
A High-Performance Framework for Sun-to-Earth Space Weather Modeling

Ovsei Volberg Gabor Toth

Tech-X Corporation The University of Michigan,

 Boulder, CO 80303 Ann Arbor, MI 48109-2143

volov@txcorp.com gtoth@umich.edu

Tamas I. Gombosi Quentin F. Stout

The University of Michigan The University of Michigan,

Ann Arbor, MI 48109-2143 Ann Arbor, MI 48109-2143

tamas@umich.edu qsout@eecs.umich.edu

Kenneth G. Powell Darren De Zeeuw

The University of Michigan The University of Michigan,

Ann Arbor, MI 48109-2143 Ann Arbor, MI 48109-2143

powell@umich.edu darrens@umich.edu

Aaron J. Ridley Kevin Kane

The University of Michigan The University of Michigan,

Ann Arbor, MI 48109-2143 Ann Arbor, MI 48109-2143

ridley@umich.edu kanekt@umich.edu

Kenneth C. Hansen David R. Chesney

The University of Michigan The University of Michigan

 Ann Arbor, MI 48109-2143 Ann Arbor, MI 48109-2143

kenhan@umich.edu chesneyd@eecs.umich.edu

Robert Oehmke

The University of Michigan

Ann Arbor, MI 48109-2143

oehmke@engin.umich.edu

Abstract

The Space Weather Modeling Framework (SWMF)
aims at providing software architecture for integrated
modeling of different domains of Sun-Earth system
and high-performance physics-based space weather
simulation. The SWMF component architecture
promotes collaboration between developers of

individual physics models and empowers them by
providing coupling context and parallel and
distributed computing support. The framework design
places minimal requirements on components. The web-
based Graphical User Interface facilitates the remote
access to the framework even from scientific groups
that do not have an access to supercomputers or
clusters otherwise.

1. Introduction

All The Sun-Earth system is a complex natural
system of many different interconnecting elements.
The solar wind transfers significant mass, momentum
and energy to the magnetosphere, ionosphere, and
upper atmosphere, and dramatically affects the physical
processes in each of these physical domains.

The various domains of the Sun-Earth system can
be simulated with stand-alone models if simplifying
assumptions are made about the interaction of the
particular domain with the rest of the system. These
models can be combined into a complex system of
mutually interacting models, each associated with one
or more physics domains to address a wider range of
physical phenomena. For the prediction of extreme
space weather events these models must be run and
coupled in an efficient manner, so that the simulation
can run faster than real-time. The ability to simulate
and predict space weather phenomena is important for
many applications [1], for instance the success of
spacecraft missions and the reliability of satellite
communication equipment. In extreme cases, the
magnetic storms may have significant effects on the
power grids used by millions of households.

Traditionally, researchers developed monolithic
space physics applications, which were able to model
several domains of the Sun-Earth system, but it was
rather difficult to select an arbitrary subset of the
various models, to replace one model with another
one, to change the coupling schedules of the
interacting models, and to run these models
concurrently on parallel computers. As an illustrative
example of modeling multiple domains of the Sun-
Earth system with a monolithic numerical code, we
describe the evolution of the space plasma simulation
program BATSRUS developed at the University of
Michigan. Originally BATSRUS was designed as a
very efficient, massively parallel MHD code for space
physics applications [2, 3]. It is based on a block
adaptive Cartesian grid with block based domain
decomposition, and it employs the Message Passing
Interface (MPI) standard for parallel execution. Later
the code was coupled to an ionosphere model [4]
various upper atmosphere models [5] and the inner
magnetosphere model [6]. These couplings were done
in a highly integrated manner resulting in a monolithic
code with the limitations mentioned above. Thus,
although BATSRUS is successfully used for the
global MHD simulation of space weather [7],
monolithic programs like it are not able to support the
community effort to share models and to combine
these models into flexible, extensible and efficient
high-performance applications.

The Center for Space Environment Modeling at the
University of Michigan and its collaborators are
building a Space Weather Modeling Framework

(SWMF) to provide NASA and the modeling
community with a high-performance computational
tool with “plug-and-play” capabilities to model the
physics from the surface of the Sun to the upper
atmosphere of the Earth. The SWMF is designed to
couple the models of the various physics domains in a
flexible yet efficient manner, which makes the
prediction of space weather feasible on massively
parallel computers. Each model has its own dependent
variables, a mathematical model in the form of
equations of evolution, and a numerical scheme with
an appropriate grid structure and temporal
discretization. The physics domains may overlap each
other or they can interact with each other through a
boundary surface. The SWMF should be able to
incorporate models from the community and couple
them with minimal changes in the software of an
individual model.

The SWMF architecture is based on two
contemporary ideas: the framework-based approach
combined with the component-based approach [8] to
software development (CBSD). Gamma et al [9] define
a framework as a set of cooperating classes that make
up a reusable design for a specific class of software.
The framework captures the design decisions that are
common for its application domain: it emphasizes the
design reuse over module reuse. The main contribution
of the framework is the architecture it defines. From a
user’s perspective the use of a framework means an
inversion of control in comparison to a traditional use
of a library or a toolkit: one should reuse the main
body and some kernel and write or add the module that
the main body calls. The CBSD approach, i.e. the
composition of systems from existing or newly
developed components, was chosen to address the
heterogeneous nature of the computational models of
the Sun-Earth system and to satisfy the design goals.
The CBSD promises higher quality, lower cost and
shorter development time. At the same time the CBSD
is a paradigm change in the way the Sun-Earth system
is modeled.

In this paper we present the design and
implementation of the first working prototype of the
SWMF.

2. Architecture overview

The SWMF aims at providing a flexible and
extensible software architecture for multi-component
physics-based space weather simulations, as well as for
various space physics applications [10, 11]. One of the
most important features of the SWMF is that it can
incorporate different computational physics modules to
model different domains of the Sun-Earth system.
Each module for a particular domain can be replaced
with alternatives, and one can build an application
instance with only a subset of the modules if desired.

The first working prototype of the SWMF included
components for five physics domains: Global
Magnetosphere (GM), Inner Heliosphere (IH),
Ionosphere Electrodynamics (IE), Upper Atmosphere
(UA) and Inner Magnetosphere (IM):
• The GM and IH components are based on the

University of Michigan’s BATSRUS MHD
module. The highly parallel BATSRUS code
uses a 3D block-adaptive Cartesian grid.

• The IM component is the Rice Convection
Model (RCM) developed at Rice University.
This serial module uses a 2D non-uniform
spherical grid.

• The IE component is a 2D spherical electric
potential solver developed at the University of
Michigan. It can run on 1 or 2 processors since
the northern and southern hemispheres can be
solved in parallel.

• The UA component is the Global Ionosphere
Thermosphere Model (GITM) recently
developed at the University of Michigan as a
fully parallel 3D spherical model.

Two additional components for new physics
domains were added to the SWMF for its second
release: the Radiation Belt model developed at Rice
University by A. Chan, D. Wolf and Bin Yu and the
Solar Energetic Particle model developed at the
University of Arizona by J. Kota. With the addition
of these two components the SWMF will be able to
simulate the space effects of the great importance for
radiation protection of spacecraft equipment and for the
protection of lives and health of astronauts.

The main SWMF design goals were defined in [12]
as (1) incorporate computational physics modules with
only modest modification, (2) achieve good parallel
performance in the coupling of the physics
components, and (3) allow physics components to
interact with the SWMF as efficiently as possible.

The efficient coupling of any arbitrary pair of
parallel applications, each of them having its own grid
structure and data decomposition, is not easily
achieved. There are several a priori known problems,
which need to be solved so that the heterogeneous
computational models of the different domains of the
Sun-Earth system can properly inter-operate. An
incomplete list of these problems is:

1. There are serial and parallel models.
2. An individual model is usually developed for

stand-alone execution.
3 . Input/output operations do not take into

account potential conflicts with other models.

4 . Models often do not have checkpoint and
restart capabilities.

5 . The majority of models are written in non-
object oriented languages (e.g. Fortran 77 and
Fortran 90.

We employed the framework-based approach
combined with the CBSD approach to develop a
multi-purpose, easy-to-use software architecture, which
facilitates efficient communications between
exchangeable numerical physics models describing
Sun-Earth system. The CBSD emphasizes the
principle of separation between a component
implementation and its interfaces. Major characteristics
of CBSD, which are important for the SWMF, include
(1) components are the atomic software units of
modeling, design and implementation, (2) components
interact through interfaces; interfaces are in the center
of the architectural design: the loose coupling is
essential (3) an interface is separated from the
component implementation, and (4) an interface can be
implemented by multiple components

There are several potential solutions that provide
the necessary interoperability mechanism between
parallel modules [13]. The most promising approach is
to define a standard set of interface functions that every
physics component must provide. In the SWMF a
component is created from a physics module, for
example BATSRUS, by making some minimal
required changes in the module and by adding two
relatively small units of code: (1) a wrapper, which
provides the standard interface to control the physics
module; and (2) a coupling interface, to perform the
data exchange with other components.

Each application instance created by the SWMF
contains a single Control Module (CON), which
controls initialization and execution of the components
and is responsible for component registration,
processor layout for each component, and coupling
schedules.

From a component software technology perspective,
both the wrapper and coupling interface are component
interfaces: the wrapper is an interface with CON, and
the coupling interface is an interface with another
component. As shown in Figure 1, the wrapper
interface functions have standard names, which makes
swapping between various versions of a component
possible. Both the wrapper and the coupling interface
are constructed from the building blocks provided by
the framework. The structure of a component and its
interaction with CON and another component are
illustrated in Figure 1.

Figure 1. Integration of physics modules
into the SWMF architecture

Requirements play a pivotal role in the initial
construction of component-based software system. The
SWMF is not an exception: each of the SWMF design
goals is reflected in the interoperability policy [12].
Specifically, the requirements necessary to ensure the
interoperability are formulated as the SWMF
compliance definition, which has a dual character: the
compliance definition for physics modules and
compliance definition for components. The physics
modules must comply with a minimum set of
requirements before they are transformed into a
component [12]:

1. The parallelization mechanism (if any) should
employ the MPI standard;

2. The module needs to be compiled as a library
that could be linked to an executable;

3. The module should be portable to a specific
combination of platforms and compilers, which
include Linux workstations and NASA super-
computers [12]; The stand-alone module must
successfully run a model test suite provided by
the model developer on all the required
platform/compiler combinations;

4. The module should read input from and write
output to files which are in a subdirectory
unique for the component;

5. A module should be implemented in Fortran
77 and/or Fortran 90;

6. A module should be supplied with appropriate
documentation.

The SWMF requirements for a component are
defined in terms of a set of methods to be
implemented in the component wrapper shown in

Figure 1. The methods enable the component to
perform the following tasks:

1. Component registration and parallel setup;
2 . Input and verification of the component

parameters;
3. Provide grid description to CON;
4. Initialization for session execution;
5. One time step execution (which cannot exceed a

specified simulation time);
6 . Data exchange with another component via

calls to an appropriate coupler;
7. Component state recording into a restart file on

request;
8. Finalize the component state at the end of the

execution.
The registration provides information about the

component to CON, such as the name and the version
of the component. In return, CON assigns an MPI
communication group to the component based on the
processor layout defined in the LAYOUT.in file. An
example of this file is shown in Figure 2. The first
column identifies the components by their abbreviated
names, while the rest of the columns define the first
and last processor element (PE) ranks, and the PE
stride. In the example shown in Figure 2, the GM
component runs on every even processor, the IE
component runs on the first two processors, the IH
component runs on every odd processor, the IM
component runs on processor 11, and the UA
component runs on 4 processors from ranks 12 to 15.
Only registered components can be used in the run.

Name first last stride
#COMPONENTMAP
GM 0 999 2
IE 0 1 1
IH 1 999 2
IM 11 11 1
UA 12 15 1
#END

Figure 2. An example of t h e
LAYOUT.in file

The execution is completed in sessions. In each
session the parameters of the framework and the
components can be changed. The parameters are read
from the PARAM.in file, which may contain further
included parameter files. These parameters are read and
broadcast by CON and the component specific
parameters are sent to the components for reading and
checking. The CON related parameters define the
initial time, coupling schedules, frequency of saving
restart files, final simulation time of the session, and
other information, which is not restricted to a single
component. At the beginning of each session the
components are initialized and the interacting

components are coupled together for the first time. The
SWMF application can operate in two different session
execution regimes.

The sequential execution regime is backward
compatible with BATSRUS. In this regime the
components are synchronized at every time step, so
typically only one component is executing (possibly
on many processors) at any given time. The coupling
patterns and schedules are mostly predetermined.

In the concurrent execution regime, the components
communicate only when necessary. This is possible
because the coupling times are known in advance. The
components advance to the coupling time and only the
processors involved in the coupling need to
communicate with each other. In this execution model
all components are 'equal', any physically meaningful
subset can be selected for the run, and their coupling
schedules are determined by the parameters given in
the PARAM.in file. The possibility of deadlocks is
carefully avoided.

Based on parameters specified in the PARAM.in
file, CON may instructs the components to save their
current state into restart files periodically. This makes
possible the seamless continuation of a run from a
given point of the simulation. Checkpoint restart is an
essential feature of a robust, user-friendly, and fault-
tolerant software design. At the end of the last session
each component finalizes its state. This involves
writing out final plot files, closing log files, and
printing performance and error reports. After the
components have finalized, CON also finalizes and
stops the execution.

The framework building blocks are implemented on
the base of emulation of Object-Oriented Programming
concepts in Fortran 90 [14], mostly as singleton
classes [9], i.e. each of them has exactly one instance
and provides a global point of access to it.

The coupling of the components is realized either
with plain MPI calls, which are specifically designed
for each pair of interacting components, or via the
general SWMF coupling toolkit. The toolkit can
couple components based on the following types of
distributed grids:
• 2D or 3D block adaptive grid
• 2D or 3D structured grid
Structured grids include uniform and non-uniform

spherical and Cartesian grids.
The toolkit obtains the grid descriptors from the

components at the beginning of the run. The grid
descriptor defines the geometry and parallel
distribution of the grid. At the time of coupling the
receiving component requests a number of data values
at specified locations of the receiving grid (for example
all grid points at one of the boundaries). The geometric
locations are transformed, sometimes mapped, to the
grid of the provider component. Based on the grid
descriptor of the provider component, the data values

are interpolated to the requested locations and sent
back to the requesting component. The interpolation
weights and the MPI communication patterns are
calculated in advance and saved into a 'router' for sake
of efficiency. The routers are updated only if one of the
grids has changed (e.g. due to grid adaptation) or when
the mapping between the two components has changed
(e.g. due to the rotation of one grid relative to the
other). In certain cases the coupling is achieved via an
intermediate grid, which is stored by the receiving
component, but its structure is based on the providing
component. The intermediate grid can be described to
CON the same way as the base grid of the receiving
component.

The framework’s layered architecture is shown in
Figure 3. The Framework Services consist of software
units (classes), which implement component
registration, session control, and input/output
operations of initial parameters. The Infrastructure
consists of utilities, which define physics constants
and different coordinate systems, time and data
conversion routines, time profiling routines and other
lower level routines. The Superstructure Layer, Physics
Module Layer, and Infrastructure Layer constitute the
“sandwich-like” architecture similar to the Earth
System Modeling Framework (ESMF) [15].

Figure 3. The layered architecture of t h e

SWMF.

The SWMF will also contain a web-based Graphical
User Interface, which is not part of the ESMF design.

3. Some preliminary results

We present preliminary simulations, which involve
all five components of the SWMF prototype. Two

results of simulation are shown in Figure 4 and Figure
5 for the illustrative purposes.

Figure 4. The steady state solution
obtained by the Inner Heliosphere
model. The left panel
depicts the overall pressure and velocity
fields, while the right panel shows the
magnetic field and density in the vicinity
of the Sun. The distance units of t h e
axes are shown in solar radii.

Figure 5. The field aligned current and
the electric potential in the ionosphere
at the beginning (left panel) and at t h e
end (right panel) of the 1-hour
simulation.

The first simulation results proved the importance
of loose coupling and advantages of using the SWMF
over non-framework programs like BATSRUS. The
SWMF is not only more flexible, but in some cases
more efficient, than a highly integrated code. For
example, when only the GM and IE components are
used, the performance depends to a large extent on the
execution model. The SWMF allows the concurrent
execution of the two components. While IE solves for
the electric potential on 2 processors, the GM code can
proceed with the MHD simulation on the rest of the
processors. As a result, the IE solution is applied to
the inner boundary of GM with a small time shift, but

this is an acceptable approximation. In this concurrent
execution model, the SWMF can run almost twice as
fast as BATSRUS.

4. The Web-Based Graphical User

Interface

The SWMF web-based Graphical User Interface
(GUI) has been developed to provide a visual
environment, in which to conduct science runs,
facilitating construction of an executable from
appropriate components of the SWMF, batch job script
preparation for job management system like PBS or
LSF, parameter and processor layout files creation,
parameter file verification, and, eventually, job
submission to a remote high-performance computing
host. The high-level architecture of the SWMF GUI,
which is shown in Figure 6, is rather standard. It
includes a web client (browser), a web server and high-
performance computing resources at the remote
computing sites. The user interacts with the
application through the web client (browser), which
sends requests and updates to the web server. The web
server has access to multiple high performance
computing systems to which it can submit batch jobs
and monitor the progress of simulation. The SWMF
executables run on these high performance systems.

Figure 6. The SWMF Web GUI
Architecture.

The GUI has a modular design centered on
“portlets” of functionality that plug into a portal
framework (see Figure 7). The portal framework that
we selected to use is Jetspeed, which is an Open
Source, Apache framework from the Java Community.
Jetspeed is a reference implementation of Java
Standardization Request 168 (JSR 168), making it a
suitable platform on which to build the GUI. JSR 168
provides a standard for interoperability between
portlets and portals.

Figure 7. The portal web page with
portlets.

Each portlet is responsible for accessing content
from its source (for example, a Web site, database, or
email server) and transforming the content so that it
can be rendered to the client. In addition, a portlet
might be responsible for providing application logic or
storing information associated with a particular user.
The portal server provides a framework of services to
make the task of writing and managing portlets easier.

From a user's perspective, a portlet is a window in
the portal that provides a specific service or
information. From an application development
perspective, portlets are pluggable modules that are
designed to run inside a portal server. The portal
framework (portal server) provides a runtime
environment in which portlets are instantiated, used,
and finally destroyed. Portlets rely on the portal
infrastructure to access user profile information,
participate in window and action events, communicate
with other portlets, access remote content, lookup
credentials, and to store persistent data.

The SWMF GUI uses the open-source relational
database PostgreSQL to store security information
(users, groups, roles), as well as properties of domain
objects (parameter sets, execution hosts, executables,
and remote queues).

Thus the SWMF GUI implementation follows the
simple policy: (1) the use of only open-source yet
standardized software, (2) features are added as portlets
to the main portal, (3) portlets help divide complex
applications into tasks: one group of closely related
tasks equals one portlet, and (4) the new portlets can
be plugged in as the new features are needed.

5. Conclusions

The In this paper we described the component
architecture of the SWMF. The important
characteristics of the SWMF are:
1. The SWMF comprises a series of interoperating

models of the Sun-Earth system.

2. The SWMF parallel communications are based on
the MPI standard. In its current implementation
the SWMF builds a single executable.

3. The SWMF contains utilities and data structures
for creating model components and coupling
them.

4 . A component is created from the user-supplied
physics code by adding a wrapper, which provides
the control functions, and a coupling interface,
which performs the data exchange with other
components.

5 . Each application instance created by the SWMF
contains a single Control Module, which controls
initialization and execution of the components and
is responsible for component registration,
processor layout for each component, and coupling
schedules.

6 . The framework allows a subset of the physics
components to execute and can incorporate several
different models for the same physics domain.

6. Acknowledgments

We would like to express our gratitude to the
NASA Goddard Space Flight Center (GSFC), National
Center for Atmospheric Research (NCAR), Rice
University and the University of Arizona for
collaboration on this project. Our special thanks to J.
Kota from the University of Arizona, A. Chan, D.
Wolf, S. Sazykin and Bin Yu from Rice University,
Cecelia Deluca from NCAR, J. Fisher from NASA
GSFC, J. W. Larson and R. Jacob from Argonne
National Laboratory, and to the Earth System
Modeling Framework (ESMF) Joint Specification
Team. The SWMF project is funded by the NASA
Earth Science Technology Office (the NASA CAN
NCC5-614 grant). G. Toth is partially supported by
the Hungarian Science Foundation (OTKA grant
T047042).

7. References

 [1] N. C. Maynard, Space weather prediction, U.S. National
Report to IUGG, 1991-1994, Reviews of Geophysics, Vol.
33 Supplement 1995 (Also available at
http://www.agu.org/revgeophys/maynar01/maynar01.htm

l).

[2] Powell, K.G., P.L. Roe, T.J. Linde, T.I. Gombosi, and
D.L. De Zeeuw, A solution-adaptive upwind scheme for
ideal magnetohydrodynamics, J. Comp. Phys., 154, 284,
1999.

[3] Gombosi, T. I., D. L. De Zeeuw, C. P. Groth, K. G. Powell,
C. R. Clauer, and P. Song, From Sun to Earth: Multiscale
MHD Simulations of Space Weather, in Space Weather,
edited by P. Song, H. J. Singer, and G. L. Siscoe, vol. 125,
pp. 169–176, AGU, 2001.

[4] Ridley, A. J., D.L. De Zeeuw, T. I. Gombosi, and K.G.
Powell, Using steady-state MHD results to predict the
global state of the magnetosphere-ionosphere system, J.
Geophys. Res., 106, 30,067, 2001.

[5] Ridley, A. J., T. I. Gombosi, D. L. De Zeeuw, C. R.
Clauer, and A. D. Richmond, Ionospheric control of the
magnetospheric configuration: Neutral winds, J. Geophys.
Res., 108(A8), 1328, 2003.

[6] De Zeeuw, D. L., S. Sazykin, A. Ridley, G. Toth, T. I.
Gombosi, K. G. Powell, D. Wolf, Inner Magnetosphere
Simulations - Coupling the Michigan MHD Model with
the Rice Convection Model, Fall AGU Meeting, San
Francisco, 2003.

[7] Gombosi T. I., K. G. Powell, D. L. De Zeeuw, R. Clauer,
K. C. Hansen, W. B. Manchester, A. Ridley, I. I. Roussev, I.
V. Sokolov, Q. F. Stout, G. Toth, Solution-Adaptive
Magnetohydro-dynamics for Space Plasmas: Sun-to-Earth
Simulations, Computing in Science and Engineering,
Frontiers of Simulation, March/April, p. 14-35, 2004.

[8] Szyperski C., Component Software-Beyond Object-
Oriented Programming, Addison Wesley, 1999.

[9] Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Addison-Wesley 1995.

[10] Volberg, O., G. Toth, I. V. Sokolov, A. J. Ridley, T. I.
Gombosi, D. L. De Zeeuw, K. C. Hansen, D. R. Chesney, Q.
F. Stout, K. G. Powell, K. Kane, R. C. Oehmke, Doing it the
SWMF Way: From Separate Space Physics Simulation
Programs to The Framework for Space Weather
Simulation, Fall AGU Meeting, San Francisco, 2003.

[11] Toth, G., O. Volberg, A. Ridley, Space Weather
Modeling Framework Manual, Code version 1.0, Center
for Space Environment Modeling, the University of
Michigan, Ann Arbor, Michigan, 2003.

[12] Volberg, O., D. R. Chesney, D. L. De Zeeuw, K. C.
Hansen, K. Kane, R. Oehmke, A.J. Ridley, I.V. Sokolov, G.
Toth, T. Weymouth, Space Weather Modeling Framework:
Design Policy for Interoperability, Center for Space
Environment Modeling, The University of Michigan, Ann
Arbor, Michigan, 2002

[13] Edjlali, G., A. Sussman, and J. Saltz, Interoperability
of Data Parallel Runtime Libraries. In Proceedings of the
Eleventh International Parallel Processing Symposium,
IEEE Computer Society Press, 1997.

[14] Decyk, V.K, C.D Norton, and B.K. Szymanski,
Introduction to Object-Oriented Concepts using
Fortran90, UCLA Institute of Plasma and Fusion Research
Report PPG-1560, July 1996. See also the web site:
http://www.cs.rpi.edu/~szymanski/oof90.html .

[15] Hill, C., C. DeLuca, V. Balaji, M. Suarez, A. da Silva,
and the ESMF Joint Specification Team, The Architecture

of the Earth System Modeling Framework, Computing in
Science and Engineering, Volume 6, Number 1, 2004.

