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Scattering hinders the passage of light through random media and consequently limits the usefulness of optical
techniques for sensing and imaging. Thus, methods for increasing the transmission of light through such random
media are of interest. Against this backdrop, recent theoretical and experimental advances have suggested the
existence of a few highly transmitting eigen-wavefronts with transmission coefficients close to 1 in strongly
backscattering randommedia. Here, we numerically analyze this phenomenon in 2Dwith fully spectrally accurate
simulators and provide rigorous numerical evidence confirming the existence of these highly transmitting eigen-
wavefronts in random media with periodic boundary conditions that are composed of hundreds of thousands of
nonabsorbing scatterers. Motivated by bio-imaging applications in which it is not possible to measure the trans-
mitted fields, we develop physically realizable algorithms for increasing the transmission through such random
media using backscatter analysis. We show via numerical simulations that the algorithms converge rapidly,
yielding a near-optimum wavefront in just a few iterations. We also develop an algorithm that combines the
knowledge of these highly transmitting eigen-wavefronts obtained from backscatter analysis with intensity
measurements at a point to produce a near-optimal focus with significantly fewer measurements than a method
that does not utilize this information. © 2013 Optical Society of America

OCIS codes: (030.6600) Statistical optics; (290.5825) Scattering theory.
http://dx.doi.org/10.1364/JOSAA.30.001592

1. INTRODUCTION
Media such as glass and air are transparent because light
propagates through them without being scattered or absorbed.
In contrast, materials such as turbid water, white paint, and egg
shells are opaque because the randomly arranged particles
cause light to scatter in random directions, thereby hindering
its passage. As the thickness of a slab of highly scattering
random medium increases, this effect becomes more pro-
nounced, and less and less normally incident light is transmit-
ted through [1].

In this context, the theoretical work of Dorokhov [2],
Pendry and co-workers [3,4], and others [5,6] provides unex-
pected insight into how, and the extent to which, the limita-
tions imposed by random scattering may be overcome.
Specifically, these authors predict that in highly scattering
random media composed of nonabsorbing scatterers, the
eigen-wavefronts associated with the right singular vectors
of the S21 or transmission matrix will have transmission coef-
ficients whose distribution has a bimodal shape as in Fig. 2.
Consequently, while many eigen-wavefronts have a small
transmission coefficient, a small number of eigen-wavefronts
exist that have a transmission coefficient close to 1; i.e., they
propagate with almost no scattering loss.

The breakthrough experiments of Vellekoop and Mosk [7,8]
provide evidence of the existence of these highly transmitting
eigen-wavefronts in random media. Vellekoop and Mosk
showed [7] that intensity measurements on the transmission
side of a scattering medium could be used to construct a

wavefront that produced about 1000× intensity enhancement
at a target point over that due to a normally incident wave-
front. Their work set off a flurry of research on methods
for measuring the transmission matrix and comparing the
transmission coefficient distribution with the theoretical
prediction [9–12], faster experimental methods for focusing
[13–17], and numerical work on the properties of eigen-
wavefronts [18].

Our work is inspired by these three lines of inquiry. We de-
velop iterative, physically realizable algorithms for transmis-
sion maximization that utilize backscatter analysis to produce
a highly transmitting wavefront in just a few iterations. These
algorithms build on the initial work presented in [19].

These algorithms, which utilize the information in the
backscatter field, can be useful in applications, such as in
bio-imaging, where it might not be possible to measure the
transmitted fields. Our algorithms yield a highly transmitting
wavefront using significantly fewer measurements than re-
quired to measure the whole reflection or S11 matrix and then
generate the wavefront (associated with the smallest right sin-
gular vector of the S11 matrix) that produces the smallest
backscatter (and hence the highest transmission in a lossless
medium).

Since our methods maximize transmission by minimizing
backscatter, it is important for most of the backscatter
field to be captured to fully realize these advantages. Other-
wise, given a limited viewing aperture, the principle of back-
scatter minimization cannot guarantee increased forward
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transmission and might even produce “transmission” into the
unobserved portion of the backscatter field.

Furthermore, we develop an iterative, physically realizable
algorithm for focusing that utilizes intensity measurements at
the desired point and backscatter analysis to produce a near-
optimal focusing wavefront with significantly fewer measure-
ments than other approaches. Thus the principal advantage of
this approach is that one can get 95% of the optimal intensity
using significantly fewer measurements than it would take to
get the optimal intensity. In effect, we are increasing the rate
of convergence to the optimal focusing wavefront. Changing
the focusing point or the number of foci does not affect the
convergence behavior. We show that we retain this property
even when we control fewer than the total number of
propagating modes.

A crucial feature of the algorithms we have developed is
that they allow the number of modes being controlled via a
spatial light modular in experiments to be increased without
increasing the number of measurements that have to be made.

An additional advantage conferred by these rapidly con-
verging algorithms is that they might facilitate their use in
applications where the duration in which the S21 or S11 matrix
can be assumed to be quasi-static is relatively small compared
to the time it would take to make all measurements needed to
estimate the S21 or S11 matrix or in settings where a near-
optimal solution obtained quickly is preferable to the optimal
solution that takes many more measurements to compute.

Finally, we numerically analyze the phenomenon using a
spectrally accurate simulator for two-dimensional (2D) scat-
tering systems with periodic boundary conditions and provide
the first numerically rigorous confirmation of the shape of the
transmission coefficient distribution and the existence [8] of
an eigen-wavefront with a transmission coefficient approach-
ing 1 for random media with a large number of scatterers.

The paper is organized as follows. We describe our setup in
Section 2. We discuss the problem of transmission maximiza-
tion and focusing in Section 3. To assist in the development of
physically realizable algorithms for these applications, we iden-
tify physically realizable operations in Section 4, and describe
iterative, implementable algorithms for finding transmission-
maximizing and focusing inputs in Sections 5 and 6, respec-
tively. We highlight the existence of eigen-wavefronts with
transmission coefficients approaching 1, the algorithms’ perfor-
mance, and rapid convergence via numerical simulations in
Section 7, and summarize our findings in Section 8.

2. SETUP
We study scattering from a 2D random slab of thickness L and
periodicity D; the slab’s unit cell occupies the space 0 ≤ x < D
and 0 ≤ y < L (Fig. 1). The slab contains Nc infinite and
z-invariant circular cylinders of radius r that are placed ran-
domly within the cell and assumed either perfect electrically
conducting (PEC) or dielectric with refractive index nd; care
is taken to ensure the cylinders do not overlap. Fields are TMz

polarized: electric fields in the y < 0 �i � 1� and y > L �i � 2�
half-spaces are denoted ei�ρ� � ei�ρ�ẑ. The field (complex)
amplitude ei�ρ� can be decomposed in terms of �y and −y

propagating waves as ei�ρ� � e�i �ρ� � e−i �ρ�, where

e�i �ρ� �
XN
n�−N

hna�i;ne
−jk�n ·ρ: (1)

In the above expression, ρ � xx̂ � yŷ ≡ �x; y�,
k�n � kn;xx̂ � kn;yŷ ≡ �kn;x; �kn;y�, kn;x � 2πn∕D, kn;y �
2π

����������������������������������
�1∕λ�2 − �n∕D�2

p
, λ is the wavelength, and hn �������������������������

‖k�n ‖2∕kn;y
q

is a power-normalizing coefficient. We assume

N � ⌊D∕λ⌋; i.e., we only model propagating waves and
denote M � 2N � 1. The modal coefficients a�i;n, i � 1, 2;
n � −N;…; N are related by the scattering matrix

�
a−1
a�2

�
�

�
S11 S12

S21 S22

�
|�������{z�������}

≕S

�
a�1
a−2

�
; (2)

where a�i � �a�i;−N…a�i;0…a�i;N �T . In what follows, we assume
that the slab is only excited from the y < 0 half-space; hence,
a−2 � 0. For a given incident field amplitude e�1 �ρ�, we define
transmission and reflection coefficients as

τ�a�1 �≔
‖S21 · a

�
1 ‖22

‖a�1 ‖22
(3)

and

Γ�a�1 �≔
‖S11 · a

�
1 ‖22

‖a�1 ‖22
; (4)

respectively.We denote the transmission coefficient of a normally
incident wavefront by τnormal � τ�� 0 � � � 0 1 0 � � � 0 �T �;
here T denotes transposition.

3. PROBLEM FORMULATION
A. Transmission Maximization
The problem of designing an incident wavefront aopt that
maximizes the transmitted power can be stated as

aopt � argmax
a�1

τ�a�1 � � argmax
a�1

‖S21 · a
�
1 ‖22

‖a�1 ‖22
� argmax

‖a�1 ‖2�1
‖S21 · a

�
1 ‖22; (5)

where ‖a�1 ‖2 � 1 represents the incident power constraint.

Fig. 1. Geometry of the scattering system considered.
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Let S21 �
PM

i�1 σiui · vHi denote the singular value decom-
position (SVD) of S21; σi is the singular value associated with
the left and right singular vectors ui and vi, respectively.
By convention, the singular values are arranged so that
σ1 ≥ … ≥ σM and H denotes the complex conjugate trans-
pose. A well-known result in matrix analysis [20] states that

aopt � v1: (6)

When the optimal wavefront aopt is excited, the optimal trans-
mitted power is τopt ≔ τ�aopt� � σ21. When the wavefront asso-
ciated with the ith right singular vector vi is transmitted, the
transmitted power is τ�vi� � σ2i , which we refer to as the
transmission coefficient of the ith eigen-wavefront of S21.
Analogously, we refer to Γ�vi� as the reflection coefficient
of the ith eigen-wavefront of S21.

The theoretical distribution [2–6] of the transmission coef-
ficients for lossless random media has density given by

f �τ� � lim
M→∞

1
M

XM
i�1

δ�τ − τ�vi��

� l
2L

1

τ
����������
1 − τ

p ; for 4 exp�−L∕2l�⪅ τ ≤ 1: (7)

In Eq. (7), l is the mean-free path through the medium. Figure 2
shows the theoretical density when L∕l � 3. From, Eq. (7) we
expect τopt � 1.

From Eq. (6), it follows that the optimal wavefront can be
constructed by measuring the S21 matrix and computing its
SVD. Techniques for measuring the S21 matrix have been de-
veloped in recent works by Popoff et al. [9] and others [10,11].
Kim et al. experimentally measured the S21 matrix and dem-
onstrated improved transmission by using the optimal wave-
front in Eq. (6) [12].

In the lossless setting, the scattering matrix S in Eq. (2) will
be unitary; i.e., SH · S � I, where I is the identity matrix.
Consequently, we have that SH

11 · S11 � SH
21 · S21 � I, and the

optimization problem in Eq. (5) can be reformulated as

aopt � argmax
‖a�1 ‖2�1

�a�1 �H · SH
21 · S21 · a

�
1|����������������{z����������������}

��a�1 �H ·�I−SH
11 ·S11�·a�1

� argmin
‖a�1 ‖2�1

‖S11 · a
�
1 ‖22

� argmin
a�1

Γ�a�1 �: (8)

In other words, in a lossless medium the backscatter-
minimizing wavefront also maximizes transmission. Let
S11 �

PM
i�1 ~σi ~ui · ~vHi denote the SVD of S11; ~σi is the singular

value associated with the left and right singular vectors ~ui

and ~vi, respectively. Then from [20] it follows that

aopt � ~vM: (9)

When this optimal wavefront is excited and the medium is
lossless, τopt � 1 − Γ�aopt� � 1 − ~σ2M � σ21. When the wave-
front associated with the ith right singular vector ~vi is excited,
the transmitted power is given by τ�~vi� � 1 − Γ�~vi� � 1 − ~σ2i ,
which we refer to as the transmission coefficient of the ith
eigen-wavefront of S11. Analogously, we refer to Γ�~vi� as
the reflection coefficient of the ith eigen-wavefront of S11.

A technique for increasing transmission via backscatter
analysis would require measurement of the S11 matrix and
the computation of aopt as in Eq. (9). Our objective is to
develop fast, physically realizable, iterative algorithms that
converge to aopt by utilizing significantly fewer backscatter
field measurements than the O�M� measurements it would
take to first estimate S11 and then compute its SVD to deter-
mine ~vM . Here, we are motivated by applications where it is
not possible to measure the transmitted field so that it will not
be feasible to measure the S21 matrix and compute the optimal
wavefront as in Eq. (6).

B. Focusing
From Eq. (1) and using the fact that a�2 � S21 · a

�
1 (since

a−2 � 0), the field at point ρ
0
is

e�2 �ρ0� �
h
h
−Ne

−jk�
−N ·ρ0 � � �hNe−jk

�
N ·ρ0

i
|����������������������{z����������������������}

≕f �ρ
0
�H

· S21 · a
�
1 : (10)

The problem of designing an incident wavefront that maxi-
mizes the intensity (or amplitude squared) of the field at
ρ
0
is equivalent to the problem

afoc � argmax
a�1

‖e�2 �ρ0�‖22
‖a�1 ‖22

� argmax
‖a�1 ‖2�1

‖ f H�ρ
0
� · S21|������{z������}

≕c�ρ
0
�H

· a�1 ‖22;

(11)

whose solution is

afoc �
c�ρ

0
�

‖c�ρ
0
�‖

2

� SH
21 · f �ρ0�

‖SH
21 · f �ρ0�‖2

: (12)

Thus the optimal wavefront equals the vector c�ρ
0
� with

normalization to satisfy the power constraint. It can be shown
that this wavefront may be obtained by time reversing the
wavefront received by placing a source at ρ

0
[21]. This fact

was exploited in recent work by Cui and co-workers [22,23].
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Fig. 2. Theoretical distribution in Eq. (7) for L∕l � 3.
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In Vellekoop and Mosk’s breakthrough work [7,8,24], a co-
ordinate descent method was employed for constructing the
optimal wavefront. The coordinate descent approach finds
the amplitude and phase of a single mode that maximize the
intensity at ρ

0
while keeping the amplitudes and phases of the

other modes fixed and then repeating this procedure for
the remaining modes, one mode at a time. In Vellekoop
and Mosk’s experiments [7,8,24], they kept the amplitude con-
stant for all modes and considered phase-only modifications
of the incident wavefront. While this reduces the complexity
of the algorithm, this approach still requires O�M� intensity
measurements at ρ

0
to construct the optimal wavefront. When

M is large, the time for convergence will also be large.
This has motivated recent work [15–17] for faster determi-

nation of the optimal wavefront. Cui [15,16] considers an ap-
proach using multiple frequencies to find the optimal phases
of modes simultaneously, while Stockbridge et al. [17] have
proposed a coordinate descent approach using 2D Walsh
functions as a basis set. These methods have accelerated
the experimental convergence, but the reported results are
still for small M (between 441 and 1024).

Expressing the optimal wavefront in terms of the singular
vectors of S21 yields the expression

afoc ∝ SH
21 · f �ρ0� �

XM
i�1

σi�uH
i · f �ρ

0
��|������{z������}

≕wi

vi �
XM
i�1

σiwivi: (13)

Recall that σ2i � τ�vi�; thus an important insight from
Eq. (7) and Fig. 2 is that most of the singular values in
Eq. (13) are close to 0. However, there typically are K ≪ M
singular values close to 1. It is the superposition of these K
eigen-wavefronts of S21 having transmission coefficients close
to 1 whose constructive interference yields the maximal trans-
mission that contributes to maximal intensity.

In the lossless setting, when the scattering matrix S is uni-
tary, we have that τ�vi� � 1 − Γ�~vM−i�1�. Hence, the K eigen-
wavefronts of S21 that have transmission coefficients close to
1 correspond precisely to the K eigen-wavefronts associated
with S11 that have reflection coefficients close to 0. By using
O�K� backscatter field measurements to measure theK eigen-
wavefronts of S11 with small reflection coefficients and O�K�
intensity measurements at ρ

0
, we might expect to approxi-

mate afoc in Eq. (13) and yield a near-optimal focus using just
O�K� measurements (we expect K ≪ M).

Our objective is to develop a fast, physically realizable, iter-
ative algorithm that utilizes backscatter field measurements
and intensity measurements at ρ

0
to construct a near-optimal

focusing wavefront using significantly fewer measurements
than are required by coordinate descent methods that only
employ intensity measurements at ρ

0
. The emphasis here is

on accelerating the convergence behavior; we do not improve
the quality of the focus.

4. RECOGNIZING PHYSICALLY
REALIZABLE MATRIX–VECTOR
OPERATIONS
The iterative algorithms we will develop in Sections 5 and 6
build on the vast literature of iterative methods in numerical
linear algebra [25,26]. The algorithms are based on three
matrix–vector operations, S11 · a

�
1 , F · �a−1 �	, and SH

11 · a
−

1 .

These operations can be performed mathematically, but the
measurement corresponding to these operations in a physical
setting is not obvious. Here, we focus on mapping these
matrix–vector operations into their physical counterparts,
thus making our algorithms physically realizable.

The first operation, S11 · a
�
1 , can be realized by measuring

the backscattered wave. In an experimental setting, the modal
coefficient vector of the backscattered wave would be ex-
tracted from the backscatter intensity measurement by digital
holography techniques described in, for example, [27]. We
also assume that it is possible to modulate the amplitude and
phase of a wavefront, using the methods described in [28].
Thus, the matrix–vector multiplicative operation S11 · a

�
1 cor-

responds to sending an incident wavefront with modal coef-
ficient vector a�1 and measuring the modal coefficient vector
of the backscattered wavefront. Furthermore, we assume that
these modal coefficient vectors can be recovered perfectly,
and the amplitude and the phase can be perfectly modulated,
so that we might investigate the best-case performance of the
algorithms.

The second operation, F · �a−1 �	, can be realized by time
reversing the wave. Let flipud�·� represent the operation of
flipping a vector or a matrix argument upside down so that
the first row becomes the last row and so on, and let 	 denote
complex conjugation. We define F � flipud�I�, where I is the
identity matrix; then the operation F · �a−1 �	 represents time
reversing the wave corresponding to a−1 . This can be explained
as follows. The expression for a time-reversed wave of a−1 is

�e−1 �ρ��	 �
� XN
n�−N

hna−1;ne
−jk−n ·ρ

�	
�

XN
n�−N

h	n�a−1;n�	ejk
−

n ·ρ

�
XN
n�−N

hn�a−1;−n�	e−jk
�
n ·ρ: (14)

Note that we have used the fact that h	
−n � hn and k−

−n � −k�n .
From Eq. (14), we see that the modal coefficient vector
representation of the time-reversed wave of a−1 is
� �a−N �	 �a−N−1�	 … �a−

−N�1�	 �a−
−N�	 �T �F · �a−1 �	. Further-

more, we emphasize that the operation F · �a−1 �	 can be physi-
cally realized via phase-conjugate mirroring (PCM) [21].

The third operation, SH
11 · a

−

1 , can be realized using reciproc-
ity. In a scattering medium that exhibits reciprocity, there are
relationships [29–33] between the incident and scattered
wavefronts. Consequently, reciprocity requires the reflection
matrix S11 to satisfy

SH
11 � F · S	

11 · F: (15)

This means that if a is an input to the system that produces a
backscattered wave of b, then sending F · �a�	 will produce a
backscattered wave of F · �b�	 in a medium whose reflection
matrix corresponds to SH

11 (Fig. 3).
An important implication of this equation is that the matrix–

vector operation SH
11 · a

−

1 can be cast in terms of physically
realizable operations. Note that SH

11 · a
−

1 can be expressed as

SH
11 · a

−

1 � F · S	
11 · F · a−1 � F · �S11 · �F · �a−1 �	��	:

From the last expression, we see that the operation SH
11 · a

−

1
can be physically realized in a sequence of two steps:
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1. Time reverse the wavefront whose modal coefficient
vector is a−1 , and send it to the scattering system.

2. Time reverse the resulting backscattered wavefront.

We call this sequence of operations double phase conjuga-
tion, and we shall leverage it extensively in what follows.

5. ITERATIVE, PHYSICALLY REALIZABLE
ALGORITHMS FOR TRANSMISSION
MAXIMIZATION
We now develop iterative, physically realizable algorithms for
transmission maximization that converge to aopt in Eq. (9), by
utilizing significantly fewer backscatter field measurements
than the O�M� measurements it would take to first estimate
S11 and then compute its SVD to determine ~vM .

A. Steepest Descent Method
The backscatter-minimization problem involves optimization
with respect to the objective function ‖S11 · a

�
1 ‖22 that appears

on the right-hand side of Eq. (8). The objective function’s
negative gradient is used as a search direction to correct
the previous input as

a�1;�k�1� � a�1;�k� − μ
∂‖S11 · a

�
1 ‖22

∂a�1

����
a�1 �a�1;�k�

� a�1;�k� − 2μSH
11 · S11 · a

�
1;�k�;

where a�1;�k� represents the modal coefficient vector of the
wavefront produced at the kth iteration of the algorithm
and μ is a positive step size. This yields Algorithm 1, which
iteratively refines the wavefront a�1;�k�1� until the backscat-
tered intensity ‖S11 · a

�
1;�k�‖22 drops below a preset threshold ϵ.

Algorithm 1: Steepest Descent Algorithm for Finding aopt

1: Input: a�1;�0� � Initial random vector with unit norm
2: Input: μ > 0 � step size
3: Input: ϵ � Termination condition
4: k � 0
5: while ‖S11 · a

�
1;�k�‖22 > ϵ do

6: ~a�1;�k� � a�1;�k� − 2μSH
11 · S11 · a

�
1;�k�

7: a�1;�k�1� � ~a�1;�k�∕‖ ~a
�
1;�k�‖2

8: k � k� 1
9: end while

Armed with the relationship in Eq. (15), step 6 in
Algorithm 1 can be expressed as

~a�1;�k� � a�1;�k� − 2μSH
11 · S11 · a

�
1;�k�

� a�1;�k� − 2μF · S	
11 · F · S11 · a

�
1;�k�: (16)

This allows us to recast each step of Algorithm 1 into the coun-
terparts of the physical operations in the second column of
Table 1.

The sequence of steps 1–4 in Table 1, which involves
double phase conjugation, amplifies the highly backscatter-
ing component in the wavefront, analogous to the opera-
tions for time-reversal focusing [21,34–36]. In step 5, this
component is subtracted, leading to a refined wavefront
that will backscatter less. This process is repeated until
convergence. A consequence of this technique is that the
backscatter field intensity will typically decrease monoton-
ically. This makes measurement of the backscatter modal
coefficient vector increasingly difficult as the iteration pro-
gresses. An additional disadvantage of this method is the
obvious need to carefully set μ to guarantee convergence,
0 < μ < �1∕ ~σ21 � ~σ2M� ≈ 1. In an experimental setting, the
step size μ is chosen by a simple line search, i.e., by scan-
ning a set of discretized values and selecting the one that
results in the smallest backscatter intensity after a fixed
number of iterations.

We describe a method next that maintains high backscatter
field intensity throughout the process and does not require
selection of any other auxiliary parameters to guarantee
convergence.

B. Conjugate Gradient Method
Consider an iterative solution to Eq. (8) where the iterate
(before normalization for power) is formed as

a�1;�k�1� � a�1;�k� � μ�k�1�d�k�; (17)

where μ�k�1� is a step size and d�k� is the search direction. In
this framework, Algorithm 1 results from setting μ�k�1� � μ
and d�k� � −2SH

11 · S11 · a
�
1;�k�.

The conjugate gradient method (see [25, Chap. 5] for a de-
tailed derivation) results from choosing the step size

μ�k�1� � ‖r�k�‖22∕‖S11 · d�k�‖22 (18a)

with the search direction given by

d�k�1� � r�k�1� � β�k�1�d�k� (18b)

Fig. 3. Relationship between wavefronts in a medium that exhibits
reciprocity. Reciprocity tells us that SH

11 · a is obtained by time revers-
ing the wave before and after sending a into the medium, and we call
this sequence of operations double phase conjugation.

Table 1. Steepest Descent Algorithm for

Transmission Maximizationa

Vector Operation Physical Operation

1: a−1 � S11 · a
�
1;�k� 1: a�1;�k�⟶

Backscatter
a−1

2: a�1 � F · �a−1 �	 2: a−1⟶
PCM

a�1

3: a−1 � S11 · a
�
1 3: a�1⟶

Backscatter
a−1

4: a�1 � F · �a−1 �	 4: a−1⟶
PCM

a�1

5: ~a�1 � a�1;�k� − 2μa�1 5: ~a�1 � a�1;�k� − 2μa�1

6: a�1;�k�1� � ~a�1 ∕‖ ~a
�
1 ‖2 6: ~a�1⟶

Normalization
a�1;�k�1�

aThe first column represents vector operations in Algorithm 1. The
second column represents the physical (or experimental)
counterpart. The operation a−1 ↦F · �a−1 �	 can be realized via the
use of a phase-conjugating mirror (PCM). The algorithm terminates
when the backscatter intensity falls below a preset threshold ϵ.
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and

β�k�1� � ‖r�k�1�‖22∕‖r�k�‖
2
2: (18c)

Here, the residual vector is

r�k�1� � −SH
11 · S11 · a

�
1;�k�1�: (18d)

The iteration terminates when ‖r�k�1�‖2 < ϵ, a preset
threshold.

Plugging Eq. (17) into Eq. (18d) and substituting the expres-
sions in Eqs. (18a)–(18c) gives us an alternate expression for
the residual vector

r�k�1� � r�k� − μ�k�1�SH
11 · S11 · d�k� (19a)

or, equivalently,

r�k�1� � r�k� −
‖r�k�‖22

‖S11 · d�k�‖22
SH
11 · S11 · d�k�: (19b)

The utility of Eq. (19b) will become apparent shortly.
To summarize, we described an iterative method for refin-

ing the wavefront a�1;�k� via Eq. (17). Inspection of the update
Eqs. (18a)–(18c) and (19b) reveals that matrix–vector opera-
tions S11 · d�k� appear in Eq. (18a) while SH

11 · S11 · d�k� appears
in Eq. (19b). This means that the vector d�k� is transmitted and
the associated backscatter is measured. Note that these mea-
surements are used to iteratively refine the vector a�1;�k�, but
a�1;�k� is never actually transmitted until the termination con-
dition ‖r�k�1�‖2 < ϵ is met. This is reflected in the physical
description of the proposed algorithm in Table 2. Also, note
that we start with a random unit vector a�1;�0�, and set d�0�
and r�0� to −SH

11 · S11 · a
�
1;�0�, since we are using conjugate gra-

dient for finding the input that minimizes reflection, i.e.,

−a�1;�0�⟶
Backscatter

a−1⟶
PCM

a�1⟶
Backscatter

a−1⟶
PCM

d�0� � r�0�:

A feature of the conjugate gradient method is that the in-
tensity of the backscatter measurement S11 · d�k� is expected

to remain relatively high (for a strongly backscattering
medium) throughout the process. It is only when the wave-
front corresponding to a�1;�k�1� is excited that a strong trans-
mission (with minimized backscatter) is obtained—this might
be a desirable feature for communication or covert sensing
applications. Consequently, the algorithm will produce high
intensity backscatter measurements, thereby facilitating accu-
rate estimation of the backscatter modal coefficient vectors
that are important components of the proposed algorithm.
This makes the conjugate gradient method less susceptible to
measurement noise than the steepest descent method, where
the backscatter intensity decreases with every iteration.

6. ITERATIVE, PHYSICALLY REALIZABLE
FOCUSING ALGORITHM
We first describe a generalized coordinate descent method for
amplitude and phase optimization. Assume we are given a
M × NB matrix B � �b1…bNB

�whose columns are orthonormal
so that BH · B � INB

. Thus NB denotes the number of (ortho-
normal) basis vectors.

The key idea here is to expand a�1 on the right-hand side
of Eq. (11) in terms of the basis vectors given by the columns
of B as

a�1 �
XNB

l�1

plejϕl bl; (20)

where pl ≥ 0 and ϕl ∈ �−π; π� are the unknown amplitudes and
phases, respectively.

The optimal amplitudes can be estimated by transmitting
a�1 � bl for every l � 1;…NB, measuring the corresponding
intensity I l at the target, and setting pl �

�����
I l

p
. This can be

accomplished with O�NB� measurements.
The phases can be estimated by first setting ϕ1;…ϕNB

ran-
domly and then for l � 1;…; NB, sequentially finding the
phase that optimizes measured intensity. This can be done
via a simple line search, i.e., by scanning the measured inten-
sity over a fixed set of discretized values of the phase or by
using more sophisticated algorithms such as the golden
section search algorithm with parabolic interpolation [37,
Section 10.2]. This too requires O�NB� measurements.

SettingNB � M andB � I yields the coordinate descent ap-
proach used by Vellekoop andMosk [7,8,24]. This corresponds
to exciting one plane wave mode at a time and inferring the
optimal phase and amplitude one mode at time. Such an algo-
rithm requires O�M� iterations to yield the optimal focusing
wavefront. Setting B to the 2D Walsh function basis matrix
yields the method proposed by Stockbridge et al. in [17].

An important insight from Eq. (13) is that if we were to
express the optimal focusing wavefront as a superposition
of eigen-wavefronts of S21, then typically only K ≪ M of the
combining coefficients will be large. Thus only K of the pl
coefficients in Eq. (20) will be significant if we set B to be
the right singular vectors of S21. In the lossless setting, the
K eigen-wavefronts of S21 that have transmission coefficients
close to 1 correspond precisely to the K eigen-wavefronts as-
sociated with S11 that have reflection coefficients close to 0.
Hence, we can set B to be the right singular vectors of S11 and
expect onlyK of the pl coefficients in Eq. (20) to be significant
as well. Thus, we need to measure the K singular vectors of
S11 associated with its K smallest singular values.

Table 2. Conjugate Gradient Algorithm for

Transmission Maximizationa

Vector Operation Physical Operation

1: d−1 � S11 · d�k� 1: d�k�⟶
Backscatter

d−1

2: d�1 � F · �d−1 �	 2: d−1⟶
PCM

d�1

3: d−1 � S11 · d
�
1 3: d�1⟶

Backscatter
d−1

4: d � F · �d−1 �	 4: d−1⟶
PCM

d

5: μ�k�1� � ‖r�k�‖22∕�dH�k� · d� 5: μ�k�1� � ‖r�k�‖22∕�dH�k� · d�
6: r�k�1� � r�k� − μ�k�1�d 6: r�k�1� � r�k� − μ�k�1�d

7: β�k�1� � ‖r�k�1�‖22∕‖r�k�‖
2
2 7: β�k�1� � ‖r�k�1�‖22∕‖r�k�‖

2
2

8: d�k�1� � r�k�1� � β�k�1�d�k� 8: d�k�1� � r�k�1� � β�k�1�d�k�
aThe first column represents iterates of the conjugate gradient method.

The second column represents the physical (or experimental)
counterpart. The operation d−1↦F · �d−1 �	 can be realized via the use of a
PCM. The algorithm terminates when the residual vector ‖r�k�1�‖2 < ϵ, a
preset threshold at which point the optimal backscatter-minimizing
wavefront is constructed as a�1;�k�1� � a�1;�k� � μ�k�1�d�k� followed by a
power normalization a�1;�k�1� � a�1;�k�1�∕‖a

�
1;�k�1�‖2.
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The Lanczos algorithm is an iterative algorithm for accom-
plishing just that [25,26]. The key idea is to create a tridiagonal
matrix H whose eigenvalues and eigenvectors (referred to as
the Ritz values and vectors) are approximations of the eigen-
values and eigenvectors of SH

11 · S11. The algorithm is summa-
rized in the first column of Table 3; its physical counterpart
is described in the second column. The matrix B in
Eq. (20) is obtained as

B � Q · U; (21)

where Q � �q�1�…q�NB�� are the NB vectors produced by the

algorithm (see Table 3) and U � �u�1�…u�NB�� are the NB ei-
genvectors of H associated with the NB smallest eigenvalues.

The convergence theory [26] of the Lanczos algorithms
predicts that the eigenvector estimates will rapidly converge
to the K eigenvectors of SH

11 · S11 associated with the eigen-
wavefronts of S11 with the smallest reflection coefficients;
hence, setting NB � O�K� will suffice. An estimate of K
can be formed from the eigenvalues of H by counting how
many of the converged eigenvalues of H are below a preset
threshold ϵ.

Estimating these K right singular vectors will require
O�K� measurements, and when K ≪ M , we shall obtain a
near-optimal focusing wavefront using significantly fewer
measurements than the O�M� measurements required by
the coordinate descent when B � I. We shall corroborate this
convergence behavior using numerical simulations next.

7. NUMERICAL SIMULATIONS AND
VALIDATION OF THE EXISTENCE OF
HIGHLY TRANSMITTING EIGEN-
WAVEFRONTS
To validate the proposed algorithms, we compute the scatter-
ing matrices in Eq. (2) via a spectrally accurate, T-matrix-
inspired integral equation solver that characterizes fields
scattered from each cylinder in terms of their traces expanded
in a series of azimuthal harmonics. Interactions between
cylinders are modeled using 2D periodic Green’s functions.
The method constitutes a generalization of that in [38], in that

it does not force cylinders in a unit cell to reside on a line but
allows them to be freely distributed throughout the cell. All
periodic Green’s functions/lattice sums are rapidly evaluated
using a recursive Shank’s transform as in [39,40]. Our method
exhibits exponential convergence in the number of azimuthal
harmonics used in the description of the field scattered by
each cylinder. In the numerical experiments below, care
was taken to ensure eleventh digit accuracy in the entries
of the computed scattering matrices.

Figure 4 shows the empirical transmission coefficient dis-
tribution, i.e., the singular value squared of the S21 matrix of a
slab with D � 197λ, L � 1.2 × 104λ, r � 0.11λ, Nc � 14; 000
(dielectric), nd � 1.3, M � 395, and l̄ � 6.7λ, where l̄ is the
mean of the minimum-inter-scatterer-distances. The computa-
tion validates the bimodal shape of the theoretical distribution
in Fig. 2.

Next, we consider scattering system with D � 14λ,
L � 5.4λ, r � 0.11λ, Nc � 50 (PEC), M � 27, and l̄ � 0.8λ.
Here τnormal � 0.483, while τopt � 0.9997, so that wavefront
optimization produces a twofold increase in transmitted
power. Figures 5(a) and 5(b) show the wavefield produced
by a normally incident wavefront and the optimal wavefront,
respectively. Figure 6 shows the modal coefficients of the
optimal wavefront corresponding to Fig. 5(b).

Figure 7 displays the rate of convergence of the algorithms
developed for a setting with D � 197λ, L � 3.4 × 105λ,
r � 0.11λ, Nc � 430; 000 (dielectric), nd � 1.3, M � 395, and
l̄ � 6.69λ; this slab has a comparable (slightly lower) packing
density than that in Fig. 5(a).

A normally incident wavefront results in a transmission of
τnormal � 0.038. The optimal wavefront yields τopt � 0.9973
corresponding to a 26-fold increase in transmission. Steepest
descent algorithm and conjugate gradient algorithm produce
wavefronts that converge to the near optimum in about 5–10
iterations, as shown in Fig. 7.

Figure 8 plots the transmitted power after the tenth itera-
tion of steepest descent algorithm for different choices of μ.
Figure 8 reveals that there is broad range of μ for which the
algorithm converges in a handful of iterations. We have found
that setting μ ≈ 0.5 yields fast convergence.
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Fig. 4. Empirical transmission coefficients distribution from a scat-
tering system with D � 197λ, L � 1.2 × 104λ, r � 0.11λ, Nc � 14; 000
(dielectric), nd � 1.3, M � 395, l̄ � 6.7λ, where l̄ is the mean of the
minimum-inter-scatterer-distances.

Table 3. Lanzcos Algorithm and Its Physical

Counterpart That Computes a Tridiagonal Matrix H
Whose Eigenvalues and Eigenvectors Are Closely

Related to the Eigenvalues and Eigenvectors

of SH11 · S11
a

Vector Operation Physical Operation

1: q−1 � S11 · q�k� 1: q�k�⟶
Backscatter

q−1

2: q�1 � F · �q−1 �	 2: q−1⟶
PCM

q�1

3: q−1 � S11 · q�1 3: q�1⟶
Backscatter

q−1

4: v � F · �q−1 �	 4: q−1⟶
PCM

v

5: Hk;k � qH�k� · v 5: Hk;k � qH�k� · v

6: v � v −Hk;kq�k� − s�k−1�q�k−1� 6: v � v −Hk;kq�k� − s�k−1�q�k−1�

7: Hk�1;k � Hk;k�1 � s�k� � ‖v‖2 7: Hk�1;k � Hk;k�1 � s�k� � ‖v‖2
8: q�k�1� � v∕s�k� 8: q�k�1� � v∕s�k�
aNote that we initialize the algorithm by setting k � 1, q�1� to a random unit

norm vector, and s�0� � 0.
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The conjugate gradient algorithm converges slightly faster
than the steepest descent algorithm in the setting where we
chose the optimal μ � 0.5037 for steepest descent algorithm

by a line search; i.e., we ran steepest descent algorithm over a
fixed set of discretized values of μ between 0 and 1, and chose
the optimal μ that gives the fastest convergence result. In an
experimental setting, the line search for finding the optimal μ
for the steepest descent algorithm will require additional mea-
surements. Thus, conjugate gradient algorithm will require
fewer measurements than steepest descent algorithm with
the additional advantage of not requiring any auxiliary param-
eters to be set.

Next, we consider the setting where a subset of the propa-
gation modes are controlled so that the summation in Eq. (1)
is from −Nctrl to Nctrl. Thus the number of controlled modes is
given by Mctrl � 2Nctrl � 1.

Figure 9 shows the realized gain (relative to a normally in-
cident wavefront) for three different approaches versus the
number of control modes in the same setting as in Fig. 7. Here
we compute the realized gain for algorithms that control only
part of the total number of modes but capture (1) all modes
in the backscatter field, (2) only as many modes in the

Fig. 5. Wavefield plot of the incident-plus-backscatter wave corre-
sponding to (a) normally incident wavefront and (b) optimal wave-
front, which were sent to a scattering system with D � 14λ,
L � 5.4λ, r � 0.11λ, Nc � 50PEC, M � 27, l̄ � 0.8λ. The normally
incident wavefront has τnormal � 0.483, while the optimal wavefront
yields τopt � 0.9997.
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Fig. 6. Modal coefficients of the optimal wavefront corresponding to
Fig. 5(b) are shown.
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Fig. 7. Transmitted power versus the number of iterations is shown
for steepest descent algorithm with μ � 0.5037 and for conjugate gra-
dient in the setting with D � 197λ, L � 3.4 × 105λ, r � 0.11λ, Nc �
430;000 dielectric cylinders with nd � 1.3, M � 395, l̄ � 6.69λ. The
conjugate gradient algorithm converged to the optimal transmitted
power slightly faster than the steepest descent algorithm. However,
since the steepest descent algorithm requires a line search for setting
the optimal step size μ, it requires more measurements than the
conjugate gradient method, which does not require any parameters
to be set.
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Fig. 8. Transmitted power at the tenth iteration as a function of the
step size μ used in Algorithm 1 for the same setting as in Fig. 7.
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transmitted field as the number of control modes, and (3) only
as many modes in the backscatter field as the number of
control modes. For the last algorithm, we transmit the
eigen-wavefront of the (portion of the) S11 matrix that yields
the highest transmission. Figure 9 shows that if the backscat-
ter field is fully sampled, then it is possible to realize increased
transmission with a limited number of control modes. It also
emphasizes the important point that when the backscatter
field is not fully sampled, the principle of minimizing backscat-
ter might produce “transmission” into the unsampled portion
of the backscatter field instead of producing forward
transmission.

Figure 10 considers the same setup as in Fig. 7 with a target
at (D∕2, L� 5.4λ) and plots the focus achieved at the target
by exciting a focusing wavefront as in Eq. (12). The modal co-
efficients are plotted in Fig. 11(a). Figure 11(b) shows the
sparsity of the modal coefficients of the optimal focusing
wavefront when expressed in terms of the basis given by the
right singular vectors of the S11 matrix or, equivalently, the
eigenvectors of SH

11 · S11.
Figure 12 plots the intensity achieved when using NB basis

vectors for the algorithms described in Section 6 in the same
setup as in Fig. 10. The new algorithm, which computes the

basis B from the eigenvectors of SH
11 · S11 associated with

its smallest eigenvalues, reaches 95% of the optimal intensity
with significantly fewer iterations than the coordinate descent
algorithm. This fast convergence to the near-optimum is the
principal advantage of the proposed method. Figure 12 shows
that this convergence behavior is retained even when the
number of control modes is reduced. We obtain similar gains
for the setting in which there are multiple focusing points.

Finally, we consider the setting in which the scatterers are
absorptive. Here, backscatter minimization as a general prin-
ciple for increasing transmission is clearly suboptimal since
an input with significant absorption can also minimize back-
scatter. We defined gain as τopt∕τnormal. Here we have D �
197λ, L � 3.4 × 105λ, r � 0.11λ, Nc � 4.3 × 105 (absorbing
dielectric), nd � 1.3 − jκ, M � 395, and l̄ � 6.69λ. In Fig. 13,
we compare the gain obtained by using the backscatter-
minimizing wavefront to the gain obtained by the optimal
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Fig. 9. Gain (≕τopt∕τnormal) versus the number of control modes for
the same setting as in Fig. 7. Here we compute the realized gain for
algorithms that control only part of the total number of modes, but
capture (1) all modes in the backscatter field, (2) only as many modes
in the transmitted field as the number of control modes, and (3) only
as many modes in the backscatter field as the number of control
modes. For the last algorithm, we transmit the eigen-wavefront of
the (portion of the) S11 matrix that yields the highest transmission.
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Fig. 11. Here, we depict the magnitude of the coefficients of the
optimal focusing wavefront, corresponding to the situation in Fig. 10,
in terms of two choices of basis vectors. In (a) we decompose the
optimal focusing wavefront with respect to the basis vectors corre-
sponding to plane waves; in (b) we decompose the optimal focusing
wavefront with respect to the basis vectors associated with the eigen-
wavefronts of the S11 matrix. A particular important observation is
that the eigen-wavefront decomposition yields a sparse representation
of the optimal focusing wavefront.
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wavefront (which utilizes information from the S21 matrix) for
various κ, as the thickness of the scattering system increases.
We obtain an increase in transmission and the methods de-
scribed again produce dramatic gains whenever the scatterers
are weakly absorptive.

8. CONCLUSIONS
We have numerically verified the existence of eigen-
wavefronts with transmission coefficients approaching 1
in highly scattering systems and developed physically
realizable algorithms for finding these highly transmitting

eigen-wavefronts using backscatter analysis. We also devel-
oped a physically realizable algorithm for forming a focused
input using the highly transmitting eigen-wavefronts identified
by the previous algorithm. Via numerical simulations, it was
shown that the algorithms converged to a near-optimal wave-
front in just a few iterations. The proposed algorithms are
quite general and may be applied to scattering problems
beyond the 2D setup described in the simulations. We are cur-
rently investigating extensions to imaging and sensing appli-
cations. A detailed study of the impact of periodic boundary
conditions on the results obtained is also underway.
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