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Abstract — In this work, we introduce the notion of the region at high SNR respectively. In Section lll, we derive
diversity gain regionfor a multi-user channel. This region the DGR inner bound using two strategies - channel-splitting
specifies the set of diversity-gain vectors that are simultane- and superposition. In Section IV, we propose a unified en-
ously achievable by all users in the multi-user channel. This coding scheme, generalized-superposition, which includes both
is done by associating different probabilities of error for dif- channel-splitting and superposition as special cases. In Sec-
ferent users, contrary to the traditional approach where a tion V, we derive the DGR outer bound. Two important results
single probability of system errois considered. We derive an are also shown in Section V. First, either one of the two users in
inner bound (achievable region) and an outer bound for the the broadcast channel can achieve the single-user diversity gain
diversity gain region of a MIMO fading broadcast channel. if the data rates are low. Second, the DGR inner bound and DGR

outer bound are tight for equal diversity gains if the broadcast
|. INTRODUCTION channel is symmetric. We conclude our work in Section VI.

It is well-known that the error exponent for a single-user
channel provides the rate of exponential decay of the averag
probability of error as a function of the block length of the code-
books [1]. The concept of the error exponent was extended to &consider a MIMO fading broadcast channel withtransmit
Gaussian multiple access channel (MAC) in [2], where an upp@itennas and; andn, receive antennas for user 1 and user 2.
bound on theprobability of system errofi.e., the probability The channel model is
that any user is in error) was derived for random codes. Re- NR
cently, Zhenget al. considered error exponents in high signal- Y, =/ ——H;X+7Z, (1)
to-noise ratio (SNR) approximation, called diversity gains, for m
multi-input-multi-output (MIMO) fading single-user channels

[3].

In many applications of multi-user networks, different usetﬁh . . .
might have different reliability requirements. For instance, in a € channel fading ”.‘a”'ces between the transmitter and. the re-
iver 1 and the receiver 2 are represented by;,ar m matrix

uplink (or downlink) of a cellular system, a user running an FTE .
application might have more stringent reliability requirements! and ann x m matrix Hy. We assume tha, and Hy

than a user running a multimedia application which is designé%mgm i:onslt.an';.ove_r a;r?lOCk l?g?tﬁnld Ch;?fe to(;ilgevr\]/ inde-
for graceful degradation. Based on the traditional approaches.‘f?g ent realization in the next block lengtfH, andH, have

which consider a single probability of system error, a netwol N'fqt”e\;and ear::]h 3? t?; h;‘; arf]ortr:ip lex Grauksn5|3vnndt;st:|hbu:|0n
can only be designed to satisfy the most stringent reliability re- (0,1). We assume that fading matrices are kno ythere

quirement. This might result in a mismatch of resources allocaz Vers but unknown by the transmitter. The channel inpus

tion, and thus, it is inherently suboptimal. anm x [ matrix and is normalized such that the average transmit
To address this issue, we introduced the notion of error expp
nent region (EER) for a general multi-user channel in [4]. Fory!
given operating point, i.e., a rate-péR;, R), the error expo-
nent region consists of all achievable error exponents when
channel is operated at that point. An EER depends on the ch

|é. M ULTIPLEXING GAIN REGION AND DIVERSITY GAIN
REGION

_ [SNR

Y, = HoX + Zo. )

m

ower at each antenna is one. The ndseandZ, aren; x {
dny x [ matrices with i.i.d. entrie§ (0, 1).

In [3], an encoding schem& SN R) (a family of codes) in a

M O fading single-user channel is said to achieve multiplex-
Qg_gainr and diversity gain if

nel operating point, and for a given channel, there are numerous R(SNR) ' log P.(SNR)

EERs depending on which operating point we consider. In thissz\}}%ﬂioo W =T gnnl W =—d, (3)
paper, we focus on the EER at high SNR for a MIMO fading

broadcast channel. where R(SNR) and P.(SNR) are the rate and the average

The rest of the paper is structured as follows. In Seprobability of error of the cod€'(SN R) respectively. Define
tion Il, we introduce the notion of multiplexing gain regionR(SNR) = rlog SNR andP.(SNR) = SN R~ if equalities
(MGR) and diversity gain region (DGR). The MGR and DGRold in the limit, and>, <, >, < are defined similarly. Fol-
are the channel capacity region (CCR) and the error exponknting the same notations in [3], we define an encoding scheme



C(SNR) to achieve multiplexing gain pafr,r2) and diversity diversity gain withm transmit antennas; receive antennas,
gain pair(dy, d2) in a MIMO fading broadcast channel if block lengthl, normalized powelS N R—(1=71) for length 31,
and normalized powe$ N R~(1=72) for length(1 — )!.

Ri(SNR) _ log P.;(SNR)
im ————= =7, lim ————= = —d,
SNR—oo log SNR SNR—oo log SNR @ [11. ACHIEVABLE DIVERSITY GAIN REGION
4
Ro(SNR) . log P.o(SNR) Before continuing, let’'s review the diversity-multiplexing

=7y, lim —=22__7 — _(,  tradeoff for a MIMO fading single-user channel derived in [3].
SNE—oo  log SNR It was shown in [3] that both the random coding diversity gain
®) dm.n,i(r) and the expurgated diversity gaiff’,, ,(r) are achiev-

where Ry (SNR), Ra(SNR), P..(SNR), P.o(SNR) are the able in a MIMO fading single-user channel withtransmit an-
rates and the probabilities of codeword error for user 1 ag nasy receive antennas, and black lendthin addition, the

SN Rooo log SNR

user 2. Multiplexing gain region (MGR) is thus defined as th |vers!:y ga!ndvglzs showfr: to dﬁit“pp‘?r ?r:)un(-:ied by thﬁ outage
set of all achievable multiplexing gain pdir;, ) for all en- oVersity gain mon(r), wheredyiv, (r) is the piecewise linear

coding schemes. The MGR is the CCR at high SNR. function coinect'ing the point, dyyin (k) = (k. (m = k)(n —

As mentioned earlier, an EER depends on the operating p Oi%k(r)ecﬁnéidgl?(?rllly; ':nviaz alslo shown that,,, . (r) and
(R1, Ry). Similarly, given a multiplexing gain pair,r2), we ™7 = L : s
define the diversity gain region (DGR) as the set of all achiev- For the MIMO tading broaggast channgl con?dere(lj |n|Fh_|s
able diversity gain paifd, d2). The diversity gain region is the P24P€l: W€ propose two encoding strategies - channel-spiitting
EER at high SNR. Before continuing, we derive a MGR innc?rnd superposition. In channel—spllttlng, we allocatesymbols
bound and a MGR outer bound for a MIMO fading broadcaff YS€" 1 and1 - 5)i symbols to user 2 inside each block length

_k _ i
channel. We summarize the result in the following theorem. Wher(_eﬂ L a_ndl S k S [~ 1,k € Z(seeFig. 1). Thus,
the achievable diversity gains are

Theorem 1 For a MIMO fading broadcast channel witim - -

transmit antennas and,, n, receive antennas, an MGR inner di° = maX{dm,nl,m(ﬁ), fﬁ,m,gl(ﬁ)} (8)
bound is o Ty

ds® = Inax{dm,ng,(l—ﬁ)l(m)?dif,ng,(lfﬁ)l(m)h )
<1}, (6)

where the superscript “cs” denotes channel-splitting.

T1 T9

MGR”L = 5 : " N
{(r1,m2) min(m, ny) + min(m, no)

and an MGR outer bound is

«— [l ><«(1-pl>e——m l > l <« l >

MGRou:7:0§§17
e={(rr2): 0<a [T I II I Il 1]

. . +
s (mln(m, n1) o mln(m,ng)) User1 User2 User1 User2 User1 User2 Useri User2
+ amin{min(m, ny), min(m, na)}, N1
ry < (min(m, ny) — min(m,ny))"
+ (]_ — a) min{min(m’ nl)’ min(m, nQ)}}’ (7) Figure 1:Channel-sp|itting
where(z)™ = max(z,0). 0 For superposition encoding, the channel inputids =

o . X; + X5, whereX; and X, have i.i.d. entrie€ ' (0,1) and
Before deriving the DGR inner and outer bounds, WeA(0, SNR-(1-P)) (0 < p < 1) respectively. We use two
summarize all the definitions of the diversity gains used in th(i.)%coding strategies - joint maximum-likelinood (ML) decoding
paper. More detail explanations and exact formulas of theggy naive single-user decoding. In joint ML decoding, user 1
diversity gains are given in later sections. decodes his own messagéased on the paifi, j) maximiz-
) o o ing P(Y1|X1(i), X2(4)) and user 2 decodes his own message
(1) dmm,(r): random coding diversity gain withn trans- p3sed on the paii, j) maximizing P(Ya| X1 (i), X»(j)), where

mit antennasy receive antennas, and block length X, (i) and X»(j) are theit" andj*" codewords for user 1 and
(2) d7,.(r): expurgated diversity gain withn transmit ser 2 respectively. We can derive the achievable diversity gains
antennasy receive antennas, and block length using joint ML decoding as

3) df,’;ﬁl(r): outage diversity gain withn transmit antennas

ands receive antennas. o = min{d, (m). 5, (o r)} = 5, ()

(4) dy ..., (7): naive single-user diversity gain with transmit ’

antennasy receive antennas, block lengthand normalized (10)

side-interference powef N R~ (1-P),

(5) arr (r): non-uniform power random coding

dy = min{p dgut,, (22), 5, (11 +72)} (1)
m,n,l,p1,p2,0 !

m,ng s Ymyng



when the block lengtlh > m + max(ni,n2) — 1, where the “
superscript “s” denotes superposition. For the block length.-- """

I < m 4 max(ni,ns) — 1, the outage diversity gain in (10), L
(112) is replaced by the random coding diversity gain. In (10),
dgit, (r1) accounts for the error event when user 1 decodes’
X1(i) as awrong codeword, but decod€s( ;) correctly, which :
is referred as the type 1 errorin [2], amﬁ{tnl (r1+72) accounts .
for the error event when user 1 decodes both mess&gés,
X2(j) as wrong codewords, which is referred as the type 3 er- .
ror in [2]. In (11),p dﬁ;fm(%) accounts for the type 2 error  * =+ + ¢ v LI .
when user 2 decodeX¥,(j) as a wrong codeword, but decodes @) (b)
X (i) correctly, andi®“t, (ry + r2) accounts for the type 3 er-

m,no
ror when user 2 decodes both messaljegi), X2 (j) 8 Wrong gigyre 2: Diversity gain region form = ny = ns = 4,1 — 60,71 —
codewords. re = 0.5 (a) channel-splitting(dotted) and superposition(solid and

In naive single-user decoding, user 1 simply regards user dshed), (b) union of channel-splitting and superposition (solid), and
interference as noise. In this case, user 1 can achieve diygireralized-superposition (dash-dotted).
sity gaind;,’,, (1), whered;> (1) is called the naive

single-user diversity gain and its derivation and exact formula . . . .
i . : . : user 1 simply treats user 2 as noise, we can derive an achievable
are given in the following subsection. Since user 1 can chooft,e

10

2|

either joint ML decoding or naive single-user decoding, the fg |vers_|ty gain for user 1'. Th_|s IS equwale_nt to considering the
. . . . . ollowing MIMO fading side-interference single-user channel
lowing diversity gains are achievable

/ SNR
dy® = max{dt, (r1+72),dps,, (1)} (12) Y = TH(X +8)+7Z, (17)
’s _ . out T2 out . . . . . .. .
dy’ = min{p dm,nz(?)’dm,nz (r1+72)}, (13)  whereH is ann x m matrix with i.i.d. entrieCV'(0, 1), and
Z and S aren x [ noise and side-interference matrices with
where we assume> m + max(ny, nz) — 1. ii.d. entriesCA(0,1) and CA (0, SNR~(1=P)) respectively.

Similarly, we can exchange the role of user 1 and user 2 in Sthe channel inpuX is anm x [ matrix and is normalized such
perposition encoding, i.e. we may assuMgand X, have i.i.d. that the average transmit power at each antenna is one. Define
entriesCA/(0, 1) andCA (0, SNR™(77)) (0 < p < 1) respec- (z)+ = max(z,0) andR” as the set of real n-vectors with non-
tively. Thus, the following diversity gains are also achievable pnegative elements. We summarize the result of the achievable

"y . out T1\  ou diversity gain of the side-interference channel in the following
dl = mln{p dmfn,l (;)’ dm,tnl (Tl + TQ)} (14) theorem.
d;s = max{d‘;,’;ﬁilz (ri+72),dn  1p(r2) ) (15) Theorem 2 For a MIMO fading side-interference channel op-

rated at a multiplexing gaim with m transmit antennasp

In Fig. 2(a), the_golid curve i_s the bounda_ry of the achieva Sceive antennas, the optimal probability of detection error is
DGR by superposition using joint ML decoding, and the dash% per-bounded by

curve is the boundary of the achievable DGR by superpositio
using joint ML decoding and naive single-user decoding, which P,(SNR)<SNR™%mnn(™), (18)
merges with the solid curve &d;,ds) = (4.5,9) and(d;,ds) = h

(9,4.5). The dotted curve in Fig. 2(a) is the boundary of th& o c

achievable DGR by channel-splitting. min(m,n)
e o lp(T) = min 2i — 1+ |m—n|)ay
A. Naive Single-user Decoding (") aeBe { ; ( | D
We now derive an achievable diversity gain using naive min(m,n)
single-user decoding, thus obtaining an explicit expression for v+ }
" ; +1 1—a;—(p— —r|e, (19
dps (). If we use superposition encoding for the MIMO [ ; (== =)t =1l (19

fading broadcast channel, i.e., the channel iffut X; + X,

we can write the channel output for user 1 as and

SNR B = {g € RTln(mﬁn) | aq Z (&) 2 e 2 amin(m,n) Z 07
Y, = THl(Xl + X2) + Zy, (16)

min(m,n)
v — _ ~ ) H <
where X; and X, have iid entries CN(0,1) and ; (I—ai=(p—a))" < T} (20)
CN(0,SNR-(1-P)) (0 < p < 1) respectively. If we de- . min(mm)
code user 1's message using naive single-user decoding, |eB =Ry - B. (21)



Proof : See Appendix B. O o, Cyy G
c, G, G,
IV. IMPROVED ACHIEVABLE DIVERSITY GAIN REGION BY
GENERALIZED-SUPERPOSITIONENCODING cB cB, CB,
In this section, we introduce a new encoding scheme,
generalized-superposition, which includes channel-splitting and
superposition as special cases. Before introducing generalized- Cu Cim, Com
superposition, we first derive the non-uniform power random
coding diversity gaind,” , . 5(r). Consider a random e EIC, ) E(C, (WP
codebookC B with M codewords (see Fig. 3 (a)). Dendtethe gz ! !
ith codeword with block lengtthin the codebook” B. Denote SNR’”’”"i
Ci(k:) the k*" element in the codeword;. Each random vari- ° SNR
ableC; (k) is i.i.d. with CA(0, SNR=(—P1))for 1 < k < j, . K . K K
andCN (0, SNR~(1=r2)) for Bl +1 < k < I, where3 = ¢ and T T I

0<q<lqc¢€ Z Ifweplot E{|C;(k)|*} versusk, we have @ ©

a function with valueSNR~(1=71) for 1 < k < gl and with

valueSN R—(-»2) for Bl+1 <k <l (see Fig. 3(a)). Figure 3:(a) Non-uniform power random codebook, (b) Generalized-
Extending the derivation of the random coding diversity gaﬁyperposmon

dpm () in [3], we can derive the non-uniform power random

coding diversity gainl,” ;. () for a non-uniform power vajuel for 3+1 < k < I. Itis clear that both superposition and

random codebook'B as channel-splitting are special cases of generalized-superposition.
min(m,n) In the receivers, we use a mixture of joint ML and naive
np : s _ _ single-user decoding. We summarize the result in the follow-
m,n l,pl,pg,[)’( ) - (};IéanC Zl (2L 1 + |m n|)a2 + Ing theorem.
1=
min(m,n) min(m,n)

Theorem 3 For a MIMO fading broadcast channel witim
+ +

s Z (p1—ai)" +(1-7) Z (p2 — i)™ — 7] }, transmit antennasy;, n-, receive antennas for user 1, user 2,

=1 =1 and block length > m + max(ny,n) — 1, an achievable

(22) DGRy, is given by
and
min m, ’Vl k
B {QGR ( |041 EQQZ"'Zamin(m,n) 207 DGRgs(rlaTQ){(dlde) ﬂ*j <k§l,k€Z,
min(m,n) min(m,n)
ngl S 1a0§p2 S ]-7
Z (pr—a) +(1-8) Y (pQ—ai)+§T} )
i—1 i=1 dy < max{mm{dm il s (T1)sdin (11 +r2)},
(23) .
min(m,n dmgn - (25)
B =R7"™ B (24) 175“’2(ﬁ)}
out
The derivation ford;? ;. 5(r) is a straight forward exten- dp < max { min {dy? 1 1.6(r2)s Ao, (r1 +12)
sion of the derivation fodm n,i(r) and is omitted. . ro
We are now ready to introduce generalized-superposition. In Qo (1— )11 (71 — 5)}} (26)
generalized-superposition, we construct two independent ran-
dom codebooksC'B; and CB,. DenoteC;; and Cs; the U
it" and ;" codewords with block lengthin codebooks” B, - ) _
and C B, respectively. Denot€; ;(k) the k*" element in the Note thatd;;* n1,8, pz(ﬁ) should be interpreted as 0 for= 0

codewordCy ; and Cs ; (k) the k" element in the codeword @1dd;7,,, 1 s), ,, (125) should be interpreted as 0 for= 1

C»,. Each random variabl€’ ;(k) is i.i.d. with CA/(0,1) in the above theorem since the diversity gain is zero for any
for 1 < k < Al, and CN(()’SENRfufpl)) for Bl +1 < schemg with encodmg_ block Iepgth 0. '

k < 1. Similarly, each random variabl€; ;(k) is i.i.d. with In Fig. 2(b), the solid curve is the boundary of the union of
CN(0, SNR=(=P2))for1 < k < 8l andCN(O, 1)for BI+1 < the channel-splitting and superposition achievable DGRs, and
k < I (see Fig. 3(b)). If we p_IolE{|Cl A(k)[?} versustk, we the dash-dotted curve is the boundary of the achievable DGR by
have a function with valug for 1 < &k < 3l and with value generalized-superposition, which merges with the solid curve at
SNR-(=pv) for Bl +1 < k < 1. Similarly, E{|Cy,(k)[?} (d1,d2) = (3.6,12.5) and(d;,ds) = (12.5,3.6).

i i i —(1—p2) i
is a function with valueSN R P2) for 1 < k < gl and with V. OUTER BOUND FOR DIVERSITY GAIN REGION



For a MIMO fading broadcast channel, the probability of Consider user 1 with a multiplexing gain < 1 and de-
decoding error for user can always be lower bounded by thdine p; = (1 — r1)(1 — %1‘1). For superposition encod-
probability of decoding error for uséroperating over a point- ing with channel inputX = X; + X5, whereX; and X,
to-point channel defined by the marginal distributiB(Y;|X), have i.i.d. entrie€A(0,1) andCAN (0, SNR~(1=P1)) respec-
for i = 1,2. Further, we use the fact that the performandaely, the achievable diversity gain by naive single-user de-
of a broadcast channel depends only on the marginal distading for user 1 igi"* (r1) = do¥t (r1) (note thatp;

m,n1,l,p1 m,ni

butions P(Y1]/X) and P(Y>|X), not on the joint distribution is the largest value this equatiaff’, ., (r1) = dgvt, (r1)

P(Y1,Y5]X). To be specific, consider another broadcast chagpds, ie.drs, o (r1) < dout (ry)forp < p). Th:’géhiev_
nel with marginal distributions the same as those in the origingl|e diversity7 géi7n for user 2 iin{p; dov, (22), dout (v +
broadcast Cha”r.‘e'* ",d?’/(Y”X) = P("|X) ande(Y2|X) — 1)}, so we have a positive diversity gain for user 2if <
P(Y2|X), but with P'(Y1,Y2]X) # P(Y1,Y5]|X) in general. min(m,ns) = (1 — r1)(1 — ™=1) min(m, ny). The
The DGR of this new broadcast channel is the same as the DEBOf for user 2 with a multiplexiné gain, < 1: achieving
of the original broadcast channel, since the probablhty of MRl maximum single-user diversity gainif < (1 — rs)(1 —
of each user depends only on the corresponding marginal dlst;m;nZA) min(m, n,) is similar. 0
butions [5]. If we now allow the two receivers in the new broad- ! ’

cast channel to cooperate, we have a single-user channel, whose “
probability of error (using an optimal receivery;, should be
less than or equal to the probability of system erRrin the
original broadcast channel. Using the union bound, it is also
easy to show tha®, < 2max{P.;, P.2}, whereP,; denotes the
probability of error for usef in the original broadcast channel.
Collecting all these ideas, we have the following outer bound for
the DGR

d1 S df:;ih (T’1) (27)
dz S d%ﬁim (7’2) (28) a4
. out out
min{dy, do} < max{dy",, (r1+r2),dp’5,(r1+r2)}. (29) Figure 4:Diversity Gain Region forn = n1 = no = 4,1 = 60,7, =

In Fig. 4, the solid curve is the boundary of the DGR inner = 0.5: inner (solid) and outer (dash-dotted) bounds.

bound and the dash-dotted curve is the boundary of the DGR

outer bound. Two important results are observed in Fig. 4: (i)

the DGR inner bound and the DGR outer bound are tight at the VI. CONCLUSION

right, lower corner and at the left, upper corner; (ii) the DG this work, we introduce the notion of multiplexing gain region

inner bound and the DGR outer bound are tightiat= d». and diversity gain region, which are the channel capacity region

Result (i) implies that the appearance of the second (first) useid the error exponent region at high SNR. We derive the DGR

does not affect the first (second) user since the first (secoither and outer bounds for a MIMO fading broadcast channel.

user achieves the single-user diversity gain. We summarie prove that when the data rates are low, either user 1 or user 2

these two results in the following theorem. can achieved the single-user diversity gain. For a symmetric
MIMO fading broadcast channel, the DGR inner bound and the

Theorem 4 Consider a MIMO fading broadcast channel witf?GR outer bound are tight at equal diversity gaids & do) .
block lengthl > m + min(ny,n2) — 1. Either user 1, with a The concept of the MGR and the DGR is very general and can

multiplexing gainr, < 1, can achieve his maximum single-usel?e applied to other multi-user channels, such as a MIMO fading

diversity gain if user 2's multiplexing gair, < (1 — r1)(1 — multiple access channel.
%1*1) min(m, ns), Or user 2, with a multiplexing gain, <
1, can achieve his maximum single-user diversity gain if user 1's
multiplexing gainr; < (1 — ro)(1 — 222=1) min(m, ny). If
the MIMO fading broadcast channel is symmetric, ig. = no, A. Proof of Theorem 1

. . Itis sufficient to prove that (7) is an outer bound for the MGR,
:iheinR inner bound and the DGR outer bound are tight %}nce (6) is achieved by superposition encoding (see (12), (13)).
1 — 2.

Without loss of generality, we may assume that all the nonzero
Proof: eigenvalues o} H; andH,H, are one, wher#l| andH/, are
The result that the DGR inner bound and the DGR outtre conjugate transpose B, andH,. The probability of the
bound are tight ad; = d, for a symmetric MIMO fading broad- eventA = {\ € [SNR~¢ SNR¢|™i»{mn}} goes to one as
cast channel is a direct consequence of the DGR upper bowld R — oo, wheree is any positive constang, is a vector of
(29). the nonzero eigenvalues 8, H; (or H,H,), andn = n; (or

VII. APPENDIX



ns). The integral of multiplexing gains over the rangé can We prove thatP(error H € B€) is upper bounded by

be shown to be negligible, so we may assséR < < \; < SNR™%w.n1.»(") The proof thatP(H € B) is also upper

SN R, where),; is any entry of\ andi = 1,2, --- ,min(m, n). bounded bySNR~%mn.1.»(") is trivial.

Sincee is any positive constant, we can makarbitrarily small AssumeX (0), X (1) are two possible transmitted codewords

and assume thatis a vector with every entry equalto one.  andAX = X (1)—X (0). SupposeX (0) is transmitted, then the
Based on the assumption that all nonzero eigenvalues prebability that a receiver will make a detection error in favor of

in the value of one, we can consider the following equivalet¥ (1), conditioned on a certain realization Hf, is

broadcast channel (after singular value decomposition of the

fading matrices) P(X(0) — X(1)[H)
1 2
N [ SNR|[1 (SNRr T
Y, = S—RV111W’1X+ 7 @o) =P|\— |3 HH'+1) HAX| <|wl|f
m F
SNR 1 2
Yy =/ ——=Vo L W,X + Zs. 31 SNR || SNRP 2
2 m 222 2 (31) <exp{ ——— (HH’+I) HAX| &,
4m m
I = [L4]isann; x m matrix with I; ;; = 1for1 < i < F (37)

min(m,ny) andl; ;; = 0 otherwise, wherd, ;; is the element
on thei" row and thej*" column of I;. I = [I5,;] is an
ng X m matrix with I ;; = 1 for 1 < ¢ < min(m,ng) and
I ;; = 0 otherwise, wherds ;; is the element on thé” row
and thej*" column of I,. V; andV, aren; x n; andng x no
unitary random matrices respectiveNV; andWs arem x m
unitary random matricesZ; andZ, aremji\r}(m,nl) xland pppH) <
min(m, ne) x I matrices with i.i.d. entrie€ A (0, 1).

It is well-known that the capacity region of a broadcast chaj + SNiR(MHH’ + I)‘%HH’(MHH’ + 1)z
nel depends only on the marginal distributions, so we can con- 2™ ™ m

wherew is the additive noise with variance 1/2,is an iden-

tity matrix, and|| - || » is the Frobenius norm. Average over the
ensemble of random codes, we have the average pairwise error
probability (PEP) given the channel realizatifin

sider the capacity region of the following broadcast channel - mirﬁ’n) SNR‘Z(l‘O‘i‘(p‘a")+)+, (38)
SNR =1
Y, =/—Vi[WX+7Z (32)
m where); = SNR™ (a1 > -+ + 2> Quin(m,n) = 0) and\;'s are
SNR , the nonzero eigenvalues &f H'. Apply the union bound and
Yy = m VoW1 X + Z. (33) integrate ovei3°, we have
If we now assume that the channel matridés, V,, W are P(error,a € B°) < SNR™¥mint(™), (39)
known both at the transmitter and the receivers in the broad-
cast channel defined in (32), (33), we can consider the following REFERENCES
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exactly (7). This completes the proof.

B. Proof of Theorem 2
At high SNR, we can ignore the integral of the probability of

min(m,n)

error over the rangel ¢ R, so

P.(SNR)<P(H € B) + P(error, H € B°).  (36)



