Trace Based Phase Prediction
For Tightly-Coupled Heterogeneous Cores

Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, Ml

{shrupad, lukefahr, reetudas, mahlke}@umich.edu

ABSTRACT

Heterogeneous multicore systems are composed of multiple
cores with varying energy and performance characteristics.
A controller dynamically detects phase changes in applica-
tions and migrates execution onto the most efficient core
that meets the performance requirements. In this paper,
we show that existing techniques that react to performance
changes break down at fine-grain intervals, as performance
variations between consecutive intervals are high. We pro-
pose a predictive trace-based switching controller that pre-
dicts an upcoming phase change in a program and preemp-
tively migrates execution onto a more suitable core. This
prediction is based on a phase’s individual history and the
current program context. Our implementation detects re-
peatable code sequences to build history, uses these histo-
ries to predict an phase change, and preemptively migrates
execution to the most appropriate core. We compare our
method to phase prediction schemes that track the frequency
of code blocks touched during execution as well as traditional
reactive controllers, and demonstrate significant increases
in prediction accuracy at fine-granularities. For a big-little
heterogeneous system that is comprised of a high perform-
ing out-of-order core (Big) and an energy-efficient, in-order
core (Little), at granularities of 300 instructions, the trace
based predictor can spend 28% of execution time on the Lit-
tle, while targeting a maximum performance degradation of
5%. This translates to an increased energy savings of 15%
on average over running only on Big, representing a 60%
increase over existing techniques.

Categories and Subject Descriptors

C.1.3 [Architectures|: Heterogeneous systems

General Terms

Design, Performance

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.

MICRO’46 , December 7-11, 2013, Davis, CA, USA

2013 Copyright is held by the owner/author(s). Publication rights licensed
to ACM

ACM 978-1-4503-2638-4/13/12 ...$15.00.

Keywords

heterogeneous processors, fine-grained phase prediction, energy-

efficiency

1. INTRODUCTION

An approach to increasing energy efficiency in modern
processors is to combine multiple cores with different capa-
bilities into a single heterogeneous processor, yielding vary-
ing performance and energy characteristics. Heterogeneous
multi-cores trade increased area to provide higher perfor-
mance and reduced energy consumption by matching an ap-
plication’s performance and energy requirements to the most
appropriate core type. Researchers [34, 2, 5, 14, 15, 27] have
demonstrated the potential benefits of such designs in terms
of realizing more energy efficient systems. Commercially
available processors include ARM’s big.LITTLE [9], which
consists of one high performance out-of-order Big core and a
lower performance, but much more energy efficient in-order
Little core and Nvidia’s Kal-El [21], which combines four
high performance and one energy efficient cores.

The energy efficiency attained in heterogeneous systems
is determined in part by the efficiency of the scheduling or
switching mechanism, that dynamically guides program ex-
ecution to the most energy efficient core, while maintaining
a performance target. Existing techniques are reactive in
nature - they distinguish performance phase changes in ap-
plications by sampling for a brief period and assume that
the performance will remain stable until the following sam-
pling phase. Metrics like performance [15], load memory
intensity [5, 2], available instruction and memory level par-
allelism (ILP, MLP) [34], and branch misprediction rates are
some of the factors used to evaluate the microarchitectural
requirements of an application and thus determine the best
fitting core. A reactive controller dynamically monitors per-
formance on the active core at the granularity of an instruc-
tion slice or quantum. Performance on another core is either
monitored by sampling briefly on it [15] or by modeling it
using observed performance metrics [18, 34]. This measured
or modeled performance on the available core options is com-
pared and contingent upon the desired performance target,
the controller maps execution on the most efficient core.

A reactive controller is well suited for traditional hetero-
geneous systems that make switching decisions at coarse-
grained application phases of tens to hundreds of millions
of instructions. However, better energy efficiency can be
achieved by slicing applications into micro-phases of a few
hundred instructions. More low-performance phases exist
at such fine instruction granularities [20], increasing oppor-

tunities to utilize more energy efficient alternatives. Fine-
grained phase changes in general-purpose programs can be
exploited by coupling heterogeneous general-purpose cores
in a system that is unencumbered by large transfer over-
heads between core switches. Recently proposed Compos-
ite Cores [18] has implemented a general-purpose architec-
ture that enables switching at a fine granularity. It is com-
posed of two compute backends that lie on opposite ends
of the energy-performance spectrum, a high-performing Big
out-of-order backend and an energy efficient Little inorder
backend. Together, they aim to achieve both high perfor-
mance and energy efficiency. By sharing the caches, TLB,
and pipeline frontends (including branch predictors and the
fetch unit), the switching overhead can be reduced to near
zero. We have assumed the Composite Core architecture for
our implementation.

The fundamental assumption of reactive controllers how-
ever, that the performance observed during sampling is sta-
ble over the subsequent intervals, fails at fine granularities
because of the high variation between performance in con-
secutive quanta. We observe that the average performance
difference between consecutive quanta is almost an order of
magnitude higher for fine-grain quanta over coarse-grain.

We propose a controller that is able to make accurate
phase change predictions at a fine granularity of hundreds
of instructions, thus realizing the benefits offered by fine-
grained heterogeneous systems more effectively over exist-
ing techniques. This work employs a predictive approach to
scheduling by finding and exploiting repeatable phase be-
havior in an application, while maintaining a performance
loss target. Prior work [28, 29, 16, 33] has shown that pro-
grams exhibit repeatable phase-based behavior across differ-
ent microarchitecture metrics at a coarse granularity. Our
goal is to extend that intuition to finer-grained phases of
a few hundred instructions. However, direct application of
those works at finer granularities is infeasible due to the ec-
centric nature of fine-grained quanta and large associated
computation overheads.

Our proposed controller architecture divides the applica-
tion’s execution into recurring sequences of instructions at
run-time, referred to as super-traces. A super-trace is iden-
tified by a combination of backward branches, or backedges,
that appear together. Backedges are useful in identifying
loop and function boundaries in a dynamic instruction stream,
which represent regular and recurring control independent
blocks of code (750 instructions). A super-trace captures
inter-dependencies between blocks that could affect perfor-
mance by combining consecutive backedges until a minimum
length requirement is met.

We propose a predictive trace-based switching controller
for this architecture that can dynamically learn regular fine-
grained phase behavior and predict an upcoming phase change
based on a phase’s individual history and the current pro-
gram context. This is used to preemptively migrate the
execution to a more suitable backend, improving phase-to-
backend mappings and increasing energy efficiency.

In summary, this paper offers the following contributions:

e We observe that accuracy of reactive scheduling ap-
proaches used in existing heterogeneous architectures
decreases at fine switching granularities (hundreds of
instructions).

e We leverage the concept of performance micro-phases,

——astar ——bzip2 ——gccC ——gobmk ——h264ref
hmmer ——libquantum lbm ——mcf ——namd
——omnetpp sjeng soplex == geomean
100%
o 90% -
E so%
S 70%
£ 6%
g 60% T
@ 50% JF‘
-
.E 40% v
30% = ===-__C iy
—— el Lk Ty
20% =
10%
0% T T T
100 1K 10K 100K M

Quantum Size in Instructions

Figure 1: Potential increase in time spent on the little core
with reduction in quantum size

and exploit their regular, repeatable behavior to de-
velop a predictive scheduling technique.

e We define a super-trace that can capture program phases
effectively at the granularity of hundreds of instruc-
tions. We design a complexity effective hardware con-
troller to predict both which super-trace is likely to be
executed next in the dynamic instruction stream and
which core is more suitable to execute it.

e We compare the accuracy achieved by our proposed
scheme over existing methods of phase detection, such
as that implemented by Sherwood et. al [31], and in-
struction quantum based approaches [18].

e We analyze the proposed system with cycle accurate
full system simulations on a fine-grain heterogeneous
multicore [18]. Overall, with a performance degrada-
tion constraint of 5%, our phased-based predictive ap-
proach to scheduling maps an average of 28% of pro-
gram execution time onto the little backend, nearly
50% more than what an existing state-of-art design
can achieve. The overall energy consumption is re-
duced by 15% as compared to full execution on the
big core and by 60% over existing techniques.

2. MOTIVATION

Switching at fine granularities exposes additional oppor-
tunities for energy savings. However, sampling or quantum
based reactive approaches to scheduling used in existing de-
signs lead to less efficient phase to core mapping, especially
as the granularity of switching is reduced.

2.1 Fine-Grained Switching

Traditional single-ISA heterogeneous multicore systems
rely on coarse-grained switching to exploit application phases
that occur at a granularity of hundreds of millions to bil-
lions of instructions [34]. These phases usually represent
distinct application tasks with stable average performance
levels throughout their execution [30]. Discrete performance
changes are observed between phases and simple sampling-
based monitoring systems can recognize low-performance
phases and map them to a more energy-efficient core. These
long term low-performance phases occur infrequently in many
applications however, limiting the potential to utilize a more
efficient core. Conversely, several works [23, 35, 36] have

=
kS

|

Instructions Per Cycle
=
[=]

1

Instructions Per Cycle
o =]
o4 o

o
o

o
S

75K 100K 125K 150K 175K 200K 225K
Instructions over time

=
»
T

I
N
T

o
©

o
o
T

N
IS
.

75K 100K 125K 150K 175K 200K 225K
Instructions over time

(a) IPC sampled every 100K instructions (Coarse) shows sta- (b) IPC sampled every 500 instructions (Fine) shows highly

ble performance between quanta

variant performance between quanta

Figure 2: Variance of IPC in gcc over 300K instructions

shown that performance in general-purpose applications varies

rapidly when observed at a much finer granularity. This re-
veals more low-performance phases, thereby increasing op-
portunities to utilize a more energy efficient core.

The benefits of reducing the switching granularity to hun-
dreds of instructions is quantitatively shown by Figure 1.
The figure sweeps quantum lengths, from hundred to a mil-
lion instructions per quantum. For every quantum size, it
shows the maximum percentage of time (in cycles) that can
potentially be spent on Little, subject to an allowable 5%
performance degradation. Migration costs are ignored in
this oracle study. We observe that time spent on Little in-
creases by 40% on average as the switching granularity re-
duces from 1M to 1K instructions, and a further 45% from
1K instructions to 100 instructions. Time spent on the Lit-
tle, more energy efficient backend is translated to energy
savings. A reduction in granularity by four orders of mag-
nitude can thus be translated into higher energy efficiency
gains.

2.2 Inaccuracy of the Reactive Controller

Existing dynamic controllers react to changes in perfor-
mance with a delay of a sampling phase. While this cost
is amortized in traditional coarse-grained systems, sampling
intervals subsume entire quanta in a fine-grained system.
Fine-grained reactive controllers assume that consecutive
quanta have similar performance and react to changes in
performance with a delay of at least one quantum.

Figure 2 shows the performance (in Instructions Per Cy-
cle, IPC) seen over 300K instructions of gcc. The perfor-
mance is sampled every quantum of 100K instructions in
Figure 2(a). While the figure shows a large performance
change after the first quantum (at 100K instructions), sub-
sequent quanta display stable performance, validating a re-
active approach. Figure 2(b) shows the same 300K instruc-
tions of gce, but this time, performance is sampled at a fine
granularity of 500 instructions. Besides demonstrating the
additional low performance phases observable at this gran-
ularity, the figure also illustrates the inaccuracy imposed by
assuming consecutive quanta behave similarly. Some points
have been circled on the figure to help make this observation
more clear. Drastic performance changes can be seen be-
tween consecutive circled quanta, implying that a quantum
based reactive controller will provide inefficient schedules.

45%
40%
35%

30%

N
a
X

20%

Quantums

15%

10%

Average Difference Between

5%

0% : : :
100 1K 10K 100K M
Quantum Size in Instructions

Figure 3: Average performance difference between consecu-
tive quanta increases rapidly with quantum size

Figure 3 shows the average difference in performance that
is observed between consecutive quanta for benchmarks in
the SPECO06 suite, across quantum sizes. At a coarse gran-
ularity, consecutive quanta differ for each other by approx-
imately 5% with a maximum standard deviation of 0.2 for
omnetpp from the mean, implying they have similar perfor-
mance. But this difference increases inversely with switching
granularity, to nearly 40% for quanta of a 100 instructions,
with a maximum standard deviation of 1.6 for gcc. This
demonstrates that the previous quantum’s performance is
not a good indicator of future behavior for quanta with less
than 10K instructions.

3. TRACE-BASED PHASE PREDICTOR

General purpose applications typically exhibit irregular
dynamic code behavior but often times follow regular code
structure. A controller which can dynamically learn to rec-
ognize these regular code sequences or super-traces (defined
in Section 3.2) can preemptively map code to backend for
maximum energy efficiency.

While it is possible to use a compiler to detect regular
micro phases in a program based on static control flow pro-
filing [5, 27], it cannot capture regularities imposed by data
flow patterns. We employ a cheap hardware mechanism to
build our super-traces and use a simple correlation-based
prediction table to predict them.

3.1 Overview
Figure 4 illustrates an overview of the predictive approach

\'Block 2. Next Strace \'Block 3. Backend

Confidence counter

] 1
\ \
IPredictor \ IPredictor ‘
\ —_— | \ — |
| STrace-ID [Head STrace-ID [Head | | PHT |
\ 9bits 3bits [2bits| 9bits 3bits [2bits] | \ 2bits| ‘
\ | \ | ‘
Predicted_| >
9-bit Strace-|D———+—> —T f >
; | STrace-ID ‘ ‘
|Block 1. Strace I } | }
lindex Generation } | | | — |
| | | ‘ A |
|| \ ! |
instCount > n? ‘ I
‘ | Update prediction Update prediction
\ | BElI BEZI BE3 | | BEM | } |Block 4. Feedback \
}]‘ | |Generator }
‘ \ |
. . > |
BE PCs } Previous STrace-ID < |
[|
[Local Performance Loss Threshold |
| \
|
‘ Performance |
; Observed Performance + Difference Target Performance [
Composite Cores —— — —>
P Performance Metrics ; Estimator Performance Monitor ‘
| (Regression Model) Loss ‘
/ t |
Backend Prediction for

Predicted Strace-ID

Figure 4: Overview of the Predictive Trace Controller. Backedge PCs seen by Composite Cores are hashed to index
into the next-super-trace predictor (Block 1). This index references an entry from the backend predictor PHT (Block 2) to
decide whether migration of execution is required. The feedback generator (Block 3) monitors dynamic performance and

updates the tables accordingly

for scheduling super-traces onto the most efficient backend.
Block 1 (Section 3.2) involves dynamically defining super-
trace boundaries and creating pseudo-unique super-trace-
IDs. Block 2 (Section 3.3) illustrates a correlation-based
table for predicting future super-traces. Block 3 (Section
3.4) shows the super-trace-to-core-backend predictor table.
Block 4 is the feedback mechanism that updates the predic-
tion tables with correct values, in case of mispredictions.

3.2 Building Super-Traces

In order to have predictable behavior, switching bound-
aries should enclose intervals that occur repetitively. To
identify a super-trace, we leverage a concept similar to that
of traces [8] or frames [22]. Traces are defined as sequences
of instructions or basic blocks that have a high likelihood of
executing back to back, despite the presence of intervening
control instructions. These can be identified both statically
and dynamically, covering roughly 70% of dynamic instruc-
tions [22]. The controller used in this work is organized
around traces that are defined at backedge boundaries. A
backedge is defined as a control instruction (branches, func-
tion calls and returns) that branches to a negatively placed
Program Counter(PC) (PChrarget < PCeurrent). They cap-
ture the most frequently occurring circular paths in a dy-
namic instance of code (loops, for example). Since either a
function call or its return will be a backedge, traces also
account for function bodies. The intuition behind using
backward branches is that their target PCs act as global
re-convergent points [1, 24, 25]. The control re-convergence

point for a particular instruction is defined as a future dy-
namic instruction that will be eventually reached, regardless
of the outcome of any non-exceptional intervening control
flow. Traces delineated by these chosen points act as con-
trol independent code blocks in trace processors [25] and
dynamic multi-threading processors [1]. By ignoring the
intervening branches (which account for 93% of the total
static branches [6]) between these re-convergence points fu-
ture, traces can be predicted with higher accuracy. An-
other advantage of using backedges as switching points is
that mispredicted backedges cause a pipeline flush, in order
to recover from wrongly speculated instructions. This par-
tially hides the pipeline drain imposed by the architecture
in case the thread chooses to migrate.

Backedges occur frequently in the SPEC benchmark suite,
occurring once every 53 instructions on average. Exist-
ing fine-grain heterogeneous cores aren’t capable of switch-
ing cores at such a granularity. Hence backedge traces are
merged together until a minimum instruction length bound-
ary has been crossed. This block constrained by the number
of instructions in it is referred to as a super-trace. For fine-
grained switching this minimum length was experimentally
found to be 300 instructions per super-trace, and can go upto
10K instructions. Below this minimum length, the switching
costs imposed by our core architecture negate energy bene-
fits. Figure 5 pictorially describes the runtime formation of
traces with the help of an example loop with function calls
within its body. The return from the function at point C
and the return to the loop header at point A are backedges

that the hardware observes, dynamically creating traces T2
and T3. If there are around 300 instructions in both T2 and
T3 cumulatively, then the hardware defines the sequence
(T2+4T3) as one super-trace. The super-trace (T2+T3) is
representative of this loop and its characteristics will deter-
mine which backend it should be run on in the future.

Begin — Forward Edge
, = =» Backward Branch
P I > Branch
/
,/ B Path Followed Trace-ID
R oy Begin-A-B-B'-C Tl
c’ \ o B’
| \ C-C-A T2
N
| % A-N-B-B'-C T3
\ 22N
\ X C-C’-End T4
\ C
\
AN A Super-Trace: (T3+T2)
End

Figure 5: Defining super-trace boundaries dynamically

3.3 Predicting Super-Traces

A correlation-based predictor is used to predict the next
super-trace. A variety of works [19, 12] have demonstrated
the efficiency of path based multi-branch predictors. The
strength of using such a predictor lies in its ability to capture
program context by using path based correlation.

As super-traces are limited by a maximum instruction
length, the number of backedges per super-trace is variable.
For example, for a super-trace length of 300 instructions,
this number varies between 4 for lbm and 20 for mcf on
average, with an average of 12 backedges per super-trace
across all the benchmarks. A super-trace made of 1000 in-
structions has approximately 35 backedges on average across
all benchmarks. Ideally, the super-trace-ID used to index
into the prediction table should be a concatenation of all
the backedge PCs that form it. But practical limitations
like hardware overheads mandate a restriction on the num-
ber of backedges that can be used to uniquely identify a
super-trace. We performed sensitivity studies for accuracy
of prediction using the last 12, 15, 21, and 30 backedges in a
super-trace to form its ID. For our analysis, keeping the last
15 backedges was sufficiently accurate, providing low aliasing
with minimal overheads. We used an indexing mechanism
similar to [12] to create a pseudo-unique super-trace-1D, as
shown in Figure 6. This technique gives higher priority to
a more recently seen backedge by hashing more of its bits
as compared to the older backedges. The intuition behind
this approach is that more recently executed branches are
more likely to indicate what code is executed next. The
specific parameters of the index generation mechanism were
determined experimentally.

The generated super-trace-1D is used to index into a two-
way associative prediction table that consists of two possible
successors of this trace (Figure 4). Since the next super-trace
prediction is made when the last instruction of the previous
super-trace (the backedge) is committing, the header PC for
the next super-trace is known. To leverage this information,

the last three bits (excluding the byte offset) of the next
PC is stored along with the hashed super-trace-1D for each
super-trace. This head PC acts as a tag to select one of
the two potential successors in the table. A 2-bit saturating
counter per successor ID is used to select replacements can-
didates. In case of an incorrect prediction, the table is up-
dated with the correct successor. Either the entry with the
lower counter value is demoted, or deleted if the counter is
zero. In case of a correct prediction, the confidence counter
is incremented by 1. Effects on accuracy of the predictor
when using different predictor table sizes by using different
different configurations of backedges to create the index is
shown in Section 5.

BE12 | BE11 | BE1IO | BES | BE8 | BE7 | BE6 | BE5 | BE4 | BE3 | BE2 | BE1l

9-bit Super-Trace ID

Figure 6: Super-trace-ID generation using illustrated bits
from the 12 last seen backedges. More priority is given to
more recent (darker-gray) backedges.

3.4 Scheduling Super-Traces

The controller is built on the hypothesis that behavior of
a recurring trace can be estimated based on its individual
characteristics, in conjunction to the context (super-trace) in
which it appears. The controller leverages these two pieces
of information to map a super-trace to the most efficient
backend.

A simple 2-bit saturating counter is used to predict whether
a super-trace should be executed on the Big or Little back-
end (Figure 4). The super-trace-ID outputted by the super-
trace predictor is used to index into a Pattern History Table
(PHT) which steers the program execution to either back-
end. We compared more complex predictors like two level
adaptive local and global predictors (Section 5). We found
that the accuracy gains achieved from higher sophistication
were not significant enough to warrant the extra hardware.

The feedback to this backend predictor is given by a per-
formance model that captures the microarchitectural char-
acteristics of the super-trace. A threshold controller pro-
vides an average per-super-trace performance loss thresh-
old below which it is currently profitable to switch to Lit-
tle, given the performance target. A tuned Proportional-
Integral (PI) feedback control loop [26] scales this threshold
by observing the proximity of current performance to the
target performance setpoint. This performance monitoring
is assisted by a linear regression model which estimates the
target performance (only Big) and observes current perfor-
mance (Big+Little). We employ the linear regression model
used in [18], which estimates a super-trace’s performance
on the inactive backend using performance metrics such as
number of cache misses, branch mispredicts, the ILP and

Prefer Big — — Performance Threshold Prefer Big — — Performance Threshold
—_ (®) Quantums Chosen To =) Yy Quantums Chosen To
220 @] ¥ 9 Run on Big 2 250 (ﬂ Run On Big
O ° o o Quantums Chosen To O PS o ¢ Quantums Chosen To
E=l ° Run On Little = ® Run On Little
k=] rS 5 @ _
3 200 ° @ ¢ L R . 22000 o L4 @ ¢ T
$ o ©® ° ° * o N 6\\ ° g NATN
o = & o
> 150 @ P - 3. 150
(@) < N @ L ®le * ¢ Q
£ () R £
I 100% * : g 100
c ° g
g ° & * ¢ <> oo o<> o
(0} % ® e - o
£ s <>o < % ¢ % '.W% <><> . E 50
a) °

& 1
Prefer Little Prefer Little m

0900 920 940 4 960 980
Quantums in Program Order

(a) Decisions made by a Reactive Controller

O900 920 940 — 960 980
Quantums in Program Order

(b) Decisions made by a Predictive Controller

Figure 7: Ilustration of the lower accuracy shown by a reactive controller vs that of a predictive controller for a fine-grained
system with 300 instructions per quantum running gce. Ideally, points with low performance differences (area shaded grey)
could be run on Little for energy gains with little performance loss, while the rest should be run on the Big backend.

MLP inherent in the code and its dependency on previously
executed super-traces. These metrics succinctly capture the
characteristics of individual super-traces and can be used
to determine the resources that can best extract its perfor-
mance efficiently. For example, if a super-trace is a compute-
intensive loop with high ILP, it is always better to run it on
the Big out-of-order backend. However, if a super-trace is
a memory intensive function, back to back dependent load
misses can potentially stall the core. Such a super-trace will
consume less energy if run on Little. At the end of execu-
tion of a super-trace, its observed performance is compared
to the threshold, and accordingly its PHT entry is updated
to show its tendency towards execution on Big or Little.
More details are covered in Section 4.

3.5 [Illustrative Example

Figure 7 pictorially shows the inaccuracy incurred when
using the last quantum to predict the next quantum’s behav-
ior. The graph plots the cycle difference observed between
Big and Little for each quantum of 300 instructions for gcc.
A large cycle difference implies that the quantum consumes
lesser cycles to execute on Big as compared to Little, imply-
ing that the ‘out-of-orderness’ was useful for the instructions
in it. These quanta, if mis-scheduled on Little, incur heavy
performance losses. The points with lower cycle difference
are quanta that took approximately equal number of cycles
on either backend, implying that their performance is low
irrespective of the backend they execute on. These quanta
are good candidates to run on Little, as they can run on a
more energy efficient backend without hurting performance.
The performance threshold line shows the oracle threshold
- all points above this line should be run on Big (diamonds)
and all other points on Little (circles), in order to maintain
a performance loss of 5% while maximizing energy benefits.

The reactive controller 7(a) assumes that a quantum be-
haves as per the last one and hence makes a few wrong
decisions compared to the oracle. The circled points illus-
trate this effect. A low cycle difference on point 1 dupes
the controller into scheduling the next quantum on Little.
This is a mistake, and this mistake propagates to point 3,
which is mis-scheduled on Big. By mis-scheduling quanta,
the reactive controller slows down by 1780 cycles in this
window of execution. Using a predictive based approach

instead, assumes that a quantum behaves similarly to its
last few instances and makes the decisions shown in 7(b).
Such a controller follows the oracle decision schedule more
closely. The marked points 1-6 are scheduled properly this
time. Also, the circled points (Little decisions) are clustered
tightly around the threshold line. This causes the predictive
controller to lose only 470 cycles due to mispredictions.

3.6 Overheads of the Controller

The predictor described in this section adds minimal hard-
ware and energy overheads. Each entry of the predictor ta-
ble contains enough bits to accommodate 2 super-trace-1Ds
(9bits), each with 3 bits for next head PC and 2 bits for a
confidence counter, along with 2 bits for the backend predic-
tor PHT, totalling 1.875kB of storage. This table is accessed
once at every super-trace boundary. We used CACTI [32]
to estimate the power (0.033W) and area (0.012mm?) over-
heads of this table and found them to be negligibly small in
comparison to the whole core.

4. METHODOLOGY & HARDWARE
DETAILS

The architecture we use to validate our scheme is closely
modeled after the Composite Core design, proposed by Luke-
fahr et al. [18]. Switching intervals of hundreds of instruc-
tions makes necessary a tightly-coupled heterogeneous mul-
ticore system that is unencumbered by the large state mi-
gration latency of traditional designs. The Composite Core
architecture consists of two tightly coupled core backends
(modeled after ARM’s big.LITTLE), with different perfor-
mance and energy characteristics. It consists of two separate
pipelines that share a common frontend and access to the
memory system. Structures like the caches and branch pre-
dictors are shared, so as to avoid the overheads of rebuilding
architecture state on every switch. These architecture is de-
signed to ensure that only the register file has to be explicitly
transferred between the backends on migration.

The high performing Big backend is modeled as a highly
pipelined 3 wide superscalar out-of-order processor with a
large ROB and LSQ), loosely based on ARM’s A15 core. Its
higher superscalar width and its ability to reorder instruc-
tions, allows it to run faster, achieving about twice the per-

Architectural Feature | Parameters

Big backend 3 wide superscalar @ 1.2GHz
12 stage pipeline

128 entry ROB

160 entry register file

2 wide superscalar @ 1.2GHz
8 stage pipeline

32 entry register file

32 KB L1 iCache (Shared)
32 KB L1 dCache (Shared)

1 MB L2 Cache

1024MB Main Mem

Little backend

Memory System

Table 1: Experimental Core Parameters

formance of Little. The energy efficient Little is modeled as
a 2 wide in-order processor, based on ARM’s A7 core. The
simpler and smaller hardware resources used by an inorder
processor allows it to consume a much lower energy per in-
struction than the out-of-order pipeline, consuming 1/3rd as
much total energy. Also, due to a shorter pipeline length, it
provides a quicker branch misprediction recovery.

The online linear regression model is based on the one used
in [18]. Performance defining metrics like observed IPC,
ILP, MLP, cache misses, branch mispredicts, dependencies
on previous super-traces, are fed into a linear equation with
constant multipliers (precomputed using SPEC’s train input
sets). These metrics are monitored online at run-time using
existing performance counters and some additional storage
tables. Prior work estimates the overheads to be negligible
(30 cycle computation, consuming 5uW power and 0.02mm?
area). Computations do not lie on critical path and are
shown to be fairly accurate.

We used the Gemb simulator [3], running a Linux OS, to
perform cycle-accurate simulations to model performance.
In order to estimate static and dynamic energy consumption
of the core and L1 caches, we utilized the McPAT modeling
framework [17]. A core is assumed to be clock gated when
inactive, since power gating adds significant overheads that
are not scalable at fine-granularity switching. Little uses
a frontend that is provisioned for the bigger out-of-order
Big core, and hence it pays an added overhead in terms of
energy as compared to a custom designed Little core. Table
1, gives a detailed description of the configurations used,
as per [18]. We evaluate our scheme using the SPEC 2006
benchmark suite[7]. Benchmarks were compiled using gcc
with -O2 optimizations for the Alpha ISA. All evaluations
were done over 100 million instructions, after fast-forwarding
for 2 billion instructions.

S. RESULTS

In this section we analyze the super-trace based predictive
controller and compare it to the current state-of-art tech-
niques. For the rest of the study, we assume the user will
tolerate a performance loss of 5% in exchange for maximum
energy savings possible.

5.1 Prediction Accuracies

Phase detection in programs is a well researched problem
for coarse granules. Sherwood et al. [30, 31] define a phase
footprint by the frequency of execution of basic blocks within
a quantum. They create hashes of branches along with the
number of instructions between branches to capture individ-
ual basic blocks. Such a phase ID tracks the instruction foot-

—+-Reactive
—<SuperTrace

85

X

00
=}
X

75%

70%

Quantums Accurately Mapped

Methods Operations/lookup
65% Super-trace 2
SimpointBased 1055
60% T T T
100 1K 10K 100K M

Quantum Size In Instructions

Figure 8: Comparison of accuracies of predictions. Sim-
pointBased uses a prediction scheme similar to the coarse-
grained methods shown in [31]. The enclosed table compares
computation overheads.

print of the frequently executed blocks that dominate the
behavior of that phase, thus distinguishing coarse-grained
phases. They define a hardware implementation to dynam-
ically build and predict phases and performance changes at
10 M instruction granularities. We modify this technique
to use only backedges instead of all branches, to maintain
a common baseline for comparison, and use a LRU-based
phase signature table of 32 entries. To predict the next
phase, they suggest a Run Length Encoding Predictor ([31,
16]), which predicts the next phase using the current phase
and the number of times it occurs successively.

In this work, we define the accuracy of a controller to be
the percentage of quanta or super-traces for which the con-
troller picks the same backend as chosen by the Oracle. The
Oracle knows the behavior for every quantum throughout
the program’s execution. The static Oracle sorts all traces
based on (cyclesrittie — cyclespig) and selects the ones with
lowest cycle differences to run on Little. This allows us to
maximize the number of traces run on Little under a spe-
cific performance loss constraint. The performance loss in-
curred per trace is accumulated until the performance target
threshold is reached, beyond which the remaining quanta are
scheduled to run on Big. The Oracle assumes instant switch-
ing between backends with zero overhead. The Oracle’s op-
timality can be increased by considering dynamic switching
costs, but complexity of this solution grows exponentially
with number of traces (100 millions).

Figure 8 summarizes the accuracies that can be obtained
across various trace granularities using controllers studied
in this work. In order to isolate the accuracy of prediction
of each kind of predictor from the noise added by migration
costs, we assume zero switching overheads and no threshold
controller in the accuracy study. The accuracies shown in
the figure are a measure of how well a controller can predict
a phase and a phase change, i.e. predict when execution
should shift from one core backend to the other. In this
work’s context, a correct Big/Little decision is more critical
to the final aim of energy efficiency, rather than accuracy
of phase prediction (which is 70% accurate on average at a
fine-granularity on average). As expected, a reactive con-
troller starts a sharp downward curve around 10K instruc-
tions granularity in Figure 3.

The PerfectNextTraceKnowledge Oracle assumes perfect

PerfectNextTraceKnowledge
-+-SimpointBased

knowledge of the ID of the oncoming super-trace, and has
to predict which backend to run it on (i.e. Block #2 in Fig-
ure 4 is perfect). Finally our scheme, SuperTrace, uses the
controller mentioned in Section 3 to classify super-traces as
Big or Little. The difference between these two lines demon-
strates the inaccuracies added by the next super-trace pre-
dictor. Benchmarks like gobmk (57%) and sjeng (64%) show
the highest inaccuracy at a fine granularity since both these
benchmarks have among the highest number of branches
and branch misprediction rates in the SPEC2006 suite [4].
For example, sjeng involves continually exploring through a
variation tree for every point in its optimization algorithm
[10], leading to poor path predictability.

The last line (SimpointBased) on this graph is the accu-
racy shown by our modified version of the scheme by Sher-
wood et al. [31] to identify phases. We see that this tech-
nique performs well at coarser granularities (beyond 100K
instructions/quantum). But as the granularity of switching
reduces, this method’s inaccuracy reduces and is 10% lesser
than that of the super-trace-based predictor at fine granular-
ity. No significant accuracy improvements were found even
when infinitely sized signature tables were used. At finer-
granularities, the path followed by previous code is equally
critical to predicting future blocks’ behavior. The previ-
ous work considers only the frequency of basic-blocks exe-
cuted, and not the actual path through them. Our method
of prioritizing recently encountered backedges in the super-
trace-identifying hash (Section 3.2) is more suited in this
domain. Also, the phase matching implementation (calcu-
lating Manhattan distances between phase vectors) involves
heavy computation in their implementation, including 1K
adds/subtracts and compares. This is infeasible to perform
at the frequency demanded by our fine-grained architecture
(every few hundred instructions).

This study demonstrates that at a coarse-granularity of
100K instructions or more, a reactive controller works equally
as well as a predictive one. This is because stable perfor-
mance phases can be observed at much coarser-granularities.
However, in the realm of fine-grained heterogeneity, which
affords additional energy savings as compared to coarser-
grained quanta, more information about code behavior is

needed to make precise code to backend mappings. A prediction-

based controller that implicitly keeps track of code specific
resource requirements such as the one described in this pa-
per is capable of increasing prediction accuracy and thus the
energy gains obtained.

As noted earlier, the overheads imposed on migration be-
tween cores subsume energy gains below 300 instruction
traces. We limit our switching architecture to this mini-
mum granularity. The rest of the section shows the benefits
of a predictive controller specifically for this fine-granularity.

5.1.1 Case Study - gcc

In order to demonstrate the effectiveness of a super-trace-
based backend predictor over existing techniques, Figure 9
plots the cycle differences between executing a quantum on
the Little vs the Big backends. A high cycle difference im-
plies that the quantum gains performance benefits on the
big out-of-order core and hence should be run on Big. A
low cycle difference implies that the quantum is agnostic
of underlying microarchitecture and will perform similarly
on either core. Running these on Little offers opportunity
to conserve energy without losing significant performance.

400

200

Big Quantums = Cyan (Grey),
Little Quantums = Blue (Black)

100

o

.
oQ
83

w
o
S

200
100

Difference in Cycles (Little-Big)

300

2N
o o
S o

o

-
o
=]

100000 | 150000, 200000 250000 300000 350000
Quanta in Increasing Time Order

0 50000

Figure 9: Case Study: A super-trace-based predictor follows
the oracle schedule more closely over existing techniques, for
hard to predict gcc

400 T T —

200

Big Quantums = Cyan (Grey),
Little Quantums = Blue (Black)

100

o

-100!
400

w
=3
<]

N
=3
=)

o

-100
400

Difference in Cycles (Little-Big)
<] S
=] o

200
100

-100

o] 50000 100000 150000 200000 250000 300000
Quanta in Increasing Time Order

Figure 10: Case Study: A super-trace-based predictor fol-
lows the oracle schedule more closely over existing tech-
niques, for compute intensive h264ref

The blue(black) and cyan(grey) points show the decisions
taken per quantum by each controller over the entire run of
gcc. Blue represents a quantum that was picked to go on
Big and cyan represents those that went on Little. We pick
gce as an example because of the highly unpredictable data
and control flow that it possesses. It displays many phases
changes of similar performance through its execution. The
oracle schedules 41% of its overall execution on Little.

The first illustration in Figure 9 is the schedule chosen
by the oracle. It chooses a threshold, such that all quanta
with a cycle difference of above that threshold are run on
Big to conserve performance and all below it are run on
Little, offering opportunity for energy saving. The second
illustration is the schedule made by a reactive oracle; there
are many quanta with a high cycle difference that are picked
to execute on Little. Tt gets only 49% of the predictions cor-
rect, over the execution window, compromising the overall
performance of the system. The third illustration shows the

decisions made by the predictive controller. The threshold
set by the oracle is more or less learnt by the predictor, lead-
ing to a more accurate (66%) mapping schedule. There are
some paths taken in gcc that always pick one core over the
other. For example, the third most frequently seen super-
trace has hard to correctly predict branch behavior. Such
a super-trace is a Little backend candidate, because Little,
with its smaller pipeline has faster branch recovery. But
there are other paths throughout its execution that have ex-
tremely unpredictable data flow patterns. It is difficult for
our mechanism to predict the behavior of such paths, which
reduces its accuracy.

5.1.2 Case Study - h264ref

This case study considers h264ref which is a compute-
intensive benchmark, and hence chooses to run on Little only
30% of time in the oracle case. It has modest branch mis-
predicts rates and is not memory intensive. Figure 10 shows
the decisions made by all three controllers over the execution
of this benchmark, similar to the previous study. There are
noticeable performance phases that can be observed in the
figure during the benchmark’s run. Some individual paths
taken in a coarse-grained phase always perform worse than
the others; these are Little candidates. After experiencing a
high performance (cyan) phase, the reactive controller mis-
speculates the start of the low performance (blue) phase, and
sluggishly reacts to the phase change, incurring performance
losses and an accuracy of 85%. The predictive controller on
the other hand, learns to distinguish the low performance
super-traces from the high performance ones yielding an in-
creased accuracy of 89%.

M Oracle Reactive W SuperTrace

100%

Time Spent on Little

R &
N o

% |

& @& ¢ &

N
2 ! &

O)
¢ & & & < &

0
& o 34
& @

Benchmarks

Figure 11: super-trace-based predictor increases percentage
of overall execution time spent on the Little backend

5.2 Time Spent On Little

The amount of energy saved on a Composite Core is pro-
portional to the time spent on Little. This is measured by
the fraction of total cycles spent doing work on Little (Fig-
ure 11). The Oracle bar shows the maximum possible Lit-
tle utilization assuming instant switching subject to a 5%
performance loss (defined in Section 3) at a granularity of
300 instructions. The second bar shows Little utilization
obtained by a reactive controller, averaging to around 18%
overall. The super-trace predictive controller spends more
than 27% of its execution time on Little, bridging the gap
between the Oracle and previous work by nearly half. Mem-
ory intensive benchmarks like soplex spend more time on

90%

80%

70%

60%

50%

40%

30%

20%

10% I_I I_I

0% T T T T T T T T T T '
& & S &

Little, because stalling the pipeline for a load is cheaper in
terms of energy on a smaller, in-order core. In memory-
intensive mcf, Little benefits from the prefetching action
that arises from running a trace on Big before squashing
it, on a switch. The statically derived oracle is oblivious to
these implications of switching between backends, owing it
to assign lower execution time on Little. Benchmarks like as-
tar, sjeng and gobmk, have very high branch misprediction
rates [4]. Because of the unpredictable control flow, com-
bined with unpredictable data flow patterns, it is difficult to
predict whether the upcoming super-trace is a Little or Big
candidate. Hence, even though the oracle shows good poten-
tial for such benchmarks, it is hard for a predictor to learn
and make accurate predictions. Benchmarks which mainly
involve computation (with minimum stalls due to memory
and branch mispredictions) like hmmer and bzip2 show a
68% and 71% improvement over reactive in Little utiliza-
tion, This is because the predictor learns the behavior of
the few memory intensive paths seen in them and preemp-
tively switches to Little for these.

M Oracle Reactive M SuperTrace
-c%" 100%
2 9% Ee Em EE Bm EE Bm | e e
£ 9% 8NN - RN R RN R
8 g
g % RN | EIE EIER
e 8% R RN - -0 - B
s 75% B0 B = R s
2 oo
s 70% BEHN -] e -
Q
g€ 65% BN BN B R R
o
o 60% HEBHN | | EIR EIR
[
e 5% BN N -] e -
g 50%
= S < N 5 'S & & & > R & o N
o 2R § & ¢ & <& NSNS 2
o & 4 LA M & 8 A e ¢ R g
E ks A} & ‘@b ‘\@ &),bo & o&(@ N S O}Q@

Benchmarks

Figure 12: Overall performance loss of 5% is honored by
each controller

5.3 Performance of the System

Figure 12 shows the performance degradation that each of
the controllers incurs with a Composite Cores style architec-
ture. Recall that the user sets a performance loss threshold
of 5% overall, and this bound is honored by each of the con-
trollers, while optimizing for energy consumption. There is
a trade-off between time spent on Little (Figure 11) and per-
formance (Figure 12). In soplex, our predictor overestimates
time on Little compared to oracle, at a performance penalty.
omnetpp falls short of the target, because of extra unneces-
sary switching decisions made by the controller, imposing
additional migration overheads.

5.4 Energy Consumption

Figure 13 compares the energy that can be conserved by
running the benchmarks used in this study on tightly cou-
pled heterogeneous cores. While a core is inactive, it is as-
sumed to be clock gated. The overheads imposed by the 2kB
predictor table used by the predictive controller are negligi-
ble compared to the core’s dynamic energy, and is ignored in
this study. omnetpp is one benchmark that conserves lesser
energy using our scheme, owing to its longer execution time.
On an average, the predictive controller saves total core con-
sumption energy by 60% over the previous work.

M Reactive SuperTrace
o 60%
c
= 69.6%
& s0%
o
2 o
2 : 76.8%
®
< ?n 30%
e
k-1 E—
g 20% 76.9%
L
2
o 10% l l
F 1 1
& 0% i N ‘N 8 | '8 l nm h a l :
0
] o (NS N & & Q &
w R § & @ S & R ¥ &
S & F &;b& 06‘° a°Q &
% 5
Benchmarks
Figure 13: super-trace-based predictor conserves higher

overall energy on a tightly coupled heterogeneous system as
compared to the baseline (big) core and existing controllers

M InfiniteSizeTables 12bitindex M 10bitindex M 9bitindex(OurScheme)

=
o
S

El)

70
60
50 -+
40
30
20
10

%Quantums Accurately Mapped
o

& N A & >

6°& b“‘@ r <& ®<~‘ (\G& & & é&‘«’ & o(}z

€ &F & S <
N4

Benchmarks

Figure 14: Larger predictor table sizes show slightly higher
prediction accuracies

The remainder of this section covers the sensitivity anal-
ysis that led us to our design choices of table sizes and the
types of predicting schemes.

5.5 Effect of Size of Predictors

Figure 14 shows the effect of predictor table size on the
accuracy of backend prediction. The first bar shows the
accuracy achieved by the super-trace-based predictor if there
is no limitation on the table size. This ensures no aliasing
due to the hashing performed in the ID generation stage, and
no capacity conflicts in the predictor tables. The remaining
three bars show the accuracies for three different table sizes,
indexed by super-trace-1Ds of 12, 10 and 9 bits respectively.
As described in Section 3, the size of a table indexed by 12
bits is 18kB, while it is 4kB for a 10 bit index and 1.875kB
for a 9 bit index. To optimize for both accuracy as well as
hardware overhead, we choose a prediction table indexed by
a 9 bit index for the rest of the study.

5.6 Effect of Backend Predictor Variations

In this section, we show the sensitivity (Figure 15) of a
fine-grained phase predictor to the different adaptations of
the core predictor (Block #3 in Figure 4). To isolate its
effect, we assume a perfect next super-trace predictor in this
study. We compare our method to a two-level adaptive pre-
dictor, which indexes into the PHT using history bits. The
first bar shows such a predictor indexed into by 4 bits of
history local to each super-trace-ID. The second bar keeps a

M 2LevelAdaptive-Local 2LevelAdaptive-Global M Single-Level(OurScheme)

100%
90% N B —
80% -1 10
70% EIR 1R 10
60% - ElE iR EiE
50% - B -4 - BB
40% - = EIR 1R =B
30% - B EIR 1R 10
20% - B EIR 1R 10
10% - B EIR 1R 10

0%

Quantums Accurately Mapped

& y & N & & & & > R & & S
& ¢ 50 Wb“k U €& &K o‘?\ &
A N &) S &
Benchmarks

Figure 15: More sophisticated backend predicting schemes
offer moderately higher prediction accuracies

10 bit global history to index into the PHT. The third bar
is our approach, a single-level implementation, with each
super-trace-1D accessing a 2 bit saturating counter. We see
that the global predictor does worse generally, since it is hard
to capture the performance changes on a per super-trace ba-
sis on a global level, at such granularities. The local history
predictor does well on regular benchmarks like bzip2, h26/ref
and Ibm because they have well defined performance phases.
With a local history table indexed by a 9-bit index however,
such a predictor adds a 14% hardware overhead to the im-
plementation. Irregular benchmarks like astar and gcc have
super-traces that have stable behavior across execution for
these benchmarks, barring a few, sparsely located instances
that show performance deviations attributable to irregular
loads. These blips are handled well by a 2-bit saturating
counter, resulting in good accuracies. Again, to achieve best
trade-off for implementation complexity and accuracy, we
choose a single-level backend predictor in this work.

6. RELATED WORKS

6.1 Heterogeneous Cores

Kumar et al. [14] consider migrating thread context be-
tween single-ISA implementations of out-of-order and in-
order cores for the purposes of reducing power. They con-
sider both sampling based and static approaches to schedul-
ing coarse-grained quanta of 100M instructions. Sampling
phases are triggered every 2M instructions on each inactive
core and the most energy-efficient one is chosen. Lukefahr
et al. [18] use a reactive approach to scheduling at a fine-
granularity and propose the tightly coupled heterogeneous
architecture that we model to validate our scheme. The in-
accuracies incurred by such a controller limit their scope to
1000 instruction quanta. Becchi and Crowley [2] also show
that an IPC driven sampling based scheduling scheme out-
performs a static based approach. Rather than relying on
sampling the performance on both cores, Van Craeynest et
al. [34] propose a coarse-grained mechanism that relies on
measures of CPI, MLP, and ILP to predict the performance
on the inactive core. Bias scheduling [13] is another scheme
that determines a program’s bias towards a specific core con-
figuration based on dynamic internal and external stalls due
to architecture variations and resource availabilities. Recent
work [37] use a regression model based approach to schedule
webpages with varying, diverse characteristics to underlying
heterogeneous architecture.

Chen and John [5] use offline profiling to leverage the rela-
tionship between inherent characteristics of a program and

its resource usage, in order to determine the appropriate
core to run on. Such static approaches fail to capture exe-
cution behavior that varies with time. HASS [27] is another
such static assignment scheme that tags applications with
information regarding which core to run on, using offline
analysis.

Another type of heterogeneity is achieved by scaling the
voltage and frequency on cores at runtime, in order to gain
energy savings. It is widely used in production processors
today, and has been incorporated into ARM’s big. LITTLE
heterogeneous multicore system [9]. Such systems work well
for conserving energy on memory bound applications.

6.2 Program Phase Detection and Prediction

Programs go through stable performance phases, both at
a coarse granularity of millions of instructions [28] and at
finer granularities [35, 36]. At a coarse granularity, hardware
techniques have been proposed which dynamically identify
and predict phase changes. In [33] program phases are de-
fined to be the instruction working set of the program for
a specific interval. Program phase changes are detected
based on the relative differences between the instructions
touched during execution. Another technique uses execu-
tion frequencies of basic blocks to define a phase [29, 31].
Phases are classified based on subroutines using a call stack
in [11]. These methods are effective in identifying coarse
grained phases in applications. However, as shown in this
work, some of them break down at finer granularities.

At the other end of the granularity spectrum are traces -
instruction sequences that possess regular control and data
flow patterns. Trace processors [24] apply data and control
flow prediction at trace boundaries in order to distribute ex-
ecution resources among fine-grained slices of instructions.
Dynamic Multithreading Processors [1] identify fine-grained
phases at procedure calls and loop boundaries. The ap-
proach in [6] identifies global control reconvergence points
using backedges. These schemes, conversely, deal with in-
struction phases of tens of instructions which lie below the
scope of switching granularity offered by our architecture.

7. CONCLUSION

General purpose applications exhibit frequent performance
phases, which at a fine-granularity, can have radically dif-
ferent control flow and data access patterns. This work
demonstrates that heterogeneous systems operating at such
granularities can gain energy efficiency by identifying these
micro-phases and mapping them to hardware customized
to their characteristics. In this work, we show the limi-
tations of using a reactive approach to scheduling quanta
when making scheduling decisions at granularities of less
than 10K instructions. A predictive controller which fore-
sees an oncoming phase change and accordingly migrates
a thread is more precise. We propose a super-trace-based
predictive controller that can develop and predict the be-
havior patterns of frequently occurring code sections in the
program at a fine granularity of hundreds of instructions.
This enables applications to run 28% of their execution on
the Little, more energy-efficient backend, nearly 50% more
compared to existing techniques. The predictive scheduler
reduces energy consumption of an out-of-order processor by
15% with negligible hardware and energy overheads on a
tightly coupled heterogeneous system.

8.

ACKNOWLEDGEMENTS

This work is supported in part by ARM Ltd and by the
National Science Foundation under grant SHF-1217917. The
authors would like to thank the fellow members of the CCCP
research group, and the anonymous reviewers for their time,
suggestions, and valuable feedback.

9.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

REFERENCES

H. Akkary and M. A. Driscoll. A dynamic
multithreading processor. In Proceedings of the 31st
annual ACM/IEEE international symposium on
Microarchitecture, pages 226—236, 1998.

M. Becchi and P. Crowley. Dynamic thread
assignment on heterogeneous multiprocessor
architectures. In Proceedings of the 3rd conference on
Computing frontiers, pages 29-40. ACM, 2006.

N. Binkert et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1-7, Aug. 2011.

S. Bird, A. Phansalkar, L. K. John, A. Mericas, and
R. Indukuru. Performance characterization of spec cpu
benchmarks on intel’s core microarchitecture based
processor. In SPEC Benchmark Workshop, 2007.

J. Chen and L. K. John. Efficient program scheduling
for heterogeneous multi-core processors. In Proceedings
of the 46th Annual Design Automation Conference,
pages 927-930. ACM, 2009.

J. D. Collins, D. M. Tullsen, and H. Wang. Control
flow optimization via dynamic reconvergence
prediction. In Proceedings of the 37th annual
IEEE/ACM International Symposium on
Microarchitecture, pages 129-140, 2004.

S. P. E. Corporation. Spec 2006, 2006.
http://www.spec.com/cpu2006/.

D. Friendly, S. Patel, and Y. Patt. Putting the fill unit
to work: Dynamic optimizations for trace cache
microprocessors. In Proc. of the 25th Annual
International Symposium on Computer Architecture,
pages 173-181, June 1998.

P. Greenhalgh. Biglittle

processing with arm cortex-alb & cortex-a7, Sept. 2011.
http://www.arm.com/files/downloads/big_ LITTLE_Final.pdf.
J. L. Henning. Spec cpu2006 benchmark descriptions.
ACM SIGARCH Computer Architecture News,
34(4):1-17, 2006.

M. C. Huang, J. Renau, and J. Torrellas. Positional
adaptation of processors: application to energy
reduction. In Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium
on, pages 157-168. IEEE, 2003.

Q. Jacobson, E. Rotenberg, and J. E. Smith.
Path-based next trace prediction. In Proceedings of the
30th annual ACM/IEEE international symposium on
Microarchitecture, pages 14-23, 1997.

D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling
in heterogeneous multi-core architectures. In
Proceedings of the 5th European conference on
Computer systems, pages 125-138. ACM, 2010.

R. Kumar, K. I. Farkas, N. P. Jouppi,

P. Ranganathan, and D. M. Tullsen. Single-isa
heterogeneous multi-core architectures: The potential
for processor power reduction. In Microarchitecture,

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages
81-92, 2003.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-isa heterogeneous
multi-core architectures for multithreaded workload
performance. In ACM SIGARCH Computer
Architecture News, volume 32, page 64. IEEE
Computer Society, 2004.

J. Lau, S. Schoenmackers, and B. Calder. Transition
phase classification and prediction. In
High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on, pages
278-289. IEEE, 2005.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated
power, area, and timing modeling framework for
multicore and manycore architectures. In
Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pages
469-480. IEEE, 2009.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman,
R. Dreslinski, T. F. Wenisch, and S. Mahlke.
Composite cores: Pushing heterogeneity into a core.
In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
317-328, 2012.

R. Nair. Dynamic path-based branch correlation. In
Proceedings of the 28th annual international
symposium on Microarchitecture, pages 1523, 1995.
H. H. Najaf-abadi and E. Rotenberg. Architectural
contesting. In High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 189-200. IEEE,
2009.

NVidia. Variable smp -a multi-core cpu architecture
for low power and high performance, 2011.

http://www.nvidia.com/content/PDF /tegra_white_papers/

Variable-SMP-A-Multi-Core-CPU-Architecture-for-
LowPower-and-High-Performance-v1.1.pdf.

S. J. Patel and S. S. Lumetta. rePLay: A hardware
framework for dynamic optimization. IEEE
Transactions on Computers, 50(6):590-608, June 2001.
K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread
motion: fine-grained power management for multi-core
systems. In ACM SIGARCH Computer Architecture
News, volume 37, pages 302-313. ACM, 2009.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith.
Trace processors. In Microarchitecture, 1997.
Proceedings., Thirtieth Annual IEEE/ACM
International Symposium on, pages 138-148. IEEE,
1997.

E. Rotenberg, Q. Jacobson, and J. Smith. A study of
control independence in superscalar processors. In
High-Performance Computer Architecture, 1999.
Proceedings. Fifth International Symposium On, pages
115-124. TEEE, 1999.

D. Sellers. An overview of proportional plus integral
plus derivative control and suggestions for its
successful application and implementation. In
Proceedings for the 2001 International Conference on
Enhanced Building Operations, 2001.

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

D. Shelepov, J. C. Saez Alcaide, S. Jeffery,

A. Fedorova, N. Perez, Z. F. Huang, S. Blagodurov,
and V. Kumar. Hass: a scheduler for heterogeneous
multicore systems. ACM SIGOPS Operating Systems
Review, 43(2):66-75, 2009.

T. Sherwood and B. Calder. Time varying behavior of
programs. 1999.

T. Sherwood, E. Perelman, G. Hamerly, and

B. Calder. Automatically characterizing large scale
program behavior. In Tenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 45-57, New York, NY,
USA, 2002. ACM.

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
Micro, IEEE, 23(6):84-93, 2003.

T. Sherwood, S. Sair, and B. Calder. Phase tracking
and prediction. ACM SIGARCH Computer
Architecture News, 31(2):336-349, 2003.

P. Shivakumar and N. P. Jouppi. Cacti 3.0: An
integrated cache timing, power, and area model.
Technical report, Technical Report 2001/2, Compaq
Computer Corporation, 2001.

J. E. Smith and A. S. Dhodapkar. Dynamic
microarchitecture adaptation via co-designed virtual
machines. In Solid-State Clircuits Conference, 2002.
Digest of Technical Papers. ISSCC. 2002 IEEE
International, volume 1, pages 198-199. IEEE, 2002.
K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer. Scheduling heterogeneous multi-cores
through performance impact estimation (pie). In
Proceedings of the 39th International Symposium on
Computer Architecture, ISCA ’12, pages 213224,
2012.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. Smarts: accelerating microarchitecture
simulation via rigorous statistical sampling. In
Proceedings of the 30th annual international
symposium on Computer architecture, pages 84-97,
2003.

B. Xu and D. H. Albonesi. Methodology for the
analysis of dynamic application parallelism and its
application to reconfigurable computing. volume 3844,
pages 78-86. SPIE, 1999.

Y. Zhu and V. J. Reddi. High-performance and
energy-efficient mobile web browsing on big/little
systems. Network, 8000:6000, 2013.

