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Light-induced dynamics in the Lorentz oscillator model with magnetic forces
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The classical Lorentz oscillator model of bound electron motion ordinarily excludes magnetic forces at
nonrelativistic intensities for the simple reason that their magnitude is small. However, perturbative and numerical
results show that when the �v × �B term is retained, dynamically enhanced terms give rise to large amplitude,
magnetically induced charge displacements at zero frequency and at twice the driving frequency in the Cartesian
laboratory frame. Numerical simulations of electron motion are in accord with the predictions of perturbative
theory for steady-state motion in the classical picture. Direct integration shows that magnetic response which
is comparable to electric dipole response can arise in transparent dielectrics at optical frequencies. Parametric
instability in the equations of motion is implicated as the source of rapid energy transfer from electric to magnetic
motions by reduction of the equations to a complex Mathieu equation.
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I. INTRODUCTION

Recent experiments have shown that large magnetic dipole
response is observed in transparent dielectric materials at light
intensities far below the threshold for relativistic electron
motion [1,2]. Classical steady-state analysis reveals that a
nonlinear mechanism exists that can account for the large
induced magnetic susceptibility [2]. A quantum-mechanical
analysis, valid near resonances, has also been published that
agrees with the classical theory and achieves quantitative
agreement with experimental results for the ratio of electric to
magnetic signals [3]. Here, the results of classical perturbation
analysis and numerical integration of the equations of motion
give independent corroboration and important perspective
regarding the mechanism of these surprising effects. Qual-
itative predictions of perturbation analysis are exhaustively
checked by numerical simulation. The frequency and intensity
requirements for efficient energy transfer between electric and
magnetic degrees of freedom driven by light are examined
using the energy-rate method [4]. Finally, the equations of
motion are shown to reduce to a complex Mathieu equation.
These results, combined with previous work, predict that
charge excursions perpendicular to E, driven by the field
product EB, can be half as large as motion parallel to E,
enhanced by a factor associated with parametric resonance.

II. LORENTZ OSCILLATOR MODEL

The Lorentz oscillator model (LOM), which is an important
paradigm of classical optics, is based on a picture in which an
electron is bound to the nucleus by a harmonic potential and
undergoes forced motion subject to damping [5]. The driving
forces are due to external electromagnetic fields which set the
electron into motion according to the equation,

�̈r + γ �̇r + ω2
0�r = q

m
( �E + �̇r × �B), (1)

where �r is the relative position vector from the nucleus to the
electron, γ is the phenomenological damping coefficient, ω0
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is the natural frequency, q is the charge of the electron, and
m is the mass of the electron. In the most general case the �E
and �B fields are both functions of time and space. The case of
interest here is that of a monochromatic electromagnetic plane
wave interacting with an atom in otherwise free space. The
relative field amplitudes then obey the well-known relationship
| �B| = | �E|/c, allowing us to write the equation of motion as

�̈r + γ �̇r + ω2
0�r = q

m

(
�E + �̇r

c
× k̂ × �E

)
. (2)

The magnitude of the magnetic force, given by the second
term in parentheses in Eq. (2) varies as ṙ/c. The electron
velocities achievable during a half-cycle of the driving field
from moderately intense sources are small (v/c � 1). There-
fore, the magnetic forcing term appears to be negligible and
is typically dropped from the analysis for light fields that are
“nonrelativistic” (I � 1018 W/cm2). This reduces the LOM
to a form with only the dominant electric field as a driving
force:

�̈r + γ �̇r + ω2
0�r = q

m
�E. (3)

In this paper, the arguments previously mentioned not
withstanding, we retain the magnetic force and explore the
dynamics of the LOM with all its forcing terms. To begin,
we use the vector identity �a × �b × �c = (�a · �c)�b − (�a · �b)�c to
rewrite the forcing terms in Eq. (2) in the form,

�̈r + γ �̇r + ω2
0�r = q

m

(
�E + 1

c
[(�̇r · �E)k̂ − (�̇r · k̂) �E]

)
, (4)

following Ref. [6]. The direction of propagation k̂ is chosen to
be along the ẑ direction and the polarization to be along x̂. In
these coordinates, the general equation of motion (4) reduces
to the two coupled differential equations,

ẍ + γxẋ + ω2
xx = qE0

m
cos(ωt) − qB0

m
cos(ωt)ż, (5)

z̈ + γzż + ω2
zz = qB0

m
cos(ωt)ẋ, (6)

where the magnetic field amplitude has been reinserted.
The damping coefficients and natural frequencies have been
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permitted to assume different values in orthogonal directions.
In a departure from earlier work [6], these equations will be
considered in component form to avoid inadvertent omission of
any terms that couple motion between the x and z directions.
Furthermore, the last driving term on the right-hand side of
each equation, which contains the factor B0, will be evaluated
using B0 = E0/c allowing us to consider the magnetic driving
forces as a perturbation of the dominant electric driving force
for all intensities of the driving field. We now proceed to solve
the system of differential Eqs. (5) and (6) using a regular
perturbation expansion in powers of B0 [7].

III. PERTURBATION SOLUTION

Since the magnetic field terms in Eqs. (5) and (6) are small
compared to the electric field terms, they can be considered a
perturbation of the motion. Introducing an order parameter λ,
the solutions are therefore assumed to take the form,

x(t) = x0(t) + λx1(t) + λ2x2(t) + · · · (7)

z(t) = z0(t) + λz1(t) + λ2z2(t) + · · · , (8)

where x1,x2, . . . are amplitudes of motion along x̂ associated
with orders 1,2,. . .. In the present treatment the electric field is
introduced in zero order and the magnetic field is considered in
higher orders. Substituting Eqs. (7) and (8) into the equations
of motion and collecting terms of like order, we proceed in the
standard iterative fashion.

A. Zeroth order

Collecting terms that are zeroth order in λ, one finds

ẍ0 + γxẋ0 + ω2
xx0 = qE0

m
cos(ωt), (9)

z̈0 + γzż0 + ω2
zz0 = 0. (10)

These equations of motion constitute the standard LOM and
are well studied. For an electron initially at rest at the origin,
they yield the solutions,

x0(t) = qE0

m

√[(
ω2

x − ω2
)2 + γ 2

x ω2
] cos(ωt + φ0), (11)

z0(t) = 0, (12)

where φ0 = tan−1( −γxω

(ω2
x−ω2) ). The solution for motion along the

electric field is proportional to the amplitude of the applied
field E0 and oscillates harmonically at the driving frequency
ω. The amplitude is enhanced near resonance by a factor that
depends on the detuning, (ωx − ω), and the damping, γx , of
the linear motion along x̂.

B. First order

Terms that are first order in λ yield the equations,

ẍ1 + γxẋ1 + ω2
xx1 = −qB0

m
cos(ωt)ż0, (13)

z̈1 + γzż1 + ω2
zz1 = qB0

m
cos(ωt)ẋ0. (14)

The driving terms of these equations depend on the time
derivatives of the zeroth-order solutions.

ẋ0 = − ωqE0

m

√[(
ω2

x − ω2
)2 + γ 2

x ω2
] sin(ωt + φ0), (15)

ż0 = 0. (16)

To solve the system of Eqs. (13)–(16), the homogeneous
version of the x1 equation is considered first.

ẍ1 + γxẋ1 + ω2
xx1 = 0. (17)

The solution to this equation with our initial conditions is
simply

x1(t) = 0. (18)

Equation (18) confirms the expected result that there is no
additional response in the x direction at first order.

The z1 equation is solved next. The homogeneous solution
is the same as the previous order, so only the particular solution
needs to be found. Substituting (15) into (14), one finds

z̈1 + γzż1 + ω2
zz1 = − ωq2E0B0

m2
√[(

ω2
x − ω2

)2 + γ 2
x ω2

]
× cos(ωt) sin(ωt + φ0), (19)

in which a product of sine and cosine functions at the
optical frequencies appears. Using the trigonometric identity
cos(a) sin(b) = 1

2 [sin(a + b) − sin(a − b)] this may be sim-
plified to

z̈1 + γzż1 + ω2
zz1 = − ωq2E0B0

2m2
√[(

ω2
x − ω2

)2 + γ 2
x ω2

]
× [sin(2ωt + φ0) − sin(φ0)]. (20)

Because this equation is linear, a particular solution of the
entire equation of motion for z(t) can be found by analyzing
each of the two driving terms in square brackets on the right
side of (20) separately and then adding the results. The solution
for z(t), complete to first order, is

z(t) = z1(0,t) + z1(2ω,t)

= −ωq2E0B0

2m2ω2
z

√(
ω2

x − ω2
)2 + γ 2

x ω2
sin(φ0) (21)

+ 1√[
ω2

z − (2ω)2
]2 + γ 2

z (2ω)2

× ωq2E0B0

2m2
√(

ω2
x − ω2

)2 + γ 2
x ω2

sin(2ωt + φ0 − φ1),

(22)

where φ1 = tan−1( −γz2ω

[ω2
z−(2ω)2] ). Similarly, the solution for x(t),

correct to first order, is

x(t) = x0(ω,t)

= qE0

m

√[(
ω2

x − ω2
)2 + γ 2

x ω2
] cos(ωt + φ0). (23)
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The first-order solution for x1(t) is unchanged with respect
to the linear response expression for x0(t). Hence, it still shows
a linear dependence on the input field, together with damped
resonance about the natural frequency ωx and a damping-
dependent phase shift φ0. The motion in the z direction,
given by z1(t), is much more complicated. First, there are
two different frequency components in the response, one at
zero frequency and another that oscillates at twice the driving
frequency. However, both components show a quadratic de-
pendence on the input fields as is expected for a magneto-optic
nonlinearity. Both terms also show a resonance at the natural
frequency ωx , but the second, frequency-doubled 2ω term
shows an additional resonance at ω = ωz/2. Equations (23)
and (22) are the main analytic results of this paper.

IV. NUMERICAL STUDIES

In this section, a numerical technique is used to check
results from the perturbation theory of Sec. III both on and off
resonance. Generally speaking, agreement between numerical
integration of the equations of motion and perturbative
predictions is not expected since perturbation theory is not
strictly valid under resonant conditions. Its failure is due not
merely to the appearance of a pole on resonance (since this
shortcoming can be remedied by the introduction of damping)
but to formal nonconvergence of the perturbation expansion.
High-order terms in the expansion cannot be overlooked
on resonance. Physically, the simple picture of perturbation
theory fails in resonant light-matter interactions because
multiphoton interactions become possible and resonant
optical excitations also alter the electronic structure of the
atoms themselves via the AC Stark effect [8]. However, the
changes effected by higher-order terms and interactions have
little impact on the absorption or dispersion of a single beam
when the Rabi frequency (� = µE0/h̄) is far less that the
transition frequency ω0. Under these conditions, both the
LOM and perturbation theory accurately describe the main
features of real atoms both on and off resonance, treating
the damping constants as adjustable parameters. Hence, the
objective here is to check the main features of the perturbative
model using numerical integration and to confirm that
inclusion of magnetic forces in the LOM is essential for the
description of optically driven magnetic response of bound
electrons at intermediate (but nonrelativistic) intensities.

The perturbation solutions given by (22) and (23) can be
checked by comparing their predictions to numeric solutions.
Using a fourth-order Runge-Kutta integration method, Eqs. (5)
and (6) are solved and the motion of the electron is plotted
to examine transient and steady-state response. Figure 1 is
a reference plot showing the position of the electron plotted
with all parameters set to unity except B0, which is set to
1/(3 × 108) to preserve the ratio B0/E0 = 1/c of a plane
wave. Thus, the electric field amplitude is E0 = 1 V/m. In
Fig. 1, both the x and z motions reach steady-state oscillation
after a short transient period. The period of the x motion
in Fig. 1 is 2π and the period of the z motion in Fig. 1
is π . Hence, the frequency ratio is 1/2, as predicted in the
perturbation result of Eq. (22). It can also be seen that the
x motion is centered about zero, whereas the z motion is
offset by a constant amount in the steady state as predicted
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FIG. 1. Solid lines are reference plots of electron motion with all
parameters set to unity while preserving E0 = 1 V/m and B0 = 1/c T.
Dashed lines are plots of electron motion with the fields doubled to
E0 = 2 V/m and B0 = 2/c T.

by the zero frequency term of the perturbation solution. While
the amplitude of motion at low intensity is nine orders of
magnitude greater in the x direction than in the z direction,
the amplitude of motion along these two directions becomes
comparable at higher intensity (E0 = 108 V/m; B0 = 108/c T)
as seen in Fig. 2.

Numerous additional checks of the perturbation solution
and its predictions were made using this method of numerical
integration of the equations of motion. For this purpose, a
single parameter in Eqs. (22) and (23) was chosen and all other
parameters were fixed at their reference value. The chosen
parameter was then varied over a wide range of values and
the steady-state values of the x amplitude, z amplitude, and
the z offset were plotted versus the parameter. In Figs. 3–5,
projections of electron trajectories on the laboratory x and
z axes are computed by direct integration of these force
equations and amplitudes of motion along these two axes are
plotted as a function of field intensity and natural oscillation
frequency for comparison with (22) and (23). As an example,
the solid curves in Fig. 1 were calculated with all parameters
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FIG. 2. Plots of electron motion in both x and z directions on the
same scale for all parameters set to unity while E0 = 108 V/m and
B0 = 108/c T.
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FIG. 3. Behavior of x and z amplitudes and z offset versus the
input field. All parameters fixed at unity except E0 and B0 which are
varied to generate the plot. Note that the x amplitude shows a linear
dependence on field whereas the z amplitude and offset both exhibit
quadratic dependencies.

(except E0 and B0) set to the default value of unity. The
dashed curves were obtained by doubling the values of E0

and B0. Clearly the x amplitude in Fig. 1 increases linearly
with field amplitude, but both the z offset and z amplitude
increase quadratically. This procedure was repeated for a wide
range of values of E0 and B0 to generate Fig. 3. The resulting
log-log plot shows that the amplitude of the x motion grows
linearly with increasing field. The slope of the fitted curve is
one. The amplitude of z motion and the offset of z motion
increase quadratically with the field. The slopes of their fitted
curves are both two.

Figure 4 shows that both z amplitude and z offset have a
resonance at ωx = 1 as predicted by the perturbation solution.
The x amplitude also has a resonance at ωx = 1 but this result
was not included in the figure because it is predicted by the
standard LOM. Figure 5 shows that the z amplitude has a
resonance at ωz = 2 as predicted by the perturbation solution.
It also shows that the z offset obeys a 1/ω2

z dependence,
indicated by the slope of −2. Thus, all of the major features of
response amplitude predicted by the perturbation calculation
are confirmed by numeric integration of the equations of
motion.
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FIG. 4. Behavior of z amplitude and z offset versus ωx . All
parameters fixed at unity except ωx which is varied to generate the
plot. Note that both have a resonance at ωx = 1.
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FIG. 5. Behavior of z amplitude and z offset versus ωz. All
parameters fixed at unity except ωz which is varied to generate the
plot. Note that the z amplitude has a resonance at ωz = 2 and that the
z offset follows an inverse quadratic behavior (slope = −2).

V. PARAMETRICALLY ENHANCED DYNAMICS

In Sec. IV it was shown that charge motion induced by
an incident plane wave is no longer linear when magnetic
forces are included. In particular, motion along the direction of
propagation is much larger at higher intensities than expected
due to magnetic coupling between the motion in the x and
z directions. Even though the coupling strength is dependent
on the magnetic field amplitude, which is small compared to
the electric field amplitude, it is evident that large amplitude,
complex dynamics which are magnetic in origin arise at
moderate field strengths. In the remainder of this paper the
origin of large-amplitude magnetic dynamics at nonrelativistic
intensities is clarified.

By rearranging Eqs. (5) and (6) into a form so that all
terms that depend on the coordinates are on the left-hand side
and the external driving terms are on the right-hand side, the
underlying structure can be more clearly seen.

ẍ + γxẋ + qB0

m
cos(ωt)ż + ω2

xx = qE0

m
cos(ωt), (24)

z̈ + γzż − qB0

m
cos(ωt)ẋ + ω2

zz = 0. (25)

The nonautonomous terms whose coefficients depend on
the independent variable t are of main interest here. All
terms in Eqs. (24) and (25) have constant coefficients except
for the coupling terms. The Lorentz force terms add to
the equations an effective sinusoidal, time-varying damping
coefficient. Equations with sinusoidallyvarying coefficients
are of particular interest in the study of instability and it is this
aspect of the equations that is of particular interest here [9].

To set the discussion of instabilities in appropriate context,
we briefly review dynamics described by the Mathieu equation.
The Mathieu equation is a simple model for a classic problem
in instability, namely the vertically driven pendulum. In the
prototypical problem, a rigid, massless rod is fixed to a
pivot at one end and a mass at the other. The fixed point is
then moved vertically, sinusoidally at some amplitude. The
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linearized equation of motion of the pendulum can then be
reduced to

d2u

dt2
+ [a − b cos(2t)]u = 0. (26)

The sinusoidally time-dependent spring constant, known as
the “parametric excitation,” acts as an energy source causing
the amplitude of motion, u, to grow to a value dependent
on the values a and b. For certain values of a and b, the
amplitude of the pendulum grows exponentially to infinity.
These regions are said to undergo unstable motion because
they are in parametric resonance. More discussion of this topic
can be found in many differential equation texts, including [9],
[10]. For an intuitive introduction, see Ref. [11].

In the case of the vertically driven pendulum, the system
spends more time in unstable motion as the amplitude of the
parametric excitation grows. The addition of damping does not
remove the regions of instability, though it does make them
smaller. Only nonlinearities in the system formally prevent
the amplitude from growing to infinity exponentially. For
sufficiently large amplitude motion it should be admitted,
however, that the Mathieu differential equation ceases to be
the equation of motion since the approximation of a harmonic
restoring force eventually breaks down. Ionization is one way
that breakdown of this kind can occur in our system of interest.

For the LOM augmented by magnetic forces, it was shown
in Sec. IV that z motion is enhanced dynamically by eight
orders of magnitude at moderate intensities. We now turn
to an examination of predictions for parametrically resonant
stable and unstable motions in this model. For ease of
mathematical analysis, we use dimensionless forms of the
complete equations of motion (5) and (6) with the substitutions
x → χ , z → ζ , and t → τ :

d2χ

dτ 2
+ γx

ω

dχ

dτ
+ ω2

x

ω2
χ = cos(τ ) − qB0

mω
cos(τ )

dζ

dτ
, (27)

d2ζ

dτ 2
+ γz

ω

dζ

dτ
+ ω2

z

ω2
ζ = qB0

mω
cos(τ )

dχ

dτ
, (28)

which contain the following constants:

a = γx

ω
; b = ω2

x

ω2
; c = γz

ω
; d = ω2

z

ω2
; e = qB0

mω
. (29)

The constants a and c represent dimensionless damping
parameters, b and d represent dimensionless natural frequen-
cies, and e represents the dimensionless cyclotron frequency
due to the magnetic field of the incident plane wave. First,
consider a spherically symmetric molecule in which the x and
z directions are equivalent, resulting in a = c and b = d. For
ease of interpretation, these constants may be redefined with
symbols that are in standard use, namely,

γ = a = c, (30)

ω2 = b = d, (31)

fc = e, (32)

where we now refer to γ as the dimensionless damping
constant, ω as the dimensionless natural frequency, and fc

as the dimensionless cyclotron frequency.
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FIG. 6. (Color online) Energy transfer diagram of parameter
space for the complex Mathieu equation (37) evaluated over a 6π

integration period using the energy-rate Method. Red areas (lighter
finger structure) indicate rapid transfer of energy from x (electric) to
z (magnetic) degrees of freedom. Blue areas (dark) indicate no energy
transfer.

The equations of motion then take on the dimensionless
form,

d2χ

dτ 2
+ γ

dχ

dτ
+ ω2χ = cos(τ ) − fc cos(τ )

dζ

dτ
, (33)

d2ζ

dτ 2
+ γ

dζ

dτ
+ ω2ζ = fc cos(τ )

dχ

dτ
. (34)

In order to determine the stability or instability of the motion
we need only the terms that depend on the coordinates [9].
Dropping the cos(τ ) factor, which is an external forcing term
(i.e., it does not depend on the coordinates of the system),
Eq. (33) reduces to

d2χ

dτ 2
+ γ

dχ

dτ
+ ω2χ = −fc cos(τ )

dζ

dτ
, (35)

and Eq. (34) undergoes no change. To proceed, we first make
use of the energy-rate method [4] to plot an energy transfer
diagram of the dimensionless system of equations as shown in
Fig. 6. Wide regions of parameter space are shown to couple
energy between the x and z directions of motion.

Second, Eqs. (34) and (35) can be combined into a single
complex equation of motion of the variable y = (χ + iζ ).
Multiplying Eq. (34) by i, adding it to Eq. (35), and collecting
terms results in a single, sinusoidally damped oscillator
equation.

d2y

dτ 2
+ [γ − ifc cos(τ )]

dy

dτ
+ ω2y = 0. (36)

The stability of the Mathieu equation itself is well studied,
so a key result of the present work is that this equation can be
rewritten in the form of a Mathieu equation. By comparing (36)
and (26) it is clear that the damping terms must be eliminated
for them to be formally identical. Mathematically, this may be
done by modifying (36) with an integral transformation [12].
The transformed variable W (t) is defined according to the ex-
pression y(t) = W (t)e

1
2

∫ t

0 [γ−ifc cos(τ )]dτ . Substituting this into
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the complex equation of motion and collecting terms, one finds

Ẅ (t) + 1
8

{−2γ 2 + 8ω2 + f 2
c + 4ifc[γ cos(t) − sin(t)]

+ f 2
c cos(2t)

}
W (t) = 0. (37)

This is a Mathieu-type equation of the complex variable
W (t). The quantity 1

8 (−2γ 2 + 8ω2 + f 2
c ) acts as the Mathieu

constant a and the quantity 1
8f 2

c acts as the Mathieu constant
b. The successful transformation of the complete Lorentz os-
cillator model to a Mathieu-type differential equation confirms
that it supports complex dynamics. In particular, the electric
and magnetic degrees of freedom of the system can exchange
energy due to the magnetic modulation at doubled frequency
2t that is governed by the constant fc (Fig. 6).

It should be noted that the quantity fc which represents
the Lorentz force strength appears in all time-dependent
coefficients of the equation indicating that it is the source of
unexpected, magnetically induced behavior. If fc were zero,
as applicable to the customary LOM, the equations of motion
could not be written as a Mathieu-type differential equation.
On the other hand, the imaginary, sinusoidal, time-dependent
excitation terms in Eq. (37) appear to offer novel degrees of
freedom and dynamic behavior worthy of additional study.

VI. CONCLUSION

The theoretical results based on perturbative solution of
Eqs. (5) and (6) have revealed a second-order magneto-electric
process leading to charge separation and doubled-frequency
motion along the direction of propagation of linearly polarized
light. These effects correspond to static and second harmonic
polarizations of the medium driven by the product of electric
and magnetic field amplitudes. Classically, these phenomena
can take place in the presence of inversion symmetry, making
them different from previous quadratic optical nonlinearities
requiring noncentrosymmetric media. Hence, their results
predict previously unknown nonlinear optical effects that
appear as the result of Lorentz forces exerted by light.

Their quantum-mechanical implications have been analyzed
in Ref. [3].

The results have been verified by numerical integration and
show that at nonrelativistic intensities, after a short transient
period, a steady driving field establishes sinusoidal motion
at the fundamental frequency ω along the electric field axis
x̂ and at 2ω in the longitudinal direction ẑ. The longitudinal
oscillation reflects motion on a circular arc in the x-z plane.
The amplitude of motion along x̂ is linear with respect to
the input intensity, as expected, whereas the amplitude of
both the motion and the offset along ẑ is quadratic versus
input intensity. The magnitude of excursions along ẑ can be
quite large at moderate intensities and both amplitudes show
the predicted resonant behavior. In particular, magnetically
induced charge oscillations can have an amplitude comparable
to the electric response when the optical intensity is still 10
orders of magnitude below the relativistic threshold (Fig. 2).
This result is very unexpected [13], but agrees with recent
experiments [1,2]. At intensities above those which yield
saturated magnetic response, more complex dynamics can be
expected.

As shown in Fig. 4, induced charge motions in all directions
exhibit resonant behavior at the frequency determined by the
force constant for motion along x̂, namely ωx = √

kx/m. Only
the magnetically induced component of motion is sensitive
to the restoring force in the orthogonal direction along ẑ.
Consequently, it peaks at ωz = √

kz/m. The motions along
x̂ and ẑ are coupled, however, and energy transfer between
these two degrees of freedom furnishes an enhancement
mechanism that intensifies magnetic effects. Reduction of the
classical model to a complex Mathieu equation shows that
parametric oscillation of charge motion driven by light gives
rise to intense optical magnetism transverse to the axis of
propagation. An important conclusion based on the stability
diagram of moderately intense optical interactions (Fig. 6)
is that parametric resonance enhances magnetic response at
virtually any detuning of the incident field.
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