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Critical slowing down and dispersion of avalanche upconversion dynamics

Q. Shu and S. C. Rand
Division of Applied Physics, 1049 Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109-1120
(Received 23 September 1996

The temporal response time on an avalanche upconversion transition is shown to undergo critical slowing
down near the avalanche threshold. Also, the nonlinear refractive index is predominantly real, despite the
resonant nature of the avalanche phenomenon. These findings are in excellent agreement with density-matrix
analyses showing that cross relaxation dramatically alters the effective excited-state lifetime and that off-
resonance absorption curiously dominates the wavelength dependence of the nonlinear refractive index.
[S0163-18207)04214-9

I. INTRODUCTION its interaction with the field(H jom-iel™ —#-E) and with
other atomsH ;om-aton- Treating relaxation processes other
Since its discovery,avalanche upconversion has been ofthan cross relaxation phenomenologically, the equation of
interest for solid-state lasérbecause of the strong absorp- motion for the density matrix is
tion it generates in spectral regions normally devoid of
ground-state optical transitions in concentrated rare-earth ip=[H,p]+relaxation terms. D
and transition-metal crystals. Materials displaying the ava- _ ) o
lanche phenomenon universally exhibit cross-relaxation dyHence equations for the temporal evolution of individual el-
namics in connection with an excited-state optical resonanc&ments of the density matrix are
By tuning light into coincidence with an excited-state ab- .
sorption resonance and providing sufficient power density to P11= Y2P22 ¥31P33F Ya1Pa4— AP11P33
exceed the avalanche threshold, intense luminescence can be + BpZy—Bl(pri—ps3) )
generated at wavelengths shorter than the incident one. P22 P11~ P33);
Most earlier investigations focused on population inver- )
sion conditions in avalanche systems. Only a few studies P22= "= Y2P22t YaoP3at Vazpast 2ap11pzs
have examined the nonlinear respotfsassociated with ava- _ 2 . :
lanche dynamics. In an earlier publicatibrwe reported 2Bp2= Vawpurt Vazpaa, @
measurements of nonlinear refractive indices as a function of . )
incident intensity, using a two-beam coupling approach. P33=~ YaP3st YasPas— @pripast Bp2ot Bl(p11—paa),

Here we describe experimental observations of a previously 4
unreported characteristic of avalanche nonlinearities, _

namely critical slowing down of the effective response time. Pas= — YaPasT 1V 420241V 24p42, )
We furnish the theoretical basis necessary to understand this

result, together with a detailed explanation of the frequency p24= (104~ T 42) poa—iV o paa— p22), (6)

dependence of the nonlinear refractive index. Avalanche up-

conversion is shown to be an example of surprising, but quite

general, dynamics in which the refractive index changes as- 14>
sociated with polarization on an excited-state resonance are

primarily real, controlled by the off-resonant contributions

from weak ground-state absorption.

Il. THEORY 13>
A. Steady-state dynamics
To formulate time-dependent analysis of dynamics in an f— 12>
avalanche system, it is first necessary to establish a steady-
state description of the occupation of energy levels. To this
end we begin by considering the atomistic model of the ava- 11>

lanche process illustrated in Fig. 1. The basic dynamics con-
sist of excitation on an excited-state transition, followed by
internal relaxation to a level which participates in cross re- F|G. 1. Schematic illustration of the basic dynamics in the ava-
laxation with a second atom in its ground state. The HamilHanche model. Absorption of light on the transition between states
tonian for such a system can be written lds=Hgy+H; |2) and|4) is followed by internal relaxation to stat8 from which
whereH, is the unperturbed Hamiltonian amt],, describes cross relaxation with a ground-state neighbor can occur.
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sity changes very little. In the limig=0, the occupation of

] ) ) N the excited state can be written as
In these equationse,, is the optical transition frequency

between staté?) and|4), the y; is the population decay rate
of leveli (i1=2,3,4, I'y, is the dephasing rate of the optical
transition(including dephasing caused by energy migration
«a is the cross-relaxation coefficient, agds the coefficient

for the reverse reactiorB is the Einstein coefficient of one finds the nonzero valye,=—a,/a,, and the excited

stimulated absorption and emission, dnié the input inten-  state becomes occupied. In this limit the boundary of the
sity. ) . ~ _iut dynamical phase transition which occurs at avalanche thresh-
Taking the input field to be of the forE=Ee "“’+c.c.,  o|d is well defined and given simply by the conditiap=0.
the matrix element of the atom-field interaction in the rotat-The threshold does not depend sensitively on detuning from
ing wave approximation can be written as the ground-state transition under these conditions, but does
i depend strongly on detuning from the excited-state reso-
_\/* _ _1 1wt
Vaa= V42_<2|"1f“0m-ﬁe'fj4>_ 2 D208 (8) nance. When dephasing and detuning are included, the
The quantityQ,,= —2u,,E*/% is related to the intensity ac- threshold condition for avalanche occurrence can be given in

Pa2= P34 (7)

—a;—|ay

2a, (19

P22=

Clearly, fora;<0 one obtaing,,=0, whereas fola;>0

cording to terms of a threshold value fdrwhich is
1 ~ _ &Ch? y2(a+y3)
| =5 ec|2E|?= Q4% 9 fin= . 20
5 2C[2E] 2u, |Q2d © " (a—y30) (vaz— va) — (v3t ¥3) v 0

where u,,=(2|—er|4) is the transition dipole moment, is
the dielectric constant of the mediumjs the speed of light diagonal elemenp,,, which is of the formp24=524e""t, Do
in vacuum, and: is Planck’s constant. being its slowly varying amplitude. Writing out this ampli-
In a closed system we can easily solve for steady-statgide explicitly in terms of real and imaginary parts according
behavior. The results are to p,,=U-+iv, the expectation value of the atomic polariza-
tion can then be determined from the relation

To complete these results we add the solution for the off-

pas=fp2z, (10) '
P()=Tr(pu)=pou—ivie '“'+c.c., (21)
p3zs=Kppt30, (11 ) o N
for wavelengths in the vicinity of the avalanche transition.
—a,— m The solutions foru andv are given by
p22= 2a, : (12
Ay,
The ground-state occupation is determined by the closure Qs Tp22, (22
relation p;1+ poot psstpas=1. For convenience in simplify-
ing these expressions, several parameters have been intro- Ya
duced: v="g. fpaa (23)
24
2
- L2024 T 12! 74 (13) The macroscopic nonlinear polarization densi(t)
A+ T3+ 12054°T 4ol v4” =Np(t) has a slowly varying amplitude given by
P(w)=Npu,(u—iv) from which the effective nonlinear
B 4B’ Q42 susceptibility can be determined. This is accomplished by
9= St 7ot 4B [0 (4 first identifying the full nonlinear susceptibility™-) accord-
ing to the relationlP™Y(w)=yN"(w)E(w), and then picking
1+f (v va)f— 7 out the effective susceptibility3(w) using the correspon-
k=—g——+ m (1-9), (15  dence Y"Y(w)E(w)=x3) E(w)|°E(w). The resulting ex-
LERIREE pression for the effective third-order susceptibility is
ap=9[a(1-39)+ 5 73l (16)
3wy =N 02 i (24)
=7~ (yart m)f+[y32+2a<1—g>]k—ag<1+f( 1)%> 20 54l E|
Notice that the real part of this expression is zero exactly
a,=—2a(l+f+kk—28, (18)  onresonancéA=0). This is the usual expectation for optical

response in two-level systems.

The quantityB’ in Eq. (14) is a scaled Einstein coefficient
given by B’ =BI1/|Q,,>.

Notice that the quantitg is related to the off-resonance
absorption rate. Ag approaches zero, the appearance of For an avalanche system which is not in a steady state, the
avalanche emission above a certain intensity becomes mormnlinear nature of the dynamical equations suggests that
and more abrupt, although the value of the threshold intenAumerical techniques must be used to solve for system evo-

B. Time-dependent dynamics
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A P33= 32020+ 33033 AzaPast Ca, (32
I+ Al .
Pa4= goP2oF Ay3p33t BggPas™ Cy. (33
The coefficients are defined as follows:

p ! 5 850= —[ 72+ Bod +4Bpf 0)+2ap3y(0)],  (34)

[ A23= Y32+ 2a—2ap2(0) —4aps3x(0) — 2apyy(0),
| (35
s—o—> > Q4= Yaot Bog —2 0), 36
0 5 A C D 24= Y427 B24 ap3x0) (36)

Co=— (y21 Bagl ) p2o(0) +(7y32+2a) p33(0)
FIG. 2. Phase diagram of temporal evolution in a nonlinear dy- + (Y42t Bogl ) pas(0) — pon(0), (37)
namic system, illustrating the idea of linearization of the equation

of motion for the density matriy. Initially the system resides in azo=—[B13gl —2B8p2y(0)— aps3(0)], (39

stateA, but is perturbed by an intensity change which causes to
become nonzero. The system subsequently evolves to Gieftar azs= —[ Y3+ 2B13l + a— ap,(0) —2aps3(0) — aps(0)],

which pointD is an adequate approximation for small. (39
lution. However when changes are slow or small, an analytic Ag4= Y43~ B3l + ap33(0), (40)
approach is still possible, based on linearization of the dy-
namical equation$. C3=2B13l — B3l pox(0) — (y3+ 2B 13l + ) p35(0)

The basis for the linearization method is illustrated in Fig. :
2. This diagram shows a(p) phase space of solutions to + (7437 B13l)pad(0) — p3o0), (42)

the equations of motion of the density matrix for two input

intensitiesl andl + A. Initially, the system resides in steady 242=Bad, (42
state A. When a small intensity stepl is applied to the =0 43)
system at =0, its state is displaced B and subsequently a8
follows a nonlinear trajectory to reach a new steady State _

a44= — 74— Badl, (44)

as time progresses. Kl is small enough, we can approxi-
mate this evolution using the tangentatThen, the lineBD _ _ -
replaces the nonlinear trajectory, permitting us to find a lin- Ca=B2dl P2 0) = (74 B2dl )pai(0) = p4d0). (45

ear approximation for the new steady state of the systemninitial population densities required for the coefficients in
Final results were obtained by successive approximations i&gs. (31)—(33) are determined by steady-state values ac-

the limit of Al—0. quired prior tot=0 as determined in Sec. Il A, for a specified
In the rate equation limit, the earlier dynamical equationsintensity level. Initial time derivatives are calculated by sub-
become stituting these initial populations directly into Eq&5)—
. (27).
P22= = YVaP22+ Va3t Yaopast 2ap1ipss—2Bp5, The equations of motion can now be written in a conve-
nient matrix form:
—Boal (p22—pad), (25
) 5 p=Ap+c. (46)
P33= ~ Y3P33T Yampas— ap11p3zt Bpyt Bl (p11—p3a),
Here
(26)
Pa4=— YapaatBog (p2—pas), (27) P22 Q2 Qg3 dApy C2
. . L = , A=|azp azg azg|, c=|cC
B,, and B,; are the effective pumping rates on transitions p=| Pas 2 798 7 3
Paa Qg2 Qa3 Qg Cq

|2)—|4) and|1)—|3), respectively.
Locally linearized versions of these equatidrae ob- Applying the method of Laplace transforms, and represent-

tained with the following substitutions: ing the transform op by R(s), the equation of motion yields
oii —[ pii + pii (0)1/2, 28 1
pii—Lpii +pii (0)] (29) SR(S)— p(0)=AR(s) + g c. 47)
piipji—Lpiip;j(0) +pii(0)pj; 1/2, (29)
e e ) ! The Laplace transform of the solution is therefore
pi—Lpii +pii(0)]/2 (30) 1
Indicesi,j can both take on the values 2, 3, or 4. After R(S):(S_A)_l[P(O)Jrg Cl (48)

substitution, the equations become o _ _ _ o
whereS is s times the unit matrix angd(0) is the initial value

P22=8pop 2yt Bpapagt papastCy, (31  of p.
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FIG. 4. A simplified model for the description of complex non-
linear susceptibility in avalanche systems. On the left is a multilevel
sketch reflecting details of avalanche dynamics. On the right is a
quasi-two-level model which retains aspects essential for under-
Ftanding the nonlinear dispersion of avalanche nonlinearities.

o 1 2 3 4 5 6 7 8

Pump Intensity I, (arb. units)

FIG. 3. The effective relaxation time of staf® versus input
intensity. The population differend@,,—pa4) is graphed for direct
comparison of the peak in the time constant with the threshold o

avalanche absorption. Inset: Divergence of the responsejnas . L .
the ground-state absorption raBy; approaches zero, calculated terest, for they depend negligibly on initial conditiofssich
numerically. as excited-state occupationHowever to understand the

wavelength dependence of the nonlinear refractive indices,

R(S) may be assumed to consist of a transient part and H]e nonlinear diSperSion, |t is nece.ssary to account for the
steady-state part. That iB(s) =R"(s) +R°(s). The steady- initial (ground-stateabsorption step in the avalanche process
state part is readily identified &°Y(s) = —(1/s)A~'c since  because of a surprising enhancement of the off-resonant
p(@)=limg_o[SR(s)]=—A"'c. The remainder of the solu- 9ground-state polarization by the large excited-state popula-
tion transform must be the transient response. Consequentl{jons generated through avalanche cross relaxation.

theith element of this transient part of the vec®f(s) is In this section, the important role of the off-resonant ab-
sorption from the ground state which initiates the avalanche
. mis?+n;s+1, in determining polarization properties of the system is exam-
RIS = ST Net L’ (49 ined. Rather than calculating populations and polarizations

from a five-level model which incorporates two optical tran-

wherem;, n;, I;, M, N, andL are all functions of elements sitions explicitly, it is very helpful to solve for the nonlinear
of A, defined in the Appendix. dispersion in an equivalent two-step fashion using a quasi-

In the long-time limit(s—0), R"(s) can be analyzed by three-level model which renders the basic physics much
partial fractions, or by the expansion of Eg9) to first order  more obvious. To highlight the unexpectedly important role
in s. Comparing the result of the ground-state transition in determining nonlinear dis-

persion, we reduce the basic avalanche model to that shown
(50) on the right side of Fig. 4, in which all excited states but one
L/L;(N/L=ni /1) 1 are replaced by an incoherently pumped reservoir. The inco-
N/L—n;/l; herent pumping ratd, is due exclusively to the nonradiative
_ _ process of cross relaxation, where&g contains contribu-
with gitie general fO”I‘lOf a transformed exponential, namelyions from both cross relaxation and natural decay between
L{ce™}(s)=c(s—a) *, wherec and a are constants, we |eyels. Both are functions of intensity. We show that detun-

R(s)=

find an effective time constant of ing from the ground-state transition determines whether the
N n nonlinear response is absorptive or dispersive.
= — (51) After simplifying Eqs..(2)—(.7) to reflect the model in Fig.
L I 4, the equations of motion yield
for leveli. Calculations of the effective time constast(for
level 2 versus intensity in Fig. 3 reveal a dramatic “slowing p11=Y21P22— Qv —A,=0, (52

down” at the avalanche threshold. The inset of Fig. 3 shows
that 7, in fact diverges at a critical intensity as the ground-
state absorption ra,; approaches zero. This is a key result
of the present research.

p22=— Ya1p22t Qu+A,=0, (53

p21= — (T = iA)por+ 31Q(po—p1)=0. (54
C. Wavelength dependence
A significant limitation of conventional analyses of the A=w—w,, is the detuning of incident light at frequenay
avalanche effect is that off-resonant excitation from thefrom the transition frequencw,, between levels. The clo-
ground state which provides the seed population in the absure relationp,;+ps+p, =1 accounts for the population
sorptive excited state is ignored. This omission is justifieddensityp, circulating in the avalanche reservoir. The reser-
when steady-state populations are the only quantities of invoir populationp, can serve as a free parameter or may be
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determined explicitly from a multilevel model which takes
the second photon interaction and cross relaxation into ac-
count. That is

-1

Xe‘})(a’)@]\’l”nr hg,™ ) 10757

Pr:2 Pii

wherei runs over the indices of levels other th@h and|2)
in the full, microscopic model.

Using R to denote the rate per atom of decay to lej2!
from the reservoir, we can apply the steady-state relation
A1=A,=Rp, to solve Eqs(52)—(54) for p;1, pyo, @andp,;:

A2+ T3+ 12 QT 51/ yz

pr= 25 20 15 10 5 0 -5 -10
11—
A2+ T 5+ QT 51/ o A (10¥ Hz)
1+ R/ y,) (A2+T3) + 1/2 QT ,/
- ( 7212)( > 2L 5 | | al ¥ Prs (55) FIG. 5. Calculation of the real and imaginary components of an
A +I‘21+|Q| Tl vz avalanche-induced nonlinear susceptibility. Parameters used in the
calculation werel',;=2X10'? s7 and y,;=2x10% s (roughly
20T )y appropriate for thelHg— 3F transition, and wp,— wy;=2X10
P22 N2 T2 1O 1l v 51 |0[2=3x 1018,
2, 12 2
(A%+T )Rl yp— U2 Q[T 51/ 2 (56) A direct comparison of the predicted behavior of nonlin-
AP+ T5,+|Q)2T 51/ yo1 Pr ear susceptibility components at a ground-state resonance
(A=0) and at an avalanche transitigh’ =0) is made in Fig.
g
UDQ(A—iT 1/2)O(A—iT . For this plot, the reservoir populatigh was taken to have
_ (1/2)Q( 1) (1/2)Q( 1) 5. For this plot, th latign taken to h
p21_A2+F§1+|Q|2F21/721_ A2+F§1+|Q|2F21/y21 the steady-state value determined from the five-level model

in the left side of Fig. 4. Notice that the real component
passes through zero foA=0 (ground-state transition
pr - (57 whereas it exhibits a maximum far' =0 (excited-state reso-
nance. This is a second key result of the present research.
The effective__susceptibility may be determined from
P(w)=¢eoxer(w)E. By decomposing the expression for
Xe(w) into linear _ and nonlinear parts using . EXPERIMENT AND RESULTS
Xeft(@)=x(w)+ xSw)|E[>, where the linear portion is
given by the usual expression

2R
1+ —
Y21

X

Avalanche upconversion can readily be observed in 1.5%
Tm:LiYF, crystals at room temperature using dye laser ex-
0y 1 -1 _ citation at 648 nn? In this work we measured the nonlinear
N|p1d %~ "eo "(A—iT5) indices and characteristic response time of the avalanche

A%+ rgl ' nonlinearity in this material by a two-beam coupling tech-
nique. Details of the experimental method, analysis, and val-
ues of the induced indices have been described elsewhere.
Here we report on the temporal response and nonlinear dis-

x(w)=-

the effective nonlinear susceptibility is found to be

@, | ANl *h g YA=IT )T 21/ v21 persion over a wide wavelength range. Both these aspects of
Xeit ()= (A2+T5)(A%+T5,+|Q|%T 51/ 21) avalanche dynamics show unique features which provide an
4r 3 1 _ important basis for comparison with theory.
N AN|p1g*h e (A =T 20) (14 2R/ v51) Figure 6 is a plot of the experimental response time mea-
A2+ 1“%14_ |QI2T 51/ 24 sured in 1.5% Tm:LiYEk as a function of incident intensity.
The avalanche threshold occurs at 1 Wicifhe important
5 thing to notice is that both above and below the threshold
X(pe 19| (58) intensity, the medium response is considerably faster than it

is at the critical point. This indicates a dramatic slowing
Notice that this result is quite different from the effective down of the effective lifetime of the absorptive excited state,
susceptibility in Eq{(24), which overlooked the ground-state right at the avalanche threshold.
transition. At the avalanche resonance, the excited-state By performing ultrahigh resolution scans of the beam-
detuning A’ is zero. This means A'=w—w,, coupling spectrum at many different wavelengths in the red
=A—(wpa— wy1) =0, with the result tha =w,,—wy,. Un-  spectral region, additional results shown in Figs. 7 and 8
der these conditions, the reservoir population is maximizeavere obtained. The traces shown in Fig. 7 cover the region
and the real component of the nonlinear susceptibility isfrom the ground-state resonance near 688 nm to the excited-
largeon resonanceln fact, wheneveA=wy,,— w,,>I',;, the  state resonance near 648 nm. It is immediately evident from
real part exceeds the imaginary part exactly on resonance.the trend in their shapes, that the refractive index changes
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FIG. 6. Experimental response time of the avalanche medium

Wavelength (nm)
versus intensity, obtained by two-beam coupling.

FIG. 8. Decomposition of the nonlinear susceptibilities deter-
induced by incident light vary from primarily absorptive at mined by two beam coupling into reéafiamond$ and imaginary
688 nm to primarily dispersive at 648 nm. parts(open circles The spectral range inclu_des an avalanche reso-

Quantitative analysis of the real and imaginary nance at 648 nm and ground-state absorption at 688 nm. The lower
trace gives the polarized absorption spectri&nQ) taken at room

components' of these and other two-beam coupling spectra ) oo
temperature which was used to correct the two-beam coupling sig-

n th? ra}nge 6.4.0_700 nm yleldeq the results shown in F.Ig' 8r'lal in obtaining the nonlinear indices.
In this figure it is somewhat easier to see that the real index
goes through zero at the ground-state absorption resonance
near 688 nm. By contrast, when the wavelength is tuned to

the avalanche transition at 648 nm, the real index acquires a

large value, exceeding the imaginary index by a factor of 2.

68773 A

6876.2 A

6873.8 A

648 648.2 648.4 648.6
Wavelength (nm)

6869.7 A

6862.1 A

Predicted

6858.6 A ny ()

6803.2 A

6661.7 A

6557.8 A

6482.1A

(b) Frequency Wavelength

L e FIG. 9. (a) Decomposition of the real nonlinear indéfilled
-0, 2 (H) circlt_es) into symmetric an_d antisymr_netric parts. _The imagin_ary in-
dex is also showrtopen circleg but is well described by a single
Gaussian. Note the small relative shift between the experimental
FIG. 7. Beam coupling spectra at different wavelengths betweempeaks of the two indicegb) Schematic diagram showing the quali-
the ground-state absorption at 688 nm and the avalanche resonartegive result of combining the nonlinear response associated with
at 648 nm. both optical transitions giving rise to avalanche absorption.

(@ e



8782 Q. SHU AND S. C. RAND 55

IV. DISCUSSION the two optical transitions in the problem. FiguréBshows

The significant increase that is observed in optical re_schematlcally how the two contributions add to give a

sponse time at avalanche threshold typifies behavior of s slightly asymmetric real component and an imaginary com-
P : y3p o ySponent which is diminished by an excited-state contribution
tems undergoing magnetfoor structural® phase transitions.

It is well known, for example, that the characteristic time of of opposite sign. Notice that the decomposition accounts sat-
. LT p'e, : . isfactorily for the slight asymmetry observed in the real in-
Spin correlatlons In interacting spin systems undergoes Cm'aex peak. The real index peak is shifted with respect to the

cal slowing down* at order-disorder transitions. The phase; '

o . imaginary index curve due to a small dispersively shaped
transition In our system consists of thels.udd_en appearance Qi i tion from the resonant excited-state transition.
an excited-state population above a critical intensity and oc- These findings are in excellent agreement with the quasi-

feunrf g:;hfe;hrgﬁgglgn':gegjgz |?1 %tséglgili(rby Q%pl{smee two-level theory of Sec. Il C. Because details of the cross-
rofnd—state F;bsor tion rate aporoaches zeg)&Hence we re]{erlaxation dynamics are omitted in this model of nonlinear
9 P PP ' c‘ﬁspersion, it can be concluded that the predominantly real

to this as critical slowing down. A spin analogy may be nonlinear susceptibility encountered in our experiments at

Eg:';%?;lyugggr Sclnr:;engrr)ltrlggilag:/?zlerSL?:)i(tzttli%z, vlvnhi\ll::hg:geat-he excited-state absorption resonance is not limited to ava-
9 ; ~~anche systems. Rather, it is a property of all systems in
ond, coupled atom conserves energy by making a dipole

transition to an excited state, is formally equivalent to secu~. hich excitation greatly detuned from any ground-state tran-

lar spin-spin interactions. The critical role of temperature in sition nevertheless generates large excited-state populations.

a . .
spin-ordering transition is replaced here by a critical depen'—A‘\/aIanChe systems provide merely one example where this

dence on obtical intensity. Certainly it would be interesting®ccUS: with the cross-relaxation dynamics constituting the
P : Y. Ny i 9Ymechanism whereby excited states develop large populations
to explore adaptations of the continuous-spin Ising model tg e
: L . nhonradiatively.
avalanche dynamics. Also, additional experiments of the
type we have reported here should be very fruitful for more
detailed studies of avalanche critical exponents and phenom-
ena.

Figure 9a) shows the result of a decomposition of the  This research was sponsored in part by the Air Force Of-
measured indices into polarization contributions arising fronfice of Scientific ResearcfiH. Schlossberg
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APPENDIX

Explicit expressions for the quantities in E49) are

Mp=X [ —833844C2+ 23844C3+ (824833~ A23834) C4] + p22( 0), (Al)
M3 =X (832844~ 842834) C2+ (A42824— A22844) C3+ (A34820— A24232) C4] + p33(0), (A2)
My=X" [ a2835C2 — 823843+ (32823~ 822833 C4] + p1s(0), (A3)

_u—1r( a2 2
Ny=X" [ (8338441 338741 A32823844— Q4222334+ AsB24833) Co— Ap3aa(Apot A3zt A44)C3

+ (223834~ A24833) (A2 Qg3 @44) Ca— (Az3t A4a) XP22A 0) | +A23033(0) + A24p44(0), (A4)

-1 2 2
N3=X""[(Q42834— A32844) (A2pF A3zt A44) Co+ (32823944~ BupR23034— B24842820— A4saz24+ 858441 854825)C3

+ (224830~ A34822) (A2 Q331 @44) Ca] + @320 22( 0) — (Ao A44) p33(0) +A34044(0), (A5)

-1 2 2
Ny=X""[ —ay833(a+ Agzt+ Ass) Co+ AxzasAnoF A33T Ags) C3+ (25,8331 Q4224833+ AxA33— 30823320 A33832823

—842823834)C4] + Au2p22(0) — (Ap+ A33) p44(0), (AB)

_ -1 2,2 2 2 2
lo=X""[(— 233245+ 24484283834 Q332483034 — Q33842824 A4832823) Co T Aoz — Q4223834 — Aag@aBat Au@248331 84327
2 2 2 2
+ a33974) C3 1 (224235827 @53834830F 824237823944~ Q2334822833 Q3834322844 23934833844 24233944

— Ap4833932823) C4 ]+ A33844P 22 0) — 23244033( 0) + (223934~ A24233) p44( 0), (A7)
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3= X" (a3,854820+ 33,85,833— Q30844845824 A308428 24833~ Q3434322833 A34247827844— 3484233447 A3485,824) Co
+(— 44837803~ A5y~ Q5204 ApoRazR0334— AgA32A03 T Qg T 28248458278 40) CaF (B34832825804
—a5,842825+ 834842824835+ 83485, A33+ 3485844~ B34827R378 23~ B34B2R47R04~ BraB3RrR33— A2aB3R07804
— 84833832844 A24A58037+ 85,832842) Ca | + (842834~ A32842) P2A 0) + (822840~ Auz824) p33(0) + (824830~ B3482) P4 0),
(A8)
4= X"y — 840825831~ Aa@aoat ArA53T A5aaT A3282344) Co— AspBpa AosBaz— Aaoat ApsAaaT Az3as— Aszd24)Ca

+(- a§3a4zaz4+ 8228428038341 833842803834 84842837823~ agzags"‘ 22,83383783~ a§2a§3) C4] — a428330,2(0)

+a,823033(0) + (820833~ 832823) p44(0), (A9)
M = — (ay,+ azz+au), (A10)
N = ap,833— @383+ Axpsa+ A33844— 324342, (A11)
L=x, (A12)
where

X= Agp8p3Aaa™t 840824833~ 840823834 820833844
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