0 + γ1 = β3 and

hence ψ1 + ψ2 = β0 + β1 + β3 ≤ 1 contradicting ψ1 + ψ2 > 1.

Case 6: m = 1, l = 1. Assume z0 = z4 = 1, z1 = z2 = z3 = z5 = z6 = z7 = 0. Note that ψ1 = β0 = γ0, ψ2 =

γ0 = β0, thus contradicting ψ1 6= ψ2.

Assume z0 = z5 = 1, z1 = z2 = z3 = z4 = z6 = z7 = 0. Note that ψ1 = β0 = γ1, ψ2 = γ0 = β1, and hence

ψ1 + ψ2 = β0 + β1 ≤ 1, thus contradicting ψ1 + ψ2 > 1.

APPENDIX F

PROOF OF LEMMA 6

Since A−B−Y and AB−X−Y are Markov chains, to prove A−B−XY is a Markov chain, it suffices to prove

A−B −X is a Markov chain. We therefore need to prove pXA|B(xk, ai|bj) = pX|B(xk|bj)pA|B(ai|bj) for every
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AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj) AXY pAXY |B(·, ·, ·|bj)

ai00 χi(1− η) ai01 χiη ai10 (αi − χi)η ai11 (αi − χi)(1− η)

TABLE VIII

pAXY |B(·, ·, ·|bj)

(xk, ai, bj) ∈ {0, 1} × A × B such that pB(bj) > 0. It suffices to prove pXA|B(0, ai|bj) = pX|B(0|bj)pA|B(ai|bj)

for every (ai, bj) ∈ A× B such that pB(bj) > 0.22

Fix a bj for which pB(bj) > 0. Let pA|B(ai|bj) = αi for each i ∈ N and pXA|B(0, ai|bj) = χi for each

(i, j) ∈ N×N. It can be verified pXYA|B(·, ·, ·|bj) is as in table VIII. From table VIII, we infer pAY |B(ai0|bj) =

χi(1 − η) + (αi − χi)η = αiη + χi(1 − 2η). From the Markov chain A − B − Y , we have pAY |B(ai0|bj) =

pA|B(ai|bj)pY |B(0|bj) = αipY |B(0|bj). Therefore, αipY |B(0|bj) = αiη + χi(1 − 2η). Since 1 − 2η 6= 0, we

substitute for χi and αi in terms of their definitions to conclude

pXA|B(0, ai|bj) = χi = αi ·
pY |B(0|bj)− η

1− 2η
= pA|B(ai|bj)

pY |B(0|bj)− η
1− 2η

.

Since pY |B(0|bj)−η
1−2η is independent of i and bj was an arbitrary element in B that satisfies pB(bj) > 0, we have

established Markov chain A−B −X .

APPENDIX G

UPPER BOUND ON MARTON’S CODING TECHNIQUE FOR EXAMPLE 2

We begin with a characterization of a test channel pQWUVXY for which (R1, hb(τ2 ∗ δ2)−hb(δ2), hb(τ3 ∗ δ3)−

hb(δ3)) ∈ αU (pQWUVXY ). Since independent information needs to be communicated to users 2 and 3 at their

respective PTP capacities, it is expected that their codebooks are not precoded for each other’s signal, and moreover

none of users 2 and 3 decode a part of the other users’ signal. The following lemma establishes this. We remind

the reader that X1X2X3 = X denote the three binary digits at the input.

Lemma 14: If there exists a test channel pQWUVXY ∈ DU (τ) and nonnegative numbers Ki, Sij ,Kij , Lij , Si, Ti

that satisfy (1)-(11) for each triple (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} such that R2 = K2 +K23 +L12 + T2 =

hb(τ2 ∗ δ2)− hb(δ2), R3 = K3 +K31 + L23 + T3 = hb(τ3 ∗ δ3)− hb(δ3), then

1) K1 = K2 = K3 = K23 = L23 = K12 = L31 = S2 = S3 = 0 and I(U31V1V3;Y2|QWU23U12V2) = 0,

2) S31 = I(U31;U23|QW ), S12 = I(U12;U23|QW ), S23 = I(U12;U31|QWU23) = 0,

3) I(V2U12;V3U31|QWU23) = 0, I(WU23;Yj |Q) = 0 : j = 2, 3, I(V2U12;Y2|QWU23) = hb(τ2 ∗ δ2)− hb(δ2)

and I(V3U31;Y3|QWU23) = hb(τ3 ∗ δ3)− hb(δ3), pXj |QWU23
(1|q, w, u23) = τj for j = 2, 3.

4) (V3, X3, V1, U31) − (QWU23U12V2) − (X2, Y2), (V2, X2, V1, U12) − (QWU23U31V3) − (X3, Y3) and V1 −

QWUV2V3 −X2X3 are Markov chains,

22Indeed, pXA|B(1, ai|bj) = pA|B(ai|bj)− pXA|B(0, ai|bj) = pA|B(ai|bj)(1− pX|B(0|bj)) = pA|B(ai|bj)pX|B(1|bj).
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5) X2 −QWU12U23U31 −X3 is a Markov chain,

6) U12 −QWU23U31 −X3 and U31 −QWU23U12 −X2 are Markov chains.

The proof of this lemma is similar to that of lemma 5 and is therefore omitted. Lemma 14 enables us to simplify

the bounds (1)-(11) for the particular test channel under consideration. The following bounds may be verified.

If (R1, hb(τ2 ∗ δ2) − hb(δ2), hb(τ3 ∗ δ3) − hb(δ3)) ∈ αU (pQWUVXY ), then there exists nonnegative numbers

S1, T1, L12,K31 that satisfy R1 = T1, R2 = L12+T2 = hb(τ2∗δ2)−hb(δ2), R3 = K31+T3 = hb(τ3∗δ3)−hb(δ3),

S1 ≥ I(V1;U23V2V3|QWU12U31), T1 + S1 ≤ I(V1;Y1|QWU12U31) (94)

L12 +K31 + T1 + S1 ≤ I(U12;U31|QW )− I(U23;U12|QW ) + I(V1U12U31;Y1|QW )− I(U23;U31|QW )(95)

0 ≤ T2 ≤ I(V2;Y2|QWU12U23), hb(δ2 ∗ τ2)− hb(δ2) = T2 + L12 = I(U12V2;Y2|QWU23) (96)

0 ≤ T3 ≤ I(V3;Y3|QWU31U23), hb(δ3 ∗ τ3)− hb(δ3) = T3 +K31 = I(U31V3;Y3|QWU23). (97)

Following arguments similar to section VII, we obtain

R1 ≤ I(V1;Y1U23|QWU12U31)− I(V1;U23V2V3|QWU12U31) = I(V1;Y1|QWU)− I(V1;V2V3|QWU), (98)

R1 ≤I(V1;Y1|QWU)−I(V1;V2V3|QWU)+I(U12U31;Y1|QWU23)−I(U12;Y2|QWU23)−I(U31;Y3|QWU23), (99)

R1 +R2 +R3 ≤ I(V2;Y2|QWU12U23) + I(V3;Y3|QWU31U23) + I(U12;U31|QW )− I(U23;U12|QW )

+I(V1U12U31;Y1|QW )− I(U23;U31|QW )(100)

The bound (100) is obtained by (i) adding bounds (95) and the bounds on T2 and T3 present in (96) and (97)

respectively, and (ii) identifying T2 +L12 = R2, T3 +K31 = R3, T1 = R1 and (iii) employing the lower bound on

S1 found in (94). Combining (98) and (99), we have

R1 ≤ I(V1;Y1|QWU)−I(V1;V2V3|QWU)+min

 0, I(U12U31;Y1|QWU23)− I(U12;Y2|QWU23)

−I(U31;Y3|QWU23)

 . (101)

From (98) and the Markov chain V1 −QWUV2V3 −X2X3 proved in lemma 14, it can be verified that

R1 ≤ I(V1;Y1|QWU)− I(V1;V2V3|QWU) = I(V1;Y1|QWU)− I(V1;V2V3X2X3|QWU) (102)

≤ I(V1;Y1|QWU)− I(V1;X2, X3|QWU) ≤ I(V1;Y1|QWU)− I(V1;X2 ∨X3|QWU) (103)

≤ I(V1;Y1, X2 ∨X3|QWU)− I(V1;X2 ∨X3|QWU) = I(V1;Y1|QWU,X2 ∨X3)

≤ H(X1 ⊕N1|Q,W,U,X2 ∨X3)− hb(δ1) ≤ hb(τ1 ∗ δ1)− hb(δ1) (104)

with equality above if and only if pX1|Q,W,U,X2∨X3
(1|q, w, u, x) = τ1 and pX2∨X3|Q,W,U (x|q, w, u) ∈ {0, 1}

for all (q, w, u, x) with positive probability. Note that this follows from lemma 7. Using (100), we now show that

H(V2|QWU23U12) > 0 or H(V3|QWU23U31) > 0. We prove this by contradiction. Suppose H(V2|QWU23U12) =

H(V3|QWU23U31) = 0, then one can substitute this in the right hand side of (100) to obtain the same to be

hb(τ1 ∗ β)− hb(δ1). The left hand side of (100) being R1 + R2 + R3, this condition violates the hypothesis (30)

if Rj = hb(δj ∗ τj)− hb(δj). We therefore have H(V2|QWU23U12) > 0 or H(V3|QWU23U31) > 0.
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Using the Markov chains U31 −QWU23U12 − V2, U12 −QWU23U31 − V3, QWU23 − U12V2 − Y2, QWU23 −

U31V3 − Y3, QWUV2 −X2 − Y2 and QWUV3 −X3 − Y3 proved in lemma 14 and standard information theoretic

arguments23, it can be verified that H(X2 ∨X3|Q,W,U) > 0. Referring back to the condition for equality in the

inequalities (103) -(104), we conclude R1 < hb(τ1 ∗ δ1)− hb(δ1).

We now appeal to the bound (103) containing the rate loss. Clearly lemma 7 proves that the above condition

implies R1 < hb(τ1 ∗ δ1)− hb(δ1). This concludes the proof.
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