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Abstract 
Much of the work in machine learning has 
focused on demonstrating the efficacy of 
learning techniques using training and testing 
phases.  On-line learning over the long term 
places different demands on symbolic machine 
learning techniques and raises a different set of 
questions for symbolic learning than for 
empirical learning.  We have instrumented Soar 
to collect data and characterize the long-term 
learning behavior of Soar and demonstrate an 
effective approach to the utility problem.  In this 
paper we describe our approach and provide 
results. 

1.  Introduction 

It is generally accepted that important advances in 
artificial intelligence will require significant amounts of 
knowledge. Machine learning techniques have been 
developed to help automate the process of acquiring such 
knowledge.  Much of the work in machine learning has 
focused on situations in which there are distinct training 
and testing phases. However, Allen Newell stated:  “I 
believed ... learning was something that went on 
continuously and not at the volition of the agent” (Newell 
1993).  The recent increase in interest in agent-based 
systems involving dynamically changing environments 
has led to an increased attention to “on-line learning”, i.e., 
systems in which learning mechanisms are always active.   

Although on-line empirical learning has been studied in 
the machine learning community, running a symbolic 
learning system until it reaches steady state has not.  
Running a symbolic learner continuously over the long 
term places different demands on the learning techniques 
and raises a different set of questions than it does for 
empirical learning.  A desire to understand the 
implications of running a symbolic learner long enough to 
see steady-state behavior led to exploring long-term 
learning in Soar. 

Soar is a system developed by John Laird, Paul 
Rosenbloom, and Allen Newell (1986) that tightly 
couples problem solving and learning.  In Soar, long-term 
learning is accomplished through solving a long series of 
problems.  Soar is an established learning and problem-
solving system based on formulating all tasks as searches 
of state spaces and using chunking as its only learning 
mechanism.   

Soar’s basic operation is to decide which operator to 
apply to the current state to transform it into another state.  
To decide, Soar fires all rules whose conditions are 
satisfied.  If the result is that Soar has a single operator it 
can apply to the current state, it does so.  When Soar does 
not have enough knowledge immediately available to 
decide on the next step, it creates a subgoal to resolve the 
“impasse.”  Soar learns by converting the results of 
successful subgoal problem-solving into a “chunk” 
retaining only the initial conditions and results.  The 
chunk is then added to the knowledge base as another rule 
and is retained indefinitely.    

Machine learning is based on the expectation of improved 
performance due to learning.  However, the utility 
problem identified by Steve Minton (1988) signaled, in 
the long term, a fundamental, dibilating growth in 
problem-solving time with the number of rules in the 
system.  His system, and others, demonstrated degraded 
performance in problem-solving time in as little as 9, 20, 
52, or 100 problems (Bostrom 1992; Iba 1989; 
Markovitch & Scott 1988; Mooney 1989; Minton 1988, 
and Tambe, Newell, & Rosenbloom, 1990).   That 
degraded performance has been addressed for only very 
small numbers of problems when compared to what 
would be expected in on-line learning.  So, is long-term 
symbolic learning doomed by the utility problem? 

Ten years ago, Bob Doorenbos and his collaborators 
provided the first impressions of long-term learning in 
Soar (Doorenbos, Tambe & Newell, 1992; Doorenbos 
1993). His Dispatcher-Soar system was run for 6,550 
problems.    His focus was improvements in time to match 
the current state to applicable rules.  However, he did not 



 

 

eliminate the utility problem because it does not address 
the increased branching factor caused by the additional 
rules. However, his foray invited others to look into long-
term learning.  

Fundamental questions for long-term learning research 
include whether learning will go on forever and how 
much of learned knowledge is used.  To understand these 
issues better, we have instrumented Soar to let us collect 
data and characterize its long-term behavior.  Then, based 
on an understanding of these characteristics, we modified 
Soar to address the utility problem.  Here we describe our 
approach and results. 

2.  Approach 

Our focus has been to understand better the answers to the 
fundamental questions regarding the behavior of Soar 
when run for extended periods of time in on-line learning 
mode.  To address these questions, we reviewed previous 
work in long-term symbolic learning, we re-analyzed 
previous experimental data when appropriate, and we 
conducted new experiments using Soar to provide 
additional insights.  In particular, we are indebted to Bob 
Doorenbos who has made available some of his trace data 
from Dispatcher-Soar experiments and provided 
assistance in interpreting the data.   

The new experiments were conducted using a simple 
physics problem domain, the familiar Blocks-World 
domain, a concept acquisition system, and a tank warfare 
simulation.  All of these systems were implemented in 
Soar and were available from the Soar Group 
(http://ai.eecs.umich.edu/soar/).   

The physics problems were of the form: given an initial 
acceleration and velocity, what is the average velocity and 
distance covered after a given duration.  The Blocks-
World problems were to identify the moves necessary to 
change one configuration of a set of N named blocks into 
another configuration. The Blocks-World domain was 
chosen because it was expected to scale up nicely from 
small problem spaces to large but finite spaces as the 
number of blocks is increased.  A Symbolic Concept 
Acquisition (SCA) system developed by Craig Miller 
(Miller 1993) was exercised with 500 training examples 
and 1,000 testing examples drawn from the chess end-
game data (Blake, Keogh, & Merz 1998).  The tank 
warfare simulation environment, TankSoar, is also 
available from the Soar Group.  Here a problem was 
defined as deciding what action the tank should take next.   

For these new experiments, Soar was instrumented to 
collect various kinds of internal data.  Long-term 
behavioral data was then obtained by running Soar in an 
on-line learning mode and presenting it with long 
sequences of randomly selected problem instances (e.g., 
10,000).  We report our findings in the following sections. 

3.  Will Learning Go on Forever? 

If we have a system that is capable of on-line learning, it 
seems inevitable that it would eventually learn enough 
new knowledge to suffer from the performance 
degradation of the utility problem.  However, that belief is 
based on the expectation that learning continues 
indefinitely as Newell (1990) believed.  We found Soar 
does NOT continue learning indefinitely. 

3.1  Previous Research 

Only a few researchers have run symbolic learning 
systems on long series of problems.  The runs that made 
Soar famous by correlating its learning with data on 
human learning (Rosenbloom & Newell 1986) were 268 
and 259 trials, effectively problems.   

The first long-term learning experiments were done by 
Bob Doorenbos and his collaborators on a message-
routing problem domain in which the task was to identify 
how to get a message through an office network to 
recipients who were identified by their properties, e.g., 
“everyone involved in marketing for project two.”  The 
system was set up with 20 problem spaces defining parts 
of the overall problem.  An external database held a large 
collection of problem instances involving different 
properties of the potential recipients and their 
interconnections. The Dispatcher problems were forced to 
be unique, i.e., they were generated randomly but selected 
from the problem domain without replacement.  This was 
done to intentionally force the learning of a large number 
of chunks.  Doorenbos’ goal was to develop a chunk-
matching algorithm whose overhead scaled better as a 
function of the number of chunks in the system. In the 
initial experiments, 10,000 chunks were learned 
(Doorenbos, Tambe & Newell, 1992).  Dispatcher-Soar 
was later driven to create 113,938 chunks by working on 
6,550 problems (Doorenbos 1993).  He also exercised 
Soar in six other domains learning over 100,000 chunks in 
each (Doorenbos 1995) and demonstrated improvements 
in the match time by approximately two orders of 
magnitude. 

Although identifying the characteristics of long-term 
learning was not the goal of Doorenbos’ experiments, it is 
possible to reanalyze his data toward this end.  By 
viewing his message routing experiments as long-term 
learning experiments involving 20 different problem 
spaces, we found interesting behavior. 

Although a relatively constant chunking rate per problem 
was seen through the 6,550 problems, chunking in the 20 
separate problem spaces varied widely.  Chunking in nine 
of the problem spaces stopped at different points during 
the 6,550 problem solving session ranging from four 
stopping within the first 100 problems to four stopping 
after about 6,000 problems.  Two more problem spaces 
were trending toward stopping after working all 6,550 
problems.  Another seven problem spaces tended toward a 



 

 

constant number of chunks per problem, also stabilizing 
over the full range of problem solving.  Finally, two 
problem spaces generated no chunks at all. 

3.2  New Experimental Results 

New experiments investigating the duration and rate of 
learning were conducted using the physics, Blocks-World, 
SCA, and simple and sophisticated tank domains.  
Analysis of the chunking rate in the physics problem 
space showed a clear downward trend through 400 
problems.   

In experiments with a range of Blocks-World problems, 
learning clearly did not go on forever.  Experiments were 
run using five sets of 500 problems randomly generated 
with replacement. When running two-block problems, all 
problems were solved without learning any chunks.  
(With two blocks there are only three configurations and 
therefore only nine possible problems.)   In experiments 
with three-block problems (169 possible problems), 
learning ended well before 150 random problems were 
attempted and with four-block problems, the longest run 
before learning ended was less than 100 problems.  The 
results are shown in Table 1.  

Table 1. End of learning in BlocksWorld Domains 

Number of 
Blocks 

Possible 
Problems 

Problem at which 
Chunking Ended 

2 9 No chunking done 

3 169 79, 139, 33, 11, 36 

4 5,329 76, 13, 69, 73, 17 
 

In the Symbolic Concept Acquisition (SCA) system, 
chunking continued throughout the 500 training 
examples.   This was by design because SCA adds a new 
chunk for each training example and repeated examples 
result in more specific chunks which the system preferred 
in making its classification.  In experiments with a simple 
learning tank, all learning ended within 200 Soar decision 
cycles.  For the sophisticated, planning tank, learning 
continued through 100,000 tank actions although the 
learning rate was decreasing as it had with the physics 
problem space. 

3.3  Discussion 

Two different behaviors were observed.  The re-analysis 
of Doorenbos’ data and the new experiments with the 
Blocks-World problem spaces demonstrated that learning 
can end even before all problems could have been seen 
due to the generality of Soar's learned chunks.  However, 
it was also observed that learning can stabilize to a 
constant rate when the uniqueness of the problem 

instances was being enforced.  We think this is a feature 
of problem spaces involving perpetual novelty.   

Whether learning goes on forever depends in part on 
whether the problem space, i.e., the set of possible 
problems, is finite or infinite.  For small, finite problem 
spaces, the intuitive answer is that learning will not go on 
forever because eventually every problem will be seen 
and solved at the very least by memorization.  For a large 
finite and infinite problem space, the learning challenge is 
whether a system can learn things of a fairly general 
nature early enough to effectively solve any problem in 
the problem space, or "solve the space" without having 
seen and solved every possible problem instance in the 
problem space.   In either case, there may be pragmatic 
reasons for monitoring the effectiveness of learning, and 
placing some controls on it (for example, Holder’s 
suggestion that learning should be terminated based on 
recognition of degraded problem-solving time (Holder 
1990). 

4.  How Much of Learned Knowledge Is Used? 

Learning is based the expectation of future use of the 
knowledge gained.  The validity of that expectation over 
long-term learning has not been investigated for symbolic 
machine learning.  A discussion of how much of Soar’s 
chunks are actually used is not found in the literature.  
Discussions with other Soar researchers revealed that 
many researchers do not operate Soar with learning turned 
on because the focus of their efforts is to model a 
characteristic of problem solving behavior and chunking 
makes it difficult to understand Soar’s behavior.  

A possible set of distinct patterns in the use of learned 
knowledge is based on when the rules were learned:  (1) 
rules that are learned early on are used more frequently 
than rules learned later;  (2) rules learned later (i.e., more 
recently) are used more frequently; and  (3) rule use is 
independent of when a rule was learned.  If rule use is 
independent of when it was learned, there would be no 
way to distinguish which rules should be kept based on 
when it was learned.  Problem-solving time should then 
be related directly only to number of rules retained, i.e., 
memory size.  If early learning is the primary basis of 
later solutions, then training sets would be more important 
than continuous learning.  In this case, problem-solving 
performance would level off and not be significantly 
affected by either experience beyond the training set or by 
the size of memory larger than that necessary to hold the 
initial learning.  On the other hand, if only the most 
recently learned rules are used, problem-solving time 
could tend to improve with experience as the early 
learning is replaced with later learning.  In this case, the 
number of rules maintained above some threshold should 
not significantly affect problem-solving performance and 
the threshold for the necessary memory size could be 
established operationally. 
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4.1  Previous Work 

Selective retention is the effect of the removal of learned 
rules based on low demonstrated value in problem 
solving, i.e., low utility.  In a early paper on robot plans 
(Fikes, Hart, & Nilsson 1972), the authors recognized that 
continuing to learn plans would cause the problem solver 
to be faced with the "danger of being swamped by the 
ever-increasing repertoire of stored plans."  They stated 
that the straightforward approach would be to keep 
statistics of the frequency with which plans were used and 
then discard those that fell below a specified threshold, 
but that could mask the dynamic nature of rule use.  
Variations on this approach were implemented but the 
utility problem remained. 

Steve Minton’s PRODIGY used a two-stage method to 
evaluate the utility of new control rules (Minton 1988).  
An estimate of the utility of proposed rules was used to 
initially decide whether they were worth saving.  At the 
time of creation of a new rule, PRODIGY used the 
training example to estimate the costs and savings.  If a 
rule represented a net savings, it was tentatively kept.  
Later measurements were to be used to decide whether to 
continue to keep the rule.  In the reported problem space, 
of the 69 control rules estimated to be useful, only 19 
were found to be useful based on measured use (Minton 
1990).     

Glenn Iba's MACLEARN (1989) also used a two stage 
utility filter to decide which macros were worth keeping.  
The initial, static filter performed a heuristic analysis of a 
proposed macro.  The filter had three tests.  The first was 
a check for redundancy with previous macros.  The 
second was an effective-length threshold used to 
eliminate long macros. Finally, a domain-dependent test 
of specific features could be included.  If these tests were 
passed, the macro was added to the knowledge base.  
Later, after completion of a training set of problems, Iba 
manually removed macros based on statistics of the 
macros' use.  Credit for use was only given to the longest 
macros in the solution, not to sub-sequences within the 
longest macros.  In practice, one use of a macro was 
enough to pass the manual dynamic filter. 

Because little information was available on how much of 
the actual use of learned knowledge, new analysis was 
needed specifically to monitor chunk use.  

4.2  New Results 

Analysis of the previous experiments conducted using 
Soar addressed chunk use in simple physics problems, 
Blocks-World domains, SCA, and both the simple and 
sophisticated tanks.   

One measure of the use of learning is a count of the 
number of chunks used throughout a long-term problem-
solving run.  Table 2 presents counts of overall chunk use 
for the physics, SCA, and sophisticated tank domains. 

Table 2.  Counts of Chunk Use 

Count Physics SCA TankSoar 

Chunks saved 1,373 500 4,437 

Chunks used 
at least once 756 228 2,591 

Chunks used 
at least twice 689 143 1,864 

Chunks used 
at least thrice 186 107 1,662 

Chunks used 
more than 10x 31 66 1,130 

 

Note that only about half of all chunks are ever used 
(55%, 46%, and 58%) and that a quarter or less are used 
more than 10 times (2%, 13%, and 25%). 

Another measure of chunk use is the number of chunks 
used in solving each problem.  In the physics domain, a 
near constant number of chunks were used per problem 
throughout the long run, as shown in Figure 1.  However, 
closer examination of the chunk use revealed that which 
chunks were used was not at all constant.  Figure 2 is one 
of a series of plots that indicate which chunks were used 
to solve 20 problems during the 400 problem solving run. 

Figure 1.  Physics chunk use over 400 problems 

Figure 2.  Physics chunk use on problems 381-400 



 

 

Three observations are evident from review of plots like 
Figure 2 throughout the 400-problem run.  First, while 
which chunks were used ranged over the entire set of 
chunks, the majority of the chunks used were those just 
created.  The most recently learned chunks show the most 
uses because of the look-ahead approach used to evaluate 
alternative paths during problem solving.  The look-ahead 
generates new chunks, which then they fire when the 
associated alternative is selected.  The second observation 
is that chunks learned during the whole history of the 
problem solving were used.  The experimental protocol of 
generating problems at random caused some repetition of 
previous conditions fitting the preconditions of previous 
chunks.  Third, the reason an overall relatively constant 
number of chunks observed in Figure 1 is due to the 
increasing number of older chunks used and the 
decreasing number of new chunks used.     

Experiments with three and four Blocks-World problems 
yielded similar average chunk use results.  However, no 
patterns of chunk use over time were as clearly observed. 

A third measure of chunk use is the monitoring of the use 
of individual chunks throughout the long-term problem 
solving experience.  Figures 3 and 4 show the individual 
chunk uses for single runs in the 4-block Blocks-World 
and sophisticated TankSoar domains. 

Figure 3. Individual chunk use in Blocks-World 

Figure 4. Individual chunk use by the sophisticated tank 

Not only can frequently and infrequently used chunks be 
seen in Figures 3 and 4, but changes in chunk use 
throughout the runs can be seen.  This shows an 
interaction between chunks learned at different points in 
the problem-solving experience. 

4.3  Discussion 

The question being investigated dealt with how much of 
the learned chunks were used.  For the physics, SCA, and 
sophisticated tank domains, approximately half of the 
chunks generated were used.  For the three-block Blocks-
World problems, all 13 chunks were used during the five 
500-problem runs.  

For the physics problems, the clear pattern of use was that 
the most recently learned chunks made up the bulk of the 
chunk use, but this problem space continued learning over 
the entire 400 problem solving experience.  During the 
much shorter learning phase in the Blocks-World 
domains, the higher use of more recently learned chunks 
may be observable, but it may simply be the effect of the 
very small set of chunks used.  After learning ended, the 
use of chunks did not show a pattern based on when the 
chunks were learned. 

4.4  Significance 

Previous approaches to the utility problem have not 
exploited the actual use of the learned knowledge.  
Previous researchers have focused on the cost of learning 
and the cost of matching and projected.  The only use 
information involved in previous work was whether or not 
the knowledge had been used at all (Iba 1989; Minton 
1990).  By understanding the nature of the use of learned 
knowledge, it should be possible to develop an approach 
to the utility problem based on actual, rather than 
projected behavior.   

This work also has implications for a relationship between 
the size of memory and problem-solving time.  The 
amount of learned knowledge retained for a specified 
problem solving performance level (in problem-solving 
time and possibly other performance measures) may be 
less than the complete retention currently used in many 
learning systems including Soar.   

5.  Addressing the utility problem  

We now turn to using the characteristics of long-term 
learning to address the utility problem.  Because a 
primary driver of the degraded performance problem-
solving time is the number of rules in the system, several 
candidate approaches to excising chunks were considered.   

The benefits of random forgetting were reported by 
Markovitch and Scott (1988).  This approach uses 
information contained only in the first measure of the use 
of learned knowledge, that only a fraction is ever used.  
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Excising based on checking for use shortly after the 
learning was effectively implemented by Minton (1988) 
and Iba (1989), but that approach does not use the 
dynamic characteristics of long-term learning.  Fikes, 
Hart, and Nilsson (1972) suggested keeping track of the 
least used knowledge.  This approach also does not use 
the dynamic characteristics of long-term learning.  Gratch 
and DeJong (1992) extended Minton’s Prodigy by 
considering the interactions between rules in evaluating 
their usefulness, but they did not evaluate more data on 
actual rule use.  Other approaches considered include 
removing the least recently used chunks (possibly to 
remain below a memory size limit) and removing chunks 
based on a gap between uses.  Maintaining the necessary 
data on the use of each chunk to track least recently used 
chunks was expected to be computationally prohibitive 
although it may fit psychological models.  We chose to 
excise chunks based on the gap between uses. 

5.1  Projected Impact of Excising based on Use Gaps 

Using the data on chunk use, it was possible to project the 
impact of excising chunks for different gap sizes.  We 
analyzed when each chunk was used and plotting the 
number of uses that would be missed after the specified 
maximum gap in the domain studied.  Figures 5 and 6 
show a common transitional curve. 

Figure 5.  Impact of excising chunks in SCA domain 

Figure 6.  Impact of excising chunks in TankSoar 

These figures show another characteristic of chunk use 
over the long term, a transition in the use of chunks with 
the gap between uses.  This is useful because it can be 
exploited to excise low-use chunks.   

The transition phenomenon was not studied fully to find a 
correlation to the problem domain, chunk development, or 
other factors.  Its existence alone was sufficient to 
proceed to testing the idea of excising chunks to address 
the utility problem. 

5.2  Excising Chunks in Soar based on Gap Size 

Excising chunks in Soar based on the characteristics of 
chunk use is not easy. Although Soar was intentionally 
designed to not provide access to introspective data by the 
reasoning mechanisms, the user has access to such data 
through the user interface.  The user interface also allows 
analysis of chunk use and excising of chunks based on 
that analysis.  Details on how we got Soar to excise 
chunks based on a gap between chunk uses is described 
elsewhere (Kennedy 2002). 

Figure 7 presents the number of chunks in the 
sophisticated TankSoar system with and without excising 
based on a gap of 5,000 decision cycles between uses.  

Figure 7.  Excising chunks in TankSoar (same seed) 

TankSoar has two sources of random behaviors, one in 
the TankSoar environment and one within Soar.  The 
random behavior in the environment was addressed 
through the use of seeds for the random number 
generator.  The random behavior caused by Soar itself 
was addressed by analyzing multiple runs. 

The effect, in problem-solving time, of the same ten runs 
with and without excising chunks is shown in Figure 8.  
The mean and standard deviations are shown for the ten 
runs with the same seed for the environmental random 
variable and the same code with and without excising 
being implemented.  For TankSoar, deciding which action 
the tank should take next was considered a problem.  This 
figure shows that the cumulative time to solve a long 
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series of problems was statically significantly lower with 
excising implemented than without (using a t-test with a 
confidence factor of 99 percent). 

Note that we are excising only learned chunks and not the 
basic domain knowledge the system is started with.  
Therefore, the problem-solving capability of the system is 
unaffected.   

Figure 8.  Cumulative problem-solving time with & without 
excising (same seed) 

6.  Conclusions and Further Research 

This work is the first characterization of the behavior of 
long-term, on-line learning in Soar.  We found was that 
learning does not go on forever (finite domains) and can 
end before all unique problems have been seen (based on 
the generality Soar’s learned chunks).  We also found that 
Soar’s chunking can settle to a constant rate when novelty 
is guaranteed or forced (large or infinite domains).   

On the use of learned knowledge, we found that many (as 
much as a half) of Soar’s chunks are never used and 
although the overall chunking rate may be relatively 
constant, which chunks are used is not.  Soar tends to use 
the most recently learned chunks more frequently, but 
also uses chunks from over the whole range of learning 
experience.  (We also found some instances where 
previously useful learned knowledge can become useless 
because it has been replaced and postulated, but did not 
find, cases where learned knowledge is subsumed.)  

The understanding of these characteristics of long-term 
learning in Soar allowed us to develop an approach to the 
utility problem based on excising low-use chunks.  A 
characteristic curve based on the gap between chunk uses 
provided a basis for setting a threshold for excising low-
use chunks.  The improvement in Soar’s problem-solving 
time, comparing with and without excising, was 
statistically significant.     

Hopefully, these results will invigorate research into on-
line learning.  This work suggests a number of areas of 
future research In Machine Learning and in Cognitive 
Science.   

Specific to Soar, the learning of low-use chunks, patterns 
in the use of chunks, and a more complete understanding 
of the transition in missed uses based on gap sizes need 
more thorough investigation.  The modification of Soar to 
support forgetting, i.e., to support rule analysis and rule-
based excising, is under consideration for a future version 
of Soar.     

Beyond Soar, we hope other symbolic learning systems 
will be investigated to see if their long-term learning 
behavior has similar characteristics indicating 
fundamental characteristics of symbolic learning systems.  
In another direction, research into problem 
representations may be able to convert what are normally 
viewed as large problem spaces into effectively small 
ones.  Finally, Allen Newell's premise concerning the 
retention of all knowledge as basic part of Soar as a 
Unified Theory of Cognition needs to be reconsidered.  
Forgetting may be necessary to overcome the utility 
problem and may be a fundamental part of cognition. 
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