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ABSTRACT
InOrder (InO) cores achieve limited performance be-
cause their inability to dynamically reorder instructions
prevents them from exploiting Instruction-Level-Parallelism.
Conversely, Out-of-Order (OoO) cores achieve high per-
formance by aggressively speculating past stalled in-
structions and creating highly optimized issue sched-
ules. It has been observed that these issue schedules
tend to repeat for sequences of instructions with pre-
dictable control and data-flow. An equally provisioned
InO core can potentially achieve OoO’s performance at
a fraction of the energy cost if provided with an OoO
schedule. In the context of a fine-grained heterogeneous
multicore system composed of a big (OoO) core and a
little (InO) core, we could offload recurring issue sched-
ules from the big to the little core, to achieve energy-
efficiency while maintaining performance.

To this end, we introduce the DynaMOS architecture.
Recurring issue schedules may contain instructions that
speculate across branches, utilize renamed registers to
eliminate false dependencies, and reorder memory oper-
ations. DynaMOS provisions little with an OinO mode
to replay a speculative schedule while ensuring program
correctness. Any divergence from the recorded instruc-
tion sequence causes execution to restart in program
order from a previously checkpointed state. On a sys-
tem capable of switching between big and little cores
rapidly with low overheads, DynaMOS schedules 38%
of execution on the little on average, increasing utiliza-
tion of the energy-efficient core by 2.9X over prior work.
This amounts to energy savings of 32% over execution
on only big core, with an allowable 5% performance loss.

Categories and Subject Descriptors
C.1.3 [Architectures]: Heterogeneous systems
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1. INTRODUCTION
Out-of-Order (OoO) cores are ubiquitous today in

mobile phones to servers alike because they can achieve
high single-thread performance on general purpose code.
Their ability to dynamically resolve dependencies and
speculatively issue instructions out of order enables them
to maximize both Instruction Level Parallelism (ILP)
and Memory Level Parallelism (MLP). Unfortunately,
high performance comes at the cost of increased power
consumption. Conversely, In-Order (InO) cores have
lower complexity, allowing them to be significantly more
energy efficient (3.5x) than OoO, but at a slowdown of
more than 2x [1].

To address this disparity, researchers have designed
heterogeneous multi-core processors [2] in which an ap-
plication is mapped to the most efficient core that meets
its performance requirements. ARM’s big.LITTLE [1]
combines a high-performance big (OoO) core and a low-
performance but energy-efficient little (InO) core. This
allows an application to achieve high single-thread per-
formance on the OoO core for phases that can utilize
it, and to switch to the energy-efficient InO core for low
performance phases [3], thereby reducing the overall en-
ergy consumption. Prior work has proposed heteroge-
neous architectures [4, 5, 6, 7] that enable fast switching
between cores at the granularity of 100s of instructions.
This effectively increases the opportunities of using the
more energy-efficient little.

The majority of the performance advantage of an
OoO core over an InO core comes from its ability to
speculate past stalled loads and other long latency in-
structions, eliminate false dependencies between instruc-
tions, and execute instructions out-of-order. An issue
schedule, or schedule, is used to refer to the sequence
in which an OoO issues instructions for execution, after
resolving dependencies and resource constraints. If a
sequence of instructions, or trace, tends to repeat regu-
larly in an application in the same program context, for
example loops, it follows that the schedule created by
an OoO core also tends to repeat. Dynamically recre-
ating identical schedules for the same trace results in
significant wastage of energy. We found that only 19%
of the OoO’s performance advantage is due to its abil-
ity to react to unexpected long latency events, by cre-
ating different schedules for the same trace. Ideally,



81% of its performance could be achieved on an sim-
ilarly provisioned InO core, provided it used a best-
case OoO schedule for each trace and perfectly pre-
dictable control-flow. These results corroborate with
recent work [8] that credit the OoO’s ability to create
good static schedules as the main reason for the perfor-
mance advantages of OoO over InO.

In this paper, we propose Dynamic Migration of Out-
of-order Schedule (DynaMOS ) for a fine-grain, tightly
coupled heterogeneous processor with a big (OoO) core
and an equally provisioned little (InO) core1. Our key
idea is to record, or memoize, a schedule by executing
an instruction trace on a big core and replay the mem-
oized schedule on the InO core for future iterations of
the trace. Since big has optimized these schedules for its
architecture, executing them on an equally provisioned
little will achieve similar high performance. By record-
ing and replaying trace-schedule pairs, we can offload
more execution from the big core to the energy-efficient
little core, without compromising performance. Simi-
larly, prior works reuse OoO schedules to reveal energy
and/or performance benefits either on the same pipeline
[9, 10] or on different, specialized pipelines [11, 12].

We overcome several design challenges en route to
enabling DynaMOS . First, false register dependencies
like Write-After-Write (WAW) and Write-After-Read
(RAW) are handled by register renaming in OoO cores.
In order to preserve program correctness, this renam-
ing must be honored by little. Second, instructions
may have been moved across branches in the memo-
ized schedules. If a conditional branch within a trace
changes its direction from what was assumed while record-
ing the schedule, the trace must be aborted and re-
executed. Third, loads that have been speculatively
moved above older stores that write to the same lo-
cation need to be detected and handled. Finally, inter-
rupts must be handled precisely.

To address these problems, we architect two modes of
execution for the little core: an InO mode where it exe-
cutes instructions in program order, and an OinO mode
where it executes reordered instructions as per big ’s
schedule. OinO is capable of reading a cached schedule,
detecting and resolving false dependencies, and spec-
ulatively issuing memory operations. This allows the
OinO mode to achieve nearly the same performance as
an OoO core2, at a fraction of the energy cost.

This paper makes the following contributions:
• We observe that repeatability of reordered sched-

ules allows us to offload a significant fraction of
big ’s execution to the more energy-efficient little
at a fine-granularity. We outline DynaMOS, an
architecture that can detect and memoize traces
that have repeatable schedules on the big such that
they are readily accessible for execution on little.

• We supplement little with features that empower
it to run an OoO schedule, while ensuring correct
program behavior and precise exceptions handling.

1We adopt ARM’s terminology of big and little for our work,
although our InO little has the same issue width and func-
tional units as big
2OinO stands for an InO core appearing to be OoO

Figure 1: Harnessing heterogeneity for energy-efficiency
in h264ref . Each point represents a trace in program
order, where the black (+) and gray (x) traces have
different and identical issue schedules respectively.

This enables little to nearly achieve big ’s perfor-
mance for memoized traces, while maintaining its
energy-efficiency.

• DynaMOS achieves 38% utilization of little, with
small overheads including an 8% increase in energy
of little. Overall, DynaMOS contributes energy
savings of 32% as compared to having only a big
core, a 2.2x increase over state-of-the-art [5].

2. MOTIVATION
A superscalar big ’s ability to speculatively reorder

instructions comes at a cost of bulky structures like
reorder buffers, reservation stations and complex issue
logic. When there is high variance and uncertainty in
behavior of a trace in terms of its data and control-flow,
this capability of big helps in creating new optimized
schedules in the event of mispredictions. However for
the common case, this work is redundant, as reordered
schedules are repetitive.

2.1 Memoizable Schedules
Applications exhibit phased behavior, and by match-

ing these phases to the core that best executes them,
energy-efficiency can be improved with a minimal im-
pact on performance.

Figure 1(a) illustrates fine-grained phase behavior in
a subset of h64ref’s execution, a compute-intensive bench-
mark from SPECInt 2006 [13] exhibiting predictable
control and data-flow. Each point represents a trace
in program order, with 50 instructions on average, that
has been partitioned into “Run on big” and “Run on
little” categories by an oracle. The oracle observes per-
formances of the traces on big, little and classifies those
that show high performance on OoO to run on big and
those that show no significant performance advantage
on OoO to run on little. An oracle constrained to main-
tain performance at 95% of big can execute at-most 11%
of the application on the more energy-efficient little.

In Figure 1(a), the light-colored (x) traces exhibit a
memoizable schedule running on big . In Figure 1(b)
DynaMOS migrates all the memoized schedules to the
OinO , enabling h264ref to run a majority (77%) of its
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Figure 2: Oracle results estimating the utilization of a
little core both without and with memoized schedules.

execution on little, while maintaining the same perfor-
mance level. Increased utilization of little achieves pro-
portional energy savings.

Figure 2 shows similar opportunities to increase ex-
ecution on little across the SPEC2006 suite. With a
tightly coupled big-little architecture, an oracle that as-
sumes zero switching overhead between the two cores
can schedule 25% of execution on the energy-efficient
little on average, while maintaining a 5% performance
loss target. Supplementing little with an OinO mode
for memoized schedules increases this best-case cover-
age by 2.2x to 80% on average.

2.2 Repeatability of OoO Schedules
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Figure 3: Histogram categorizing program execution
based on how memoizable its OoO schedules are (its
memoizability quotient). A majority of the dynamic
execution falls under the highly memoizable category.

A trace’s schedule on big depends largely on true de-
pendencies between instructions, instruction latencies,
and available resources in the pipeline. Unpredictable
and unexpected memory and branch behavior within a
trace forces the big to dynamically recreate a different
optimized schedule for different instances of the trace.

Figure 3 shows a histogram of dynamic execution seen
across all benchmarks categorized by how repeatable
their OoO schedules are, or their memoizability quo-
tient. We define a trace’s memoizable quotient as the
percentage of its dynamic execution where it exhibited
identical schedule. For instance, the category 90-99 on
X-axis encapsulates all traces that bear identical sched-
ules for greater than 90% of their run-time. Less than
30% of the execution displays schedules with low mem-
oizability while majority (>70%) can be categorized as

having a high memoizable quotient. This tallies with
our intuition, considering that majority of a program is
spent executing loops and their regular data and con-
trol flow causes them to be scheduled in the same way
every iteration. Moreover, the figure illustrates that
most traces fall in either extremes of the memoizability
spectrum, showing potential for accurate, low-cost and
dynamic classification schemes.

3. DYNAMOS DESIGN
The aim of DynaMOS is to maximize energy effi-

ciency of general purpose applications with an allowable
5% performance loss as compared to execution on big.
Our core architecture, based on a Composite Core [4],
executes a single application thread, and includes both
a big OoO and little InO core with the same superscalar
width and number of functional units (FU). The idea
is to empower the InO core to execute the OoO core’s
schedule, allowing it to achieve nearly OoO performance
at a fraction of the energy consumption.

A block diagram of DynaMOS ’s components is shown
in Figure 4 and is further described as follows:

• big detects traces with repeatable schedules and
stores them in a Schedule Trace-Cache (STC) [14]
(Section 3.3).

• An online controller [5] (Section 3.4) observes a
sequence of traces in the current context and mi-
grates execution on the little if it predicts that the
program is entering a micro-phase where either 1)
a significant number of the micro-phase’s traces
are memoizable or 2) the micro-phase shows min-
imal performance advantage on the big .

• little itself can run in one of two modes: InO and
OinO . InO mode fetches instructions from the shared
instruction cache and executes them in program
order. In OinO mode, the core fetches and ex-
ecutes reordered instructions from the STC and
commits them atomically (Section 3.2). In case
of misspeculations within such a trace, the OinO
mode reverts to InO mode and the trace is re-
executed from its start in program order.

The big core plays three important roles in DynaMOS .
First, big determines which traces are memoizable and
encodes these traces in the STC . Second, it executes
traces that exhibit unpredictable schedules. Lastly, it
executes traces that cannot achieve OoO performance
in OinO because of architectural constraints. On the
other hand, traces that can be run in-order without
compromising performance are executed on little in InO
mode. Such traces inherently suffer low performance
because of low ILP, high branch mispredicts and/or de-
pendent cache misses.

3.1 Terminology
Before proceeding, we first formally define and ex-

pound terminology used consistently in this paper.
Trace: A trace is a sequence of instructions between

two backward branches with a fixed control flow. The
use of backward branches captures circular paths such
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Figure 4: Block diagram for DynaMOS . The shaded portions represent additional resources needed to enable OinO
mode on little. These include a fetch and decoder that read schedules from a Schedule Trace-Cache, a bigger Physical
Register File with the capability to do constrained renaming, and a Load/Store Queue. The Trace Selection Table
is used for trace book-keeping.

as loops, which are repetitive and have similar pro-
gram behavior, as well as functions, which require ei-
ther the call or the return to be a backward branch. A
unique trace is identified by a hash of its header PC (the
target of the previous backward branch) and the out-
comes for all interleaving conditional forward branches
(TraceID). This definition is synonymous with previ-
ous works [14, 15] and represents a sequence of instruc-
tions or basic blocks that have a high likelihood of ap-
pearing together.

Schedule: The big dynamically reorders instructions
at the issue stage by selecting the next ready instruction
to execute on available resources. A schedule encapsu-
lates the sequence of instructions for a trace in the order
they were issued.

Atomicity: As memoized schedules disobey program
order, any trace executed in OinO mode must be treated
as an atomic block. Any path divergence in the trace
due to a branch misbehavior, exception, or interrupt
causes execution of the trace to restart in InO mode.

3.2 OinO Mode
DynaMOS extends little with a special mode, OinO ,

enabling it to achieve high performance, without the
high power consumption of big . OinO mode fetches
memoized trace schedules from the STC, allowing it to
execute reordered instructions in-order. As an in-order
pipeline, little does not track the original program or-
der. Therefore, when operating in OinO mode, Dy-
naMOS faces the following difficulties in executing and
committing out-of-order schedules:

1) False dependencies, i.e., Write-After-Write and Write-
After-Read, are handled by Register Renaming in OoO
cores. The OinO mode must honor renamed registers
in the schedule to maintain correctness (Section 3.2.1).

2) As traces span multiple basic blocks, its instruc-
tions may have been reordered across branches. If a
branch within a trace diverges from its recorded di-
rection, OinO may have already speculatively executed
some incorrect instructions. Therefore, the pipeline must
be rolled back to the correct state in case such misspec-
ulations occur (Section 3.2.1).

3) Loads may have been speculatively moved before
older stores that write to the same location, leading to
aliasing. These aliases need to be detected and handled
(Section 3.2.3).

4) Precise interrupts should be handled (Section 3.2.4).
Note that variance in a schedule’s data-flow in OinO

mode does not constitute a violation of program order.
For example, instructions might have been scheduled
around a load that is typically an L1-hit, incurring a
2 cycle latency. If this load misses in the L1 for one
instance of the schedule, the OinO pipeline will stall
on use until the load is satisfied. This is identical to
stalling for a true dependency in InO mode. However,
OinO mode lacks the big ’s ability to rebuild a different
dynamic schedule to reorder around the miss.

3.2.1 Register Renaming
In an OoO core, every destination architectural regis-

ter (AR) is renamed to a new physical register (PR) to
eliminate false dependencies. big assigns a free PR from
a list and remembers the AR->PR mapping in a regis-
ter allocation table. Maintaining a free list of PRs is a
time and energy consuming operation. Instead, OinO
implements a cheaper renaming scheme as follows.

The OinO mode provides a fixed pool of PRs to each
AR for renaming purposes (Figure 5b). While encoding
a trace schedule, big assigns every AR a suffix, which
is an index denoting its unique version number within
the trace. All live-in registers are required to have a 0
suffix. Every time the register is written to, the suffix
is incremented, while there are free registers in its pool.
All further uses of this register are updated to reflect the
most recent suffix. We refer to this as Level-1 renaming,
and it is done by big .

Figure 5a illustrates an example of this mechanism.
The instructions shown in “Original Assembly” depict
instructions in program order. In “After Level-1 Re-
naming”, each register is updated to the form Ri.j, where
i is the original AR index and j is the suffix. In the ex-
ample, R2.0 indicates a live-in value to the trace. R2.1
(Inst #1) and R2.2 (Inst #4) denote writes to R2, yield-
ing a total of three versions of AR 2 in this trace. The
3-wide big issues this trace for execution over four cy-
cles as shown under “Issue Order”. Level-1 trace encod-
ing ensures correct data-flow across instructions within
a trace. However, for the subsequent trace to read its
correct live-in values, the current trace’s live-outs need
to be available int the corresponding suffix 0 registers.

To maintain correct data-flow across traces seam-
lessly, the OinO performs Level-2 renaming, using a



Issue Order

Original Assembly
After Level-1 

Renaming
Trace Encoded by Big

1(HEAD) ldr r2, [r5] ldr r2.1, [r5.0] 1 ldr r2.1, [r5.0]

2 str r2, [r4] str r2.1, [r4.0] 4 ldr r2.2, [r3.0]

3 add r5, r2, #4 add r5.1, r2.1, #4 8 add r1.1, r1.0, #1

4 ldr r2, [r3] ldr r2.2, [r3.0] 2 str r2.1, [r4.0]

5 str r2, [r4,#4] str r2.2, [r4.0,#4] 3 add r5.1, r2.1, #4

6 add r3, r2, #4 add r3.1, r2.2, #4 5 str r2.2, [r4.0,#4]

7 add r4, r4, #4 add r4.1, r4.0, #4 6 add r3.1, r2.2, #4

8 add r1, r1, #1 add r1.1, r1.0, #1 7 add r4.1, r4.0, #4

9 cmp r1, r6 cmp r1.1, r6.0 9 cmp r1.1, r6.0

10 b HEAD b HEAD 4 10 b HEAD

Seq #

Program Order
Issue 

Slot #

Seq 

#

1

2

3

(a) Example of Level-1 renaming encoded by big

00 10

Global
Last-Written

Local
Last-Written

PR 2.0

PR 2.1

PR 2.2

PR 2.3

0

01AR2

Ping-Pong

Architectural Reg
Suffix

(2 bits)

PRF - R2

Hash Id
(2bits)

00

Committed
Last-Written

(b) Level-2 renaming done by OinO . Shown
for Architectural Register 2

Figure 5: Handling false dependencies on OinO with a two-level register renaming scheme, where the Level-1 is
done by big and encoded with the schedule and Level-2 is done on the OinO during execution.

modified version of the rotational remap scheme used
by DIF [11]. Each AR is mapped to a fixed size circu-
lar buffer of PRs, shown as the Physical Register File
(PRF) in Figure 5b. The head and tail pointers to
this buffer are pointed to by the Global Last-Written
(GLW) and Local-LW (LLW) registers respectively. On
a register read, little reads from the PR pointed to by
the modulo addition of the AR’s suffix and GLW3. The
GLW thus represents the index of the 0-suffix PR (live-
in value to the trace) and the LLW points to the latest
index written by the current trace. Each time an AR is
written to, the LLW is incremented (modulo add). For
example, instructions 1 and 3 in Figure 5a both write
to AR 2, causing the LLW to hold the value 2. At the
end of the trace, LLW points to the PR which holds
that AR’s live-out value.

On trace completion, an AR’s GLW should be up-
dated to its LLW register, so that subsequent traces
can calculate the correct index for their live-in regis-
ters. Rather than copy the index value from the LLW
to the GLW for every AR, we choose to have a ping-pong
bit to interchangeably access these two index fields for
alternate traces. For example, in Figure 5b, at the be-
ginning of the first trace, R2’s ping-pong bit is cleared
and the GLW referenced is 0. At the end of the trace,
the LLW is index 2. If the trace completes successfully,
R2’s ping-pong bit is set and henceforth index 2 is cho-
sen to be the GLW. In case the trace fails, the ping-pong
bit is unmodified and the trace restarts in program or-
der, guaranteeing that the most recent value of the AR
prior to misspeculated trace execution is read. Only
OinO mode can flip an AR’s ping-pong bit.

Our design allows a maximum of 4 PRs per integer
and floating point register, and up to 16 PRs for Con-
ditional code registers in the ARM ISA. The constraint
that an AR can be mapped to at most a fixed number of
PRs forces the trace schedule generation algorithm on
big to discard many schedules, limiting achievable en-
ergy savings. We investigate OinO ’s sensitivity to this
constraint in Section 5.

3Note, if the size of the circular buffer of PR’s is a power of
2, this modulo operation can be reduced to a hash using a
cheaper XOR operation.

3.2.2 Speculative Trace Start
Since little is capable of speculative execution, Dy-

naMOS allows consecutive traces to start issuing after
the previous memoized trace issues, without waiting for
its completion. This is subject to the constraint that
there are never more than 4 versions of an AR in the
pipeline. DynaMOS achieves this by flipping the ping-
pong bit on successful trace issue, instead of commit.
In order to preserve correctness, a Commit-GLW reg-
ister stores the last successfully committed index of an
AR when a trace commits. In case of misspeculation,
the ping-pong bit is flipped back, the Commit-GLW is
copied to the GLW register, and InO mode takes over
execution. This design constrains the number of active
traces in the pipeline to at most 2, which is reason-
able, since an InO core can’t get too far ahead without
stalling on a use.

3.2.3 Handling Speculative Memory Operations
OoO cores reorder memory operations to maximize

performance. However, executing loads/stores before
older stores will lead to erroneous execution if they refer
to the same address. The big uses a load/store queue
(LSQ) to track in-flight values for the same memory
address and detect memory aliasing. As OinO mode
executes schedules with reordered memory operations,
it must also handle memory aliasing. To this end, Dy-
naMOS supplements little with a simplified LSQ.

However, without knowledge of the original program
ordering between memory operations, the LSQ cannot
function correctly. The beginning of every trace there-
fore also includes a fixed size meta-block to hold this
information. This block, shown in Figure 6, contains
the relative program sequence number for each memory
operation with respect to the first memory operation of
the trace. For example, while “Str b” is issued out of
program order, its original relative sequence number (2)
is recorded into the meta-block.

In the OinO mode, out-of-order memory operations
are allocated entries in little’s LSQ by indexing into the
structure by their original sequence numbers. Allocat-
ing memory operations in program order in the LSQ
thus allows memory alias checks to be performed cor-



Seq #
Prog Order

(Mem)

0 Str a

1 Ld a

2 Str b

3 Ld b

4 Ld c

Issue Order
(Mem)

Ld c
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Ld a

Ld b

Str a

Seq #

4

2

1

3

0

Load/Store Queue

4 3 2 1 0

Ld c Str b

(iv) Allocate OinO LSQ entries in
Seq # Order

(iii) Trace Memoized In Tr$

(ii) Encode Mem 
Position With 

Trace

(v) Check Older Mem Ops for Aliasing

(i) Trace Selected by Big

Next LSQ 
IDX ptr

Figure 6: Memoized memory operations track their
original ordering and are inserted into little’s LSQ in
program order.

rectly. For example, “Str b” is inserted into index 2,
and aliasing checks are performed for existing younger
loads with higher index numbers (to the left), i.e., Ld c
at index 4. If a store-to-load alias is detected, the trace
aborts and little restarts in InO mode. If no aliases are
detected and the trace completes, store values are sched-
uled to be written to memory and the LSQ is cleared
for the following trace.

As the LSQ index is determined by the sequence num-
ber, its size and hence the number of memory operations
allowed in a trace is limited. 5 bits are needed to store
the relative sequence # per memory operation. For a
32 entry LSQ, this yields a 20B meta-block per trace.

3.2.4 Handling Precise Interrupts
An interrupt in OinO mode, is treated as a misspec-

ulation event, causing a pipeline and LSQ flush. The
trace restarts in InO mode which handles the interrupt.

3.3 Trace Generation and Selection
To execute a memoized trace in OinO mode, we must

first have access to them. big is responsible for deter-
mining, building, and storing traces in DynaMOS .

Firstly, big determines trace boundaries, and calcu-
lates a unique TraceID for each trace. Nominally, a
trace would include all instructions between two con-
secutive backward branches. However, it is occasionally
necessary to truncate or extend traces due to length
constraints. The trace length must be sufficiently long
(more than 20 instructions), to allow useful reorder-
ing among instructions. Similarly, the trace length is
bounded by big ’s instruction window size, this being
the maximum window over which reordering can occur.

Next, memoizable traces need to be identified and
stored. A trace’s memoizability quotient is tracked by
a 4-bit confidence counter in the Trace Selection Table
(Figure 7). While learning, big indexes into the table us-
ing the header-PC and matches traces with the TraceID.
The counter is initialized to 3, increased by 1 when a
trace’s schedule repeats, and reduced by 3 when a trace

Valid TraceID SetID In STC
Memoize

Confidence

(1 bit) (5 bits) (6 bits) (1 bit) (4 bits)

Trace Selection Table

Schedule Trace
Cache (STC)

(n Instructions)

(ii) If (In Trace-Cache):
SetID

Fetch 
Buffer

OinO

(i) Next-Trace 
Header PC

(From Branch-
Pred)

(iii)

Figure 7: Fetch in little. A trace header-PC predicted
by branch predictor is looked up in Trace Selection Ta-
ble. If the In-STC bit is set, OinO mode is used. Else
InO mode executes.

is aborted in the OinO mode on a misspeculation. Note
that a trace’s schedule can differ slightly over different
instances, if, for example, a load hits in the LSQ vs
the L1 Cache. If this variation occurs infrequently, and
the OoO does not gain significant performance due to
the varied schedule, it is still considered memoizable.
Traces with a confidence of greater than 7 are consid-
ered memoizable and their schedules can written to the
STC . Empirically, we find that on average, less than 150
traces need to be stored in the Trace Selection Table for
an application (0.3kB of storage).

In little, when the branch predictor predicts the tar-
get to a backward branch (start of a trace), it is looked
up in parallel in the Trace Selection Table and the ICache
(Figure 7). If the In-STC bit is set, blocks are fetched
from the STC into OinO ’s fetch buffer. Otherwise, they
are fetched from the ICache and InO mode executes.

A fill buffer similar to that used in [14] is used to com-
bine instructions in issue-order on the big . This is vali-
dated at commit to ensure only non-speculative instruc-
tions within the trace are bundled together and stored
into the STC . While writing to the fill buffer, the big
encodes each instruction with a renamed register suffix
(Section 3.2.1), increasing each register field by 2 bits.
The first block of a trace in the STC is pointed to using
a set-ID associated with each trace and all other blocks
are accessed sequentially. As our traces are of variable
lengths, they may span multiple blocks. A special End
of Trace marker denotes trace completion.

For capacity replacements in the STC , first, traces
that have been rendered un-memoized due to highly
varying schedules and then LRU traces are picked until
sufficient space is created for a new trace. To avoid frag-
mentation of traces, we implement compaction in our
STC , based on [16]. Since writes to this cache happen
only on big commits, and are not on the critical path
of OinO ’s fetch, the overheads of compaction do not
affect performance. Multiple writes to the STC might
be necessary on a replacement, costing energy. But in
our experiments with a 4kB STC , replacement happens
rarely, amortizing the costs. The strict trace selection
algorithm described previously ensures that only bene-
ficial traces occupy the STC , resulting in high hit rates.

3.4 Controller
We adopt the controller of Padmanabha [5] to decide



which core, big or little, should execute the current trace
to maximize efficiency. The controller maximizes energy
savings while keeping a constraint on the allowable per-
formance loss (5% as compared to running only on the
big). Traces with high ILP and/or MLP are run on big
to maximize performance while traces with numerous
dependent cache misses and/or branch mispredictions
are run on little to gain energy savings.

The controller needs to make a two-level prediction,
i.e., what trace will be seen next and which core should
execute it. It uses a combination of history and pro-
gram context to predict the upcoming trace. A traces
preference to a core is determined by its relative per-
formance on either core in the past. Measuring per-
formance on the core it actually executed on is easy;
a linear regression model (trained offline using SPEC’s
train data set) is used to estimate its performance on
the other core, similar to that in [5]. Performance met-
rics of a trace, such as cache misses, branch mispredicts,
ILP, MLP, its memoizability quotient and estimated mi-
gration overhead, are fed as inputs to this performance
model. Overall performance target is maintained by a
feedback PI (Proportional-Integral) controller.

Unfortunately, while DynaMOS can detect memoiz-
able traces that are, on average, 40 instructions long,
the underlying architecture is incapable of transitioning
between big and little at that granularity. Therefore,
we are forced to combine consecutive traces together to
form a super-trace, consisting of approximately 300 in-
structions. A super-trace is deemed memoizable if more
than 80% of its instructions are present in the STC .
We augment the super-trace prediction mechanism with
this information, to give prediction accuracies of 80%.

3.5 Switching overheads
DynaMOS adopts the Composite Core [4] architec-

ture, which tightly couples the big and little cores by
enabling shared access to stateful structures, i.e., in-
struction and data caches, TLBs, and branch predic-
tor. Only the register file has to be explicitly trans-
ferred between the cores on migration. This avoids the
need to rebuild architectural state when migrating to
the other core. Overhead for switching between cores is
thus small, consisting of pipeline and store buffer drain
of the active core, register file transfer and pipeline re-
fill on the other, totaling 0.1% of execution time. These
low overheads allow DynaMOS to switch rapidly be-
tween cores when memoized traces are encountered.

4. METHODOLOGY
We perform cycle-accurate simulations on the Gem5

simulator [17] to model performance of the cores and
memory, the overheads of switching between the cores,
and all the building blocks of DynaMOS. The high per-
forming big core is a deeply pipelined 3-issue superscalar
OoO processor with a large ROB and LSQ. Its ability
to dynamically reorder instructions allows it to achieve
1.6x higher performance than little on an average for
SPEC2006 benchmarks. The energy efficient little is an
InO core that has the same superscalar width and FUs
as big . This allows OinO to execute OoO schedules ver-

Architectural Feature Parameters
Big backend 3 wide superscalar @ 2GHz

12 stage pipeline
128 entry ROB
180 entry integer register file
256 entry floating-point register file

Little backend 3 wide superscalar @ 2GHz
8 stage pipeline
180 entry integer register file
128 entry floating-point register file

Memory System 32 KB L1 iCache (Shared)
32 KB L1 dCache (Shared)
1 MB L2 Cache with stride prefetcher
2048MB Main Mem

Table 1: Experimental Core Parameters

batim. The simpler hardware resources of an InO core
allow it to consume a lower energy per instruction than
the OoO core, saving 60% energy overall. Additionally,
its shorter pipeline length affords it a quicker branch
misprediction recovery. Table 1 describes the config-
urations used in detail. We used the McPAT model-
ing framework to estimate static and dynamic energy
consumption of the core and L1 caches [18]. A core
is assumed to be clock gated when inactive rather than
power gated, as power gating adds significant overheads
that do not scale at fine-granularity switching. The lit-
tle pays an extra energy overhead for accessing the LSQ,
bigger PRF, and STC when OinO mode is active.

For our evaluations, we use simpoints [19] from the
SPEC2006 benchmark suite, compiled using gcc with
-O2 optimizations for the ARM ISA. A maximum of
5 simpoints comprising of 1 million instructions each
were picked from the first 2 billion dynamic instructions
for each benchmark. Across 26 benchmarks (all those
that compiled and ran on our simulator), we found 108
representative simpoints. Results for each simpoint are
weighed and grouped with its parent benchmark.

5. RESULTS
This section provides quantitative benefits of DynaMOS

and compares them to oracular knowledge and prior
work [5, 10], along with intuitions as to why some bench-
marks are more amenable to our technique than others.

5.1 Utilization of Little
The energy savings attainable by DynaMOS is pro-

portional to the utilization of the little core. Utilization
is defined as the fraction of the dynamic program ex-
ecuted on little, and is shown in Figure 8. DynaMOS
tries to maximize this utilization while limiting the slow-
down to 5% compared to big . We compare our results
to an oracle and identically resourced Composite Core
architecture without OinO mode provisions (CC). The
oracle assumes perfect knowledge of execution and zero
switching overheads, thus providing the most optimistic
utilization of little given a performance constraint. It
chooses a single best schedule for memoizable traces
over the entire application and runs that on the OinO
mode. 50% of the application runs on little on average
with oracle, of which 43% is executed on OinO mode.

We see that with practical constraints, DynaMOS is
able to run 37% of its instructions on little, which is a
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Figure 8: Fraction of total execution run on big and little’s two modes, at 95% performance relative to all big .
The three bars represent the utilization achieved by a Composite Core (CC), an oracle and DynaMOS respectively.
DynaMOS achieves better or equal little utilization compared to prior work (wherein the OinO fraction is zero).

2.9x increase over prior work (13%) [5]. This is due to
OinO mode’s comparable performance to the big , allow-
ing more instructions to run on little without incurring
additional performance loss.

5.2 Benchmark analyses
DynaMOS excels for benchmarks like hmmer, bzip2

and h264ref that have high code locality, and recurse
heavily in loops with straightforward control and data
flow. Contrarily, the inherent lack of memoizability
in benchmarks like astar, gcc and gobmk hinders Dy-
naMOS ’ operation. However, little utilization is main-
tained because their low ILP and/or predictability al-
lows them to run on InO mode.

5.2.1 Percentage of memoizable code
The amount of execution that can be memoized clearly

dictates the profitability of DynaMOS . The oracle bar
in Figure 8 shows how much of the execution can the-
oretically be memoized given a performance constraint
(Note: Figure 2 in Section 2 shows the same result al-
beit with no performance constraint). Across the SPEC
suite, we see benchmarks showing varied memoizable
quotients. For example, the oracle schedules a mea-
ger 5% of execution on astar; astar implements a path
finding algorithm that reiterates in the same function
repeatedly, although dynamic instances take different
paths. Hence, though there is code locality, there is
no trace locality, disqualifying most of its execution
from being memoized. On the other extreme, bzip2
goes through a dominating simpoint phase comprised
of only 7 loops, of which 5 can be memoized, showing
great potential for OinO execution.

5.2.2 Misspeculation overheads
Schedules that misspeculate have to incur a penalty

of abort and replay, negating the benefits of running on
OinO . Misspeculations occur when a forward branch in
the trace takes the unexpected path or when a memory
alias error is detected. Our trace selection algorithm
heavily penalizes traces that abort often, so that they
are disqualified from being scheduled on OinO, thus
minimizing additional penalty cycles. Figure 9 shows
the percentage of schedules that abort while in OinO .
In gobmk, there can be many traces that spawn from
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Figure 9: Schedules mispredicted on OinO mode

a common header PC. Its high branch misprediction
rates [13] indicate that these traces are not predictably
repeatable. Hence, although each individual trace is
highly memoizable (as was shown in Figure 2), the al-
gorithm disqualifies all but 9% of them to run on OinO
(Figure 8). Consequently, only 7.8% of the traces that
are finally picked to go on OinO abort, adding a time
penalty of 0.3% of total execution.
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Figure 10: Quantifying the limits imposed to maximum
achievable performance on OinO due to its architectural
inhibitions, by constraining big similarly

5.2.3 OinO’s architectural limitations
Another artifact of our architecture is the limitations

on the amount of reordering achievable on OinO . Our
schedules are constrained by the number of PRs an AR
can be renamed to in the trace body, the number of
memory operations allowed, and its size. Figure 10
tries to quantify these effects by inhibiting big in similar
ways. The first bar shows big with a smaller instruc-
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Figure 11: Energy savings attainable on DynaMOS,
compared to only big

tion window of 40 instructions, the average trace-size
observed empirically, limiting the number of instruc-
tions it can reorder over. Next, we limit the number of
PRs it can access. We compare these to little with and
without OinO mode enabled for the whole program.

On average, little with OinO attains 91% of a con-
strained big ’s performance. This shows that the 9% of
performance loss can be attributed to the inherent lack
of memoizable traces in the program, preventing OinO
mode from being used. Note that little with OinO gains
a speedup of 30% over InO mode, achieving 82% of big ’s
performance on average.

The oracle classifies 66% of execution as memoizable
in cactusADM (Figure 8). DynaMOS fails to repli-
cate this because the dominant simpoint in cactusADM
comprises 3 regular traces that are more than 1000 in-
structions long. DynaMOS limits the maximum length
of traces to 128 instructions and no reordering is al-
lowed around trace boundaries. The unrestrained big
can exploit more MLP and ILP by reordering over the
entire trace. Figure 10 illustrates that with a limited
instruction window big loses 9% performance, dropping
further to 85% of unrestrained big with a smaller PRF.
On the other extreme, hmmer, has a small dominant
loop which has to be unrolled 4 times to reach our mini-
mum trace length, requiring more than 4 PRs to rename
to per AR, preventing it from being run on OinO .
DynaMOS ’s optimization of speculatively starting a

trace before the previous trace commits (Section 3.2.2),
saves the OinO mode 1% performance.

5.3 Energy Savings
Figure 11 illustrates the energy conserved on Dy-

naMOS as compared to running only on big. Overheads
due to leakage from the inactive core (which is clock-
gated) and those imposed by the CC controller[5] are
included. Including OinO mode on little adds around
8% energy overhead to an InO , from accessing a bigger
PRF and LSQ, but reduces its run-time significantly.
The addition of a 4kB STC adds more leakage over-
heads, but contributes to lowering of OinO ’s energy by
providing instruction fetch access to a smaller cache. In
case of misspeculation however, little faces an energy
penalty of accessing instructions from both the caches.
Overall, we observe that DynaMOS conserves upto 30%
of big ’s energy, a 2.1x increase from previous work.
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Figure 12: Performance of DynaMOS as compared to
only big ; Slowdown is maintained around 5%

5.4 Performance compared to Big
DynaMOS attempts to trade-off a user-configurable

level of performance to maximize energy efficiency. This
allowable performance loss is assumed to be 5% of big
for the purpose of this work, which is maintained as
shown in Figure 12. DynaMOS falls short of the target
in a few benchmarks; mcf contains traces with loads
that frequently miss in the caches. A schedule that has
been created assuming a dCache hit latency for the load
stalls on little when the load misses. The inability of
OinO mode to react to such unexpected behavior and
reorder instructions imposes performance loss. A high
trace misprediction rate (Figure 9) also causes slow-
down due to the need to rollback and replay. Note that
leslie3d and bwaves overshoot the performance target,
because the CC predictor overlooks some opportunities
to switch to little. More fine tuning of this controller
should mitigate this problem.

5.5 Sensitivity Analyses
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Figure 13: Sensitivity to big and little’s architectures.
Unequal issue widths cause inefficient use of DynaMOS ’
one-to-one trace mapping, providing modest benefits.

5.5.1 Sensitivity to core configuration
For our work, the little is configured to be 3-wide

superscalar so that memoized schedules from a 3-wide
big can be replayed verbatim on OinO . However, this is
not essential for correct execution of DynaMOS . Figure
13 illustrates the efficacy of DynaMOS on differently
configured systems - particularly with a bigger big and
a smaller little. All resources in the cores, including
FUs are scaled appropriately. The results are shown
relative to the corresponding big in that system. As
per our current implementation, if an issue slot in a
trace is wider than the issue width of little, it simply
splits each slot into 2 or more slots. For example, a
2-wide little splits an issue slot from a 3-wide big into
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Figure 14: Benefits of increasing STC size plateau out
after 4kB.

2 slots of 2 and 1 instructions each, adding bubbles in
the pipeline. This inefficiency results in less utilization
of OinO , resulting in modest improvements in energy
savings achieved by DynaMOS . This can be avoided by
adding more intelligence to the trace creating process
of big, and packing issue slots as per the width of little.

Increasing the issue width of an InO core adds less
energy than that for an OoO core, because of the rel-
ative simplicity of the InO’s issue logic. This explains
two observations – by virtue of increasing time spent on
little, DynaMOS , which uses a 3-wide little saves 30%
energy, as compared to that using a 2-wide little to save
20% energy. Second, it is more of an energy win to go
to a 3-wide little from a 4-wide big than to a 2-wide
little from a 3-wide big . Hence, although little utiliza-
tion is approximately the same for both configurations
shown in figure 13, more relative energy savings can be
achieved with a more aggressive big .

5.5.2 Sensitivity to Size of Schedule Trace-Cache
The STC size dictates how many schedules are avail-

able to OinO when execution migrates to little. Fig-
ure 14 illustrates the effects on little’s utilization and
performance as the STC size varies. As expected, uti-
lization increases as the size increases from 1kB to 4kB
because of reduction in capacity misses. Beyond that we
observe that utilization plateaus out as most of the re-
quired schedules fit in the cache, prompting us to choose
a 4kB STC for DynaMOS .

5.6 Comparison to Execution Cache
Research has proposed to conserve energy of the pipeline

front-end by caching recurring traces to exploit tem-
poral locality of instructions. We compare DynaMOS
to two of the most relevant works in Figure 15. Loop
Caches (LC) [20] cache encoded or decoded instruc-
tions from recurring loops, thus eliminating energy con-
sumed by the fetch and/or decode stages. Execution
Caches [10] exploit memoizability in schedules and con-
serves energy by bypassing the fetch, decode, rename
and issue stages of an OoO pipeline and sending instruc-
tions directly to execution. Figure 15 shows that on av-
erage adding a 4kB LC to big conserves 4% energy while
adding a 4kB EC saves 23% of energy at the cost of
16% loss in performance. Adding a feedback controller
similar to that in DynaMOS can constrain performance
loss to 5% by limiting the use of EC when performance
degradation is observed, subsequently reducing energy
savings further to 10% (Big+EC@5% bar). Two rea-
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Figure 15: Energy savings and corresponding perfor-
mance losses relative to big for a big augmented with a
Loop Cache(LC) and Execution Cache(EC) [10]

sons contribute to DynaMOS ’s relative benefit – First,
it moves execution over to a different InO core which
runs at 30% of big ’s power when traces are memoizable,
while power hungry structures like the ROB, LSQ are
active throughout execution in a big with an EC. Sec-
ond, the InO mode also executes non-memoizable but
low performance traces at minimal performance loss.
astar, for example, has a low memoizable quotient, and
hence schedules are rarely available in the Trace-cache
or EC. Still, DynaMOS runs 18% of its code on little in
InO mode, yielding 20% more energy savings.

5.7 Energy and Area Overheads
Little is provided with a larger PRF to ensure seam-

less and inexpensive register renaming. In our imple-
mentation it has 128 entries, 4x the existing size. Each
AR needs 2 bits each for Committed, Global and Lo-
cal LWs fields, and 1 ping-pong bit, totaling 7 bits of
information with each AR (Section 3.2.1). Little also
includes a 32 entry LSQ, increasing its energy by 8%.
These bigger structures can be clock-gated when run-
ning in InO mode. Adding a 4kB STC adds 0.11mm2

of area and 10% leakage power overhead to the little.
We do not however model the energy overheads of the
logic added. The inactive pipeline, which is clock-gated,
contributes to the leakage energy overhead. Since our
architecture is targeted toward low-power cores, we use
low-leakage technology with low operating power, min-
imizing this overhead to <4%. Prior work [5] estimates
the controller to incur overheads of 1.875kB storage and
0.033W power, while the performance estimation model
covers 0.02mm2 area, and consumes <5uW power.

6. RELATED WORKS
6.1 Efficiency through Heterogeneity

Researchers have explored the architecture design space
in various dimensions of heterogeneity. These include
cores with different sets of microarchitectural parame-
ters [21, 22], specialized hardware for specific codes [23,
24], and heterogeneous ISAs [25]. Commercial products
include ARM’s big.LITTLE [1] and NVidia’s Kal-El [26]
which combine high and low performance general pur-
pose cores, and IBM’s Cell [27] and Intel’s vPro [28]
which run special code on customized elements.

The architecture of the heterogeneous multicore dic-
tates the granularity of application migration amongst



them. Higher switching costs of coarse-grained hetero-
geneous systems [1, 2] enforce switching granularities of
the order of milli-seconds. Novel architectures minimize
migration costs by either sharing of structures between
cores [4, 7] or reducing the distance between them using
3D technology [6]. Composite Cores [4] shares access to
L1 caches, TLBs, fetch unit and branch predictor be-
tween an OoO and InO core.

Another approach to heterogeneity is to reduce the
voltage and frequency of the core (DVFS) to improve
the core’s energy efficiency at the expense of perfor-
mance [29, 30]. Recent work [31] shows that microarchi-
tectural heterogeneity, which can altogether eliminate
use of energy-intensive structures like the ROB and is-
sue logic helps conserve more energy than DVFS. Nev-
ertheless, DVFS is a complementary technique that can
be applied to DynaMOS for additional energy savings.

6.2 Trace-Based Execution
Several prior works proposed storing instructions in

logical dependency order rather than the order in which
they are stored in memory [14]. They aim to improve ef-
ficiency of fetch by grouping instructions that are likely
to execute together as a trace in a trace cache.

Compilers use profile-based static scheduling mech-
anisms [32] or run-time binary optimization [33] to
create optimized instruction schedules. Most compil-
ers however, cannot schedule beyond a few basic blocks
due to data and control flow unpredictability. Allowing
OoO hardware to create the schedule ensures that InO
is provided with the best-case schedule for a particular
trace for a particular dynamic phase in the program.
Software approaches, e.g. Nvidia’s Project Denver, dy-
namically re-compile recurring traces to create high-
performing schedules for an InO core. Compared to
hardware implementations, such methods react tardily
to finer-grained phase changes in applications. Also, re-
compilation of traces cannot be done indiscriminately,
while DynaMOS modifies schedules as needed.

Industry introduced trace caches as a method to im-
prove performance and energy-efficiency by caching post-
decode traces, thus allowing expensive CISC decoders
to be turned off [9, 34]. Section 5 compares DynaMOS ’s
behavior to relevant schemes that exploit temporal lo-
cality of instructions to conserve pipeline front-end en-
ergy. Villavieja et.al [35] propose to transition from
an OoO core to a VLIW core with all front-end stages
turned off when a memoized VLIW schedule is avail-
able. In case of highly unpredictable branches, the lack
of memoizability forces these works to fall-back on the
OoO core. DynaMOS on the other hand, can still gain
energy-efficient execution on the InO mode.

Other works propose using two pipelines: one for
trace generation and another for trace execution. Tur-
boscalar [12] has a thin cold pipeline that discovers ILP
over a long instruction window and a fat hot pipeline
to exploit this knowledge. Perhaps the work that most
closely resembles ours is DIF [11]. They use a primary
OoO engine to create and cache schedules, which are
then formatted as a VLIW and made accessible to a
secondary VLIW-style accelerator. DIF’s aim is to in-

crease performance by dynamically increasing the ILP
exposed to a narrower superscalar OoO and running
it on a wide VLIW machine. Our goal is to trade-off
performance for energy-efficiency by exposing ILP to a
simpler InO core, allowing the complex OoO to remain
idle. Also, our little doesn’t rely exclusively on big to
provide it with instructions, and is capable of working
stand-alone when energy-efficiency is of utmost impor-
tance. We leverage two-level renaming that was pro-
posed in this paper, and modify it so that we do not
have to generate and store live-out register maps for
every trace, which is expensive to do dynamically. The
HBA [7] architecture comprises of a common front-end
and register file which feeds into one of either OoO,
InO, and VLIW backends. It stores instruction sched-
ules at the granularity of a couple of basic blocks and
heuristically decides to run on one of the backends.

7. CONCLUSION
In this paper, we observe that the sequence in which

instructions in an OoO pipeline are issued to execution
tends to remain similar for repeating traces. OoO cores
perform redundant work by recreating the same sched-
ule for every instance of the trace. Based on this in-
sight, we provision an InO core with the ability to read
and execute issue schedules recorded by an OoO core.
We observe that with equal resources, an InO core can
nearly achieve OoO’s performance, at a fraction of the
energy cost. We propose the DynaMOS architecture,
which consists of a tightly-coupled big and little core,
wherein execution migrates with low overheads from big
to little for traces with either low IPC or with memo-
ized schedules. To this end, little is provisioned with an
OinO mode which can execute memoized out-of-order
schedules while guaranteeing correctness. DynaMOS
was shown to increase little’s utilization by 2.9x over
prior work, thus saving 32% energy over execution on
only big , with an allowable 5% performance loss.
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