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Critical slowing down and dispersion of avalanche upconversion dynamics

Q. Shu and S. C. Rand
Division of Applied Physics, 1049 Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 23 September 1996!

The temporal response time on an avalanche upconversion transition is shown to undergo critical slowing
down near the avalanche threshold. Also, the nonlinear refractive index is predominantly real, despite the
resonant nature of the avalanche phenomenon. These findings are in excellent agreement with density-matrix
analyses showing that cross relaxation dramatically alters the effective excited-state lifetime and that off-
resonance absorption curiously dominates the wavelength dependence of the nonlinear refractive index.
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I. INTRODUCTION

Since its discovery,1 avalanche upconversion has been
interest for solid-state lasers2 because of the strong absor
tion it generates in spectral regions normally devoid
ground-state optical transitions in concentrated rare-e
and transition-metal crystals. Materials displaying the a
lanche phenomenon universally exhibit cross-relaxation
namics in connection with an excited-state optical resona
By tuning light into coincidence with an excited-state a
sorption resonance and providing sufficient power density
exceed the avalanche threshold, intense luminescence c
generated at wavelengths shorter than the incident one.

Most earlier investigations focused on population inv
sion conditions in avalanche systems. Only a few stud
have examined the nonlinear response3,4 associated with ava
lanche dynamics. In an earlier publication,5 we reported
measurements of nonlinear refractive indices as a functio
incident intensity, using a two-beam coupling approa
Here we describe experimental observations of a previo
unreported characteristic6 of avalanche nonlinearities
namely critical slowing down of the effective response tim
We furnish the theoretical basis necessary to understand
result, together with a detailed explanation of the freque
dependence of the nonlinear refractive index. Avalanche
conversion is shown to be an example of surprising, but q
general, dynamics in which the refractive index changes
sociated with polarization on an excited-state resonance
primarily real, controlled by the off-resonant contributio
from weak ground-state absorption.

II. THEORY

A. Steady-state dynamics

To formulate time-dependent analysis of dynamics in
avalanche system, it is first necessary to establish a ste
state description of the occupation of energy levels. To
end we begin by considering the atomistic model of the a
lanche process illustrated in Fig. 1. The basic dynamics c
sist of excitation on an excited-state transition, followed
internal relaxation to a level which participates in cross
laxation with a second atom in its ground state. The Ham
tonian for such a system can be written asH5H01H int
whereH0 is the unperturbed Hamiltonian andH int describes
550163-1829/97/55~14!/8776~8!/$10.00
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its interaction with the field~Hatom-field52m•E! and with
other atoms~Hatom-atom!. Treating relaxation processes oth
than cross relaxation phenomenologically, the equation
motion for the density matrix is

i\ṙ5@H,r#1relaxation terms. ~1!

Hence equations for the temporal evolution of individual
ements of the density matrix are

ṙ115g2r221g31r331g41r442ar11r33

1br22
2 2BI~r112r33!, ~2!

ṙ2252g2r221g32r331g42r4412ar11r33

22br22
2 2 iV24r421 iV42r24, ~3!

ṙ3352g3r331g43r442ar11r331br22
2 1BI~r112r33!,

~4!

ṙ4452g4r441 iV42r242 iV24r42, ~5!

ṙ245~ iv422G42!r242 iV24~r442r22!, ~6!

FIG. 1. Schematic illustration of the basic dynamics in the a
lanche model. Absorption of light on the transition between sta
u2& andu4& is followed by internal relaxation to stateu3& from which
cross relaxation with a ground-state neighbor can occur.
8776 © 1997 The American Physical Society
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r425r24* . ~7!

In these equations,v42 is the optical transition frequenc
between stateu2& and u4&, thegi is the population decay rat
of level i ~i52,3,4!, G42 is the dephasing rate of the optic
transition~including dephasing caused by energy migratio!,
a is the cross-relaxation coefficient, andb is the coefficient
for the reverse reaction.B is the Einstein coefficient o
stimulated absorption and emission, andI is the input inten-
sity.

Taking the input field to be of the formE5Ẽe2 ivt1c.c.,
the matrix element of the atom-field interaction in the rot
ing wave approximation can be written as

V245V42* 5^2uHatom-fieldu4&5 1
2 V24e

ivt. ~8!

The quantityV24522m24Ẽ* /\ is related to the intensity ac
cording to

I5
1

2
«cu2Ẽu25

«c\2

2m24
2 uV24u2, ~9!

wherem245^2u2er u4& is the transition dipole moment,« is
the dielectric constant of the medium,c is the speed of light
in vacuum, and\ is Planck’s constant.

In a closed system we can easily solve for steady-s
behavior. The results are

r445 fr22, ~10!

r335kr221
1
2 g, ~11!

r225
2a12Aa1224a2a0

2a2
. ~12!

The ground-state occupation is determined by the clos
relationr111r221r331r4451. For convenience in simplify-
ing these expressions, several parameters have been
duced:

f5
1/2uV24u2G42/g4

D21G42
2 11/2uV24u2G42/g4

, ~13!

g5
4B8uV24u2

g31g3114B8uV24u2
, ~14!

k52g
11 f

2
1

~g432g41! f2g2

g31g31
~12g!, ~15!

a05g@a~12 1
2 g!1 1

2 g32#, ~16!

a152g22~g411g43! f1@g3212a~12g!#k2ag~11 f !,
~17!

a2522a~11 f1k!k22b, ~18!

The quantityB8 in Eq. ~14! is a scaled Einstein coefficien
given byB85BI/uV24u

2.
Notice that the quantityg is related to the off-resonanc

absorption rate. Asg approaches zero, the appearance
avalanche emission above a certain intensity becomes m
and more abrupt, although the value of the threshold int
-

te

re

tro-

f
re
n-

sity changes very little. In the limitg50, the occupation of
the excited state can be written as

r225
2a12ua1u

2a2
. ~19!

Clearly, for a1,0 one obtainsr2250, whereas fora1.0
one finds the nonzero valuer2252a1/a2 , and the excited
state becomes occupied. In this limit the boundary of
dynamical phase transition which occurs at avalanche thr
old is well defined and given simply by the conditiona150.
The threshold does not depend sensitively on detuning f
the ground-state transition under these conditions, but d
depend strongly on detuning from the excited-state re
nance. When dephasing and detuning are included,
threshold condition for avalanche occurrence can be give
terms of a threshold value forf which is

f th5
g2~a1g3!

~a2g31!~g432g41!2~g31g31!g41
. ~20!

To complete these results we add the solution for the
diagonal elementr24, which is of the formr245r̃24e

ivt, r̃24
being its slowly varying amplitude. Writing out this ampl
tude explicitly in terms of real and imaginary parts accordi
to r̃245u1 iv, the expectation value of the atomic polariz
tion can then be determined from the relation

p~ t !5Tr~rm!5m24~u2 iv !e2 ivt1c.c., ~21!

for wavelengths in the vicinity of the avalanche transitio
The solutions foru andv are given by

u5
Dg4

V24G42
fr22, ~22!

v5
g4

V24
fr22. ~23!

The macroscopic nonlinear polarization densityP(t)
5Np(t) has a slowly varying amplitude given b
P̃(v)5Nm24(u2 iv) from which the effective nonlinea
susceptibility can be determined. This is accomplished
first identifying the full nonlinear susceptibilityx~NL! accord-
ing to the relationP̃~NL!~v!5x~NL!~v!Ẽ~v!, and then picking
out the effective susceptibilityxeff

~3!~v! using the correspon
dence x~NL!~v!Ẽ~v!5xeff

~3!uẼ(v)u2Ẽ(v). The resulting ex-
pression for the effective third-order susceptibility is

xeff
~3!~v!52N

\g4fr22

2G24uẼu4
~D2 iG24!. ~24!

Notice that the real part of this expression is zero exac
on resonance~D50!. This is the usual expectation for optica
response in two-level systems.7

B. Time-dependent dynamics

For an avalanche system which is not in a steady state
nonlinear nature of the dynamical equations suggests
numerical techniques must be used to solve for system e
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8778 55Q. SHU AND S. C. RAND
lution. However when changes are slow or small, an anal
approach is still possible, based on linearization of the
namical equations.8

The basis for the linearization method is illustrated in F
2. This diagram shows a (r8 ,r̃) phase space of solutions t
the equations of motion of the density matrix for two inp
intensitiesI and I1D. Initially, the system resides in stead
stateA. When a small intensity stepDI is applied to the
system att50, its state is displaced toB and subsequently
follows a nonlinear trajectory to reach a new steady stateC,
as time progresses. IfDI is small enough, we can approx
mate this evolution using the tangent atB. Then, the lineBD
replaces the nonlinear trajectory, permitting us to find a
ear approximation for the new steady state of the syst
Final results were obtained by successive approximation
the limit of DI→0.

In the rate equation limit, the earlier dynamical equatio
become

ṙ2252g2r221g32r331g42r4412ar11r3322br22
2

2B24I ~r222r44!, ~25!

ṙ3352g3r331g43r442ar11r331br22
2 1B13I ~r112r33!,

~26!

ṙ4452g4r441B24I ~r222r44!, ~27!

B24 and B13 are the effective pumping rates on transitio
u2&→u4& and u1&→u3&, respectively.

Locally linearized versions of these equations9 are ob-
tained with the following substitutions:

ṙ i i→@ ṙ i i1 ṙ i i ~0!#/2, ~28!

r i ir j j→@r i ir j j ~0!1r i i ~0!r j j #/2, ~29!

r i i→@r i i1r i i ~0!#/2 ~30!

Indices i , j can both take on the values 2, 3, or 4. Aft
substitution, the equations become

ṙ225a22r221a23r331a24r441c2 , ~31!

FIG. 2. Phase diagram of temporal evolution in a nonlinear
namic system, illustrating the idea of linearization of the equat
of motion for the density matrixr. Initially the system resides in
stateA, but is perturbed by an intensity change which causes
become nonzero. The system subsequently evolves to stateC, for
which pointD is an adequate approximation for smallDI .
ic
-

.

-
.
in

s

ṙ335a32r221a33r331a34r441c3 , ~32!

ṙ445a42r221a43r331a44r441c4 . ~33!

The coefficients are defined as follows:

a2252@g21B24I14br22~0!12ar33~0!#, ~34!

a235g3212a22ar22~0!24ar33~0!22ar44~0!,
~35!

a245g421B24I22ar33~0!, ~36!

c252~g21B24I !r22~0!1~g3212a!r33~0!

1~g421B24I !r44~0!2 ṙ22~0!, ~37!

a3252@B13I22br22~0!2ar33~0!#, ~38!

a3352@g312B13I1a2ar22~0!22ar33~0!2ar44~0!#,
~39!

a345g432B13I1ar33~0!, ~40!

c352B13I2B13Ir22~0!2~g312B13I1a!r33~0!

1~g432B13I !r44~0!2 ṙ33~0!, ~41!

a425B24I , ~42!

a4350, ~43!

a4452g42B24I , ~44!

c45B24Ir22~0!2~g41B24I !r44~0!2 ṙ44~0!. ~45!

Initial population densities required for the coefficients
Eqs. ~31!–~33! are determined by steady-state values
quired prior tot50 as determined in Sec. II A, for a specifie
intensity level. Initial time derivatives are calculated by su
stituting these initial populations directly into Eqs.~25!–
~27!.

The equations of motion can now be written in a conv
nient matrix form:

ṙ5Ar1c. ~46!

Here

r5S r22
r33
r44

D , A5S a22a32
a42

a23
a33
a43

a24
a34
a44

D , c5S c2c3
c4
D .

Applying the method of Laplace transforms, and represe
ing the transform ofr byR(s), the equation of motion yields

sR~s!2r~0!5AR~s!1
1

s
c. ~47!

The Laplace transform of the solution is therefore

R~s!5~S2A!21Fr~0!1
1

s
cG , ~48!

whereS is s times the unit matrix andr~0! is the initial value
of r.

-
n

o
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R(s) may be assumed to consist of a transient part an
steady-state part. That is,R(s)5Rtr(s)1Rss(s). The steady-
state part is readily identified asRss(s)52(1/s)A21c since
r~`!5lims→0@sR(s)#52A21c. The remainder of the solu
tion transform must be the transient response. Conseque
the i th element of this transient part of the vectorRtr(s) is

Ri
tr~s!5

mis
21nis1 l i

s31Ms21Ns1L
, ~49!

wheremi , ni , I i , M , N, andL are all functions of element
of A, defined in the Appendix.

In the long-time limit~s→0!, Rtr(s) can be analyzed by
partial fractions, or by the expansion of Eq.~49! to first order
in s. Comparing the result

Ri
tr~s!5

1

L/ l i~N/L2ni / l i !

1

s1
1

N/L2ni / l i

~50!

with the general form of a transformed exponential, nam
L$ceat%(s)5c(s2a)21, where c and a are constants, we
find an effective time constant of

t i5
N

L
2
ni
l i

~51!

for level i . Calculations of the effective time constantt2 ~for
level 2! versus intensity in Fig. 3 reveal a dramatic ‘‘slowin
down’’ at the avalanche threshold. The inset of Fig. 3 sho
that t2 in fact diverges at a critical intensity as the groun
state absorption rateB13 approaches zero. This is a key res
of the present research.

C. Wavelength dependence

A significant limitation of conventional analyses of th
avalanche effect is that off-resonant excitation from
ground state which provides the seed population in the
sorptive excited state is ignored. This omission is justifi
when steady-state populations are the only quantities of

FIG. 3. The effective relaxation time of stateu2& versus input
intensity. The population difference~r222r44! is graphed for direct
comparison of the peak in the time constant with the threshold
avalanche absorption. Inset: Divergence of the response timet2 as
the ground-state absorption rateB13 approaches zero, calculate
numerically.
a
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y
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terest, for they depend negligibly on initial conditions~such
as excited-state occupation!. However to understand th
wavelength dependence of the nonlinear refractive indic
the nonlinear dispersion, it is necessary to account for
initial ~ground-state! absorption step in the avalanche proce
because of a surprising enhancement of the off-reson
ground-state polarization by the large excited-state pop
tions generated through avalanche cross relaxation.

In this section, the important role of the off-resonant a
sorption from the ground state which initiates the avalan
in determining polarization properties of the system is exa
ined. Rather than calculating populations and polarizati
from a five-level model which incorporates two optical tra
sitions explicitly, it is very helpful to solve for the nonlinea
dispersion in an equivalent two-step fashion using a qu
three-level model which renders the basic physics m
more obvious. To highlight the unexpectedly important ro
of the ground-state transition in determining nonlinear d
persion, we reduce the basic avalanche model to that sh
on the right side of Fig. 4, in which all excited states but o
are replaced by an incoherently pumped reservoir. The in
herent pumping rateL1 is due exclusively to the nonradiativ
process of cross relaxation, whereasL2 contains contribu-
tions from both cross relaxation and natural decay betw
levels. Both are functions of intensity. We show that detu
ing from the ground-state transition determines whether
nonlinear response is absorptive or dispersive.

After simplifying Eqs.~2!–~7! to reflect the model in Fig.
4, the equations of motion yield

ṙ115g21r222Vv2L150, ~52!

ṙ2252g21r221Vv1L250, ~53!

r8 2152~G212 iD!r̃211
1
2 iV~r222r11!50. ~54!

D5v2v21 is the detuning of incident light at frequencyv
from the transition frequencyv21 between levels. The clo
sure relationr111r221rr51 accounts for the population
densityrr circulating in the avalanche reservoir. The res
voir populationrr can serve as a free parameter or may

f

FIG. 4. A simplified model for the description of complex no
linear susceptibility in avalanche systems. On the left is a multile
sketch reflecting details of avalanche dynamics. On the right
quasi-two-level model which retains aspects essential for un
standing the nonlinear dispersion of avalanche nonlinearities.
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8780 55Q. SHU AND S. C. RAND
determined explicitly from a multilevel model which take
the second photon interaction and cross relaxation into
count. That is

r r5(
i

r i i ,

wherei runs over the indices of levels other thanu1& and u2&
in the full, microscopic model.

UsingR to denote the rate per atom of decay to levelu2&
from the reservoir, we can apply the steady-state rela
L15L25Rr r to solve Eqs.~52!–~54! for r11, r22, andr21:

r115
D21G21

2 11/2uVu2G21/g21

D21G21
2 1uVu2G21/g21

2
~11R/g21!~D21G21

2 !11/2uVu2G21/g21

D21G21
2 1uVu2G21/g21

r r , ~55!

r225
1/2uVu2G21/g21

D21G21
2 1uVu2G21/g21

1
~D21G21

2 !R/g2121/2uVu2G21/g21

D21G21
2 1uVu2G21/g21

r r , ~56!

r̃215
~1/2!V~D2 iG21!

D21G21
2 1uVu2G21/g21

2
~1/2!Q~D2 iG21!

D21G21
2 1uVu2G21/g21

3S 11
2R

g21
D r r . ~57!

The effective susceptibility may be determined fro
P̃~v!5«0xeff~v!Ẽ. By decomposing the expression fo
xeff~v! into linear and nonlinear parts usin
xeff~v!5x~1!~v!1xeff

~3!~v!uẼu2, where the linear portion is
given by the usual expression

x~1!~v!52
Num12u2\21«0

21~D2 iG21!

D21G21
2 ,

the effective nonlinear susceptibility is found to be

xeff
~3!~v!5F4Num12u4\23«0

21~D2 iG21!G21/g21

~D21G21
2 !~D21G21

2 1uVu2G21/g21!

1
4Num12u4\23«0

21~D2 iG21!~112R/g21!

D21G21
2 1uVu2G21/g21

3~r r /uVu2!G . ~58!

Notice that this result is quite different from the effectiv
susceptibility in Eq.~24!, which overlooked the ground-stat
transition. At the avalanche resonance, the excited-s
detuning D8 is zero. This means D85v2vba
5D2(vba2v21)50, with the result thatD5vba2v21. Un-
der these conditions, the reservoir population is maximi
and the real component of the nonlinear susceptibility
largeon resonance. In fact, wheneverD5vba2v21.G21, the
real part exceeds the imaginary part exactly on resonanc
c-

n

te

d
s

.

A direct comparison of the predicted behavior of nonli
ear susceptibility components at a ground-state resona
~D50! and at an avalanche transition~D850! is made in Fig.
5. For this plot, the reservoir populationrr was taken to have
the steady-state value determined from the five-level mo
in the left side of Fig. 4. Notice that the real compone
passes through zero forD50 ~ground-state transition!
whereas it exhibits a maximum forD850 ~excited-state reso-
nance!. This is a second key result of the present researc

III. EXPERIMENT AND RESULTS

Avalanche upconversion can readily be observed in 1.
Tm:LiYF4 crystals at room temperature using dye laser e
citation at 648 nm.10 In this work we measured the nonlinea
indices and characteristic response time of the avalan
nonlinearity in this material by a two-beam coupling tec
nique. Details of the experimental method, analysis, and v
ues of the induced indices have been described elsewhe11

Here we report on the temporal response and nonlinear
persion over a wide wavelength range. Both these aspec
avalanche dynamics show unique features which provide
important basis for comparison with theory.

Figure 6 is a plot of the experimental response time m
sured in 1.5% Tm:LiYF4 as a function of incident intensity
The avalanche threshold occurs at 1 W/cm2. The important
thing to notice is that both above and below the thresh
intensity, the medium response is considerably faster tha
is at the critical point. This indicates a dramatic slowin
down of the effective lifetime of the absorptive excited sta
right at the avalanche threshold.

By performing ultrahigh resolution scans of the beam
coupling spectrum at many different wavelengths in the r
spectral region, additional results shown in Figs. 7 and
were obtained. The traces shown in Fig. 7 cover the reg
from the ground-state resonance near 688 nm to the exci
state resonance near 648 nm. It is immediately evident fr
the trend in their shapes, that the refractive index chan

FIG. 5. Calculation of the real and imaginary components of
avalanche-induced nonlinear susceptibility. Parameters used in
calculation wereG215231012 s21 and g21523108 s21 ~roughly
appropriate for the3H6→3F3 transition!, and vba2v215231013

s21, uVu25331018.
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55 8781CRITICAL SLOWING DOWN AND DISPERSION OF . . .
induced by incident light vary from primarily absorptive
688 nm to primarily dispersive at 648 nm.

Quantitative analysis of the real and imagina
components11 of these and other two-beam coupling spec
in the range 640–700 nm yielded the results shown in Fig
In this figure it is somewhat easier to see that the real in
goes through zero at the ground-state absorption reson
near 688 nm. By contrast, when the wavelength is tuned
the avalanche transition at 648 nm, the real index acquir
large value, exceeding the imaginary index by a factor o

FIG. 6. Experimental response time of the avalanche med
versus intensity, obtained by two-beam coupling.

FIG. 7. Beam coupling spectra at different wavelengths betw
the ground-state absorption at 688 nm and the avalanche reson
at 648 nm.
a
8.
x
ce
to
a
.

m

n
nce

FIG. 8. Decomposition of the nonlinear susceptibilities dete
mined by two beam coupling into real~diamonds! and imaginary
parts~open circles!. The spectral range includes an avalanche res
nance at 648 nm and ground-state absorption at 688 nm. The low
trace gives the polarized absorption spectrum (EiC) taken at room
temperature which was used to correct the two-beam coupling s
nal in obtaining the nonlinear indices.

FIG. 9. ~a! Decomposition of the real nonlinear index~filled
circles! into symmetric and antisymmetric parts. The imaginary in
dex is also shown~open circles!, but is well described by a single
Gaussian. Note the small relative shift between the experimen
peaks of the two indices.~b! Schematic diagram showing the quali-
tative result of combining the nonlinear response associated w
both optical transitions giving rise to avalanche absorption.
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8782 55Q. SHU AND S. C. RAND
IV. DISCUSSION

The significant increase that is observed in optical
sponse time at avalanche threshold typifies behavior of
tems undergoing magnetic12 or structural13 phase transitions
It is well known, for example, that the characteristic time
spin correlations in interacting spin systems undergoes c
cal slowing down14 at order-disorder transitions. The pha
transition in our system consists of the sudden appearanc
an excited-state population above a critical intensity and
curs at the threshold intensity determined by Eq.~20!. The
temporal response time does indeed diverge~t→`! as the
ground-state absorption rate approaches zero. Hence we
to this as critical slowing down. A spin analogy may b
particularly apt, since optical cross relaxation, in which
first atom undergoes nonradiative deexcitation while a s
ond, coupled atom conserves energy by making a dip
transition to an excited state, is formally equivalent to se
lar spin-spin interactions. The critical role of temperature i
spin-ordering transition is replaced here by a critical dep
dence on optical intensity. Certainly it would be interesti
to explore adaptations of the continuous-spin Ising mode
avalanche dynamics. Also, additional experiments of
type we have reported here should be very fruitful for mo
detailed studies of avalanche critical exponents and phen
ena.

Figure 9~a! shows the result of a decomposition of th
measured indices into polarization contributions arising fr
-
s-

f
ti-

of
c-

fer

c-
le
-
a
-

o
e
e
m-

the two optical transitions in the problem. Figure 9~b! shows
schematically how the two contributions add to give
slightly asymmetric real component and an imaginary co
ponent which is diminished by an excited-state contribut
of opposite sign. Notice that the decomposition accounts
isfactorily for the slight asymmetry observed in the real
dex peak. The real index peak is shifted with respect to
imaginary index curve due to a small dispersively shap
contribution from the resonant excited-state transition.

These findings are in excellent agreement with the qu
two-level theory of Sec. II C. Because details of the cro
relaxation dynamics are omitted in this model of nonline
dispersion, it can be concluded that the predominantly r
nonlinear susceptibility encountered in our experiments
the excited-state absorption resonance is not limited to a
lanche systems. Rather, it is a property of all systems
which excitation greatly detuned from any ground-state tr
sition nevertheless generates large excited-state populat
Avalanche systems provide merely one example where
occurs, with the cross-relaxation dynamics constituting
mechanism whereby excited states develop large populat
nonradiatively.
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APPENDIX

Explicit expressions for the quantities in Eq.~49! are

m25x21@2a33a44c21a23a44c31~a24a332a23a34!c4#1r22~0!, ~A1!

m35x21@~a32a442a42a34!c21~a42a242a22a44!c31~a34a222a24a32!c4#1r33~0!, ~A2!

m45x21@a42a33c22a23a42c31~a32a232a22a33!c4#1r44~0!, ~A3!

n25x21@~a33
2 a441a33a44

2 1a32a23a442a42a23a341a42a24a33!c22a23a44~a221a331a44!c3

1~a23a342a24a33!~a221a331a44!c42~a331a44!xr22~0!#1a23r33~0!1a24r44~0!, ~A4!

n35x21@~a42a342a32a44!~a221a331a44!c21~a32a23a442a42a23a342a24a42a222a44a42a241a22
2 a441a44

2 a22!c3

1~a24a322a34a22!~a221a331a44!c4#1a32r22~0!2~a221a44!r33~0!1a34r44~0!, ~A5!

n45x21@2a42a33~a221a331a44!c21a23a42~a221a331a44!c31~a22
2 a331a42a24a331a22a33

2 2a32a23a222a33a32a23

2a42a23a34!c4#1a42r22~0!2~a221a33!r44~0!, ~A6!

l 25x21@~2a33
2 a44

2 1a44a42a23a341a33a42a23a342a33
2 a42a242a44

2 a32a23!c21a23~2a42a23a342a44a42a241a42a24a331a44
2 a22

1a33a44
2 !c31~a24a33

2 a221a23
2 a34a321a24a32a23a442a23a34a22a332a23a34a22a442a23a34a33a441a24a33

2 a44

2a24a33a32a23!c4#1a33a44r22~0!2a23a44r33~0!1~a23a342a24a33!r44~0!, ~A7!
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l 35x21@~a32a44
2 a221a32a44

2 a332a32a44a42a241a32a42a24a332a34a42a22a332a34a42a22a442a34a42a33a441a34a42
2 a24!c2

1~2a24a42a32a232a24
2 a42

2 2a22
2 a44

2 1a22a42a23a342a44
2 a32a231a44a42a23a3412a24a42a22a44!c31~a34a32a23a44

2a34
2 a42a231a34a42a24a331a34a22

2 a331a34a22
2 a442a34a22a32a232a34a22a42a242a24a32a22a332a24a32a22a44

2a24a33a32a441a24a32
2 a231a24

2 a32a42!c4#1~a42a342a32a44!r22~0!1~a22a442a42a24!r33~0!1~a24a322a34a22!r44~0!,

~A8!

l 45x21@a42~2a42a23a342a33a32a231a22a33
2 1a33

2 a441a32a23a44!c22a42a23~a22a332a32a231a22a441a33a442a42a24!c3

1~2a33
2 a42a241a22a42a23a341a33a42a23a342a24a42a32a232a22

2 a33
2 12a22a33a32a232a32

2 a23
2 !c4#2a42a33r22~0!

1a42a23r33~0!1~a22a332a32a23!r44~0!, ~A9!

M52~a221a331a44!, ~A10!

N5a22a332a32a231a22a441a33a442a24a42, ~A11!

L5x, ~A12!

where

x5a32a23a441a42a24a332a42a23a342a22a33a44.
e,

S
nd
6)

-
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