
Predicate Projection in a Bimodal Spatial Reasoning System

Samuel Wintermute and John E. Laird

University of Michigan
2260 Hayward St.

Ann Arbor, MI 48109-2121
{swinterm, laird}@umich.edu

Abstract
Spatial reasoning is a fundamental aspect of intelligent
behavior, which cognitive architectures must address in a
problem-independent way. Bimodal systems, employing
both qualitative and quantitative representations of spatial
information, are efficient and psychologically plausible
means for spatial reasoning. Any such system must employ
a translation from the qualitative level to the quantitative,
where new objects (images) are created through the process
of predicate projection. This translation has received little
scrutiny. We examine this issue in the context of a bimodal
spatial reasoning system integrated with a cognitive
architecture (Soar). As part of this system, we define an
expressive language for predicate projection that supports
general and flexible image creation. We demonstrate this
system on multiple spatial reasoning problems in the ORTS
real-time strategy game environment.

Introduction
Representations of spatial relations employed in symbolic
systems are qualitative in nature. For example, in the
blocks world, problems are solved by manipulating
predicates like on(a, b) or clear(c). These are qualitative
properties, as opposed to quantitative properties such as the
x, y coordinates of each block. Qualitative reasoning is a
powerful approach, but the poverty conjecture posited by
Forbus et al. (1991) states that qualitative reasoning alone
might not be sufficient in the general case. Bimodal
systems, where spatial reasoning occurs through the
interaction of qualitative and quantitative representations,
have been proposed as remedies to this problem
(Chandrasekaran et al. 2004). Additionally, bimodal
approaches have been proposed for explaining human
mental imagery phenomena (Kosslyn et al. 2006).

A high-level diagram of our overall approach to bimodal
representation is shown in Figure 1. Soar (Lehman et al.,
1998) is our cognitive architecture at the top of the figure.
Soar maintains mostly symbolic qualitative representations
of the current situation. Below Soar is the diagram module,
which uses quantitative representations. Soar can extract
qualitative properties of objects from the diagram, or insert
new objects (images) in the diagram. Both of these
processes involve translation between qualitative and

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

quantitative representations. Following Chandrasekaran
(1997), we call the first process predicate extraction, and
the second predicate projection.

Many forms of spatial problem solving follow a loop
where the agent inserts an image in the diagram, extracts
properties of that image relative to other objects in the
diagram, reasons over that information to create a new
image, etc., until the problem is solved. For example,
consider the minimalist system in Figure 2. The goal is to
find a position for image C so that it does not intersect with
A or B. The agent achieves this by repeated predicate
projection, where it inserts images in the diagram, and
predicate extraction, where it receives qualitative
descriptions (whether the images intersect) of the current
state. To support these processes, images created by the
symbolic system are represented and processed identically
to perceived environmental objects (except for annotations
that distinguish between them) so that perception and
imagery share a common buffer.

An alternative is to integrate qualitative and quantitative
representations that they co-exist in Soar’s working
memory. However, there would be nothing to be gained by

Figure 1. A bimodal spatial reasoning system.

Figure 2. Simple bimodal spatial problem solving.

such a tight integration. Soar’s existing reasoning involves
matching, retrieving, and combining symbolic structures,
while predicate extraction and projection require complex
numeric calculations that would not intermix with
symbolic processing or behavior control.

The translation from objects in a diagram to qualitative
properties (predicate extraction) has been well studied
(Cohn & Hazarika 2001). This is a translation from the
specific to the general: relations such as ‘object A
intersects object B’ are extracted from a diagram,
condensing objects that share similar properties into well-
defined qualitative categories. In this paper, we will
examine the opposite problem, that of using a qualitative
description to create a quantitatively represented image in
the diagram. While sharing many similarities, this process
is fundamentally different from predicate extraction, as it
translates from the general to the specific.

Predicate Projection
Creating a new image involves translating a qualitative
representation of the image (present in Soar) to a
quantitative representation in the diagram. This problem
has not been as well studied as predicate extraction
(Chandrasekaran 1997). We call the qualitative
representation of a new image the description of that
image. Our goal is to create a system with broad
applicability, which requires a qualitative language for
describing new images that is as expressive and general as
possible. Broadly, there are two kinds of possible
descriptions: direct and indirect.

Indirect Descriptions
An indirect description for a new image is constructed
from the same kind of abstract predicates as are extracted
from the diagram. A description is a set of one or more
predicates, such as “the image is to the right of object A
and the left of object B”. These predicates are constraints,
each of which narrows down the space of potential images.
Even with multiple constraints, though, there still may be
an infinite number of images that satisfy those constraints.

For example, the image on the left of Figure 3 is
described as ‘shaped like object E, located inside of object
D, and outside of object C’. This might describe an infinite
number of images (top left of the figure), a finite number
of images (middle left), or no images (bottom left),
depending on the details of C, D, and E. Feeding the
abstract predicates extracted from a diagram back as image
constraints will usually result in an infinite set of potential
images, of which the original is but one. Due to this
property, descriptions of this form are underdetermined. In
the general case, a set of constraints may result in an
under-constrained problem (as in the top left of the figure),
a critically constrained problem (middle left), or an
overconstrained problem (bottom left).

To support efficient spatial reasoning, all objects in the
diagram must have a unique representation there, grounded

in specific quantitative values (such as coordinates). If the
description of an image is underdetermined, exactly one
image must be created by the projection process, either via
an arbitrary choice, or (as we will see) using more
information to select a single image.

Direct Descriptions
In contrast to indirect descriptions, a direct description is
always unambiguous – it describes only one image. An
example is ‘the image is a straight line from point A to
point B’. For any diagram that has points A and B, there is
exactly one such line. Other descriptions are those such as
‘the image is the intersection of objects A and B’. For any
convex objects A and B in the diagram, the image may or
may not exist, depending on their positions in the diagram,
but if it does exist, there is only one. Thus, a direct
description describes exactly one image, not a category of
images. An example is shown on the right of Figure 3
where we are describing the region of intersection between
two existing objects, A and B. In each of the top two cases,
the description “the intersection of A and B” corresponds
to a single image, which varies based on A and B. In the
bottom case, no such image exists.

Adding More Information to Indirect Descriptions
Since our goal is an image description system that is as
expressive as possible, we consider whether more
information can be added to indirect descriptions. Adding
constraints is not always sufficient because there is no
guarantee that the result will be single image – adding a
single constraint may change an under-constrained
problem into an over-constrained problem. Since an over-
constrained image description is usually undesirable,
images described solely with constraints will often be
under-constrained. It is easy to choose randomly from the
possible images, but in some cases, additional knowledge
can be available to select among the alternatives.
 One approach is to reason over the images meeting the
constraints and use qualitative properties to select a single
image. This appears difficult because there can be an
infinite number of such images. However, it is possible to
consider qualitative properties that select images that are
‘extreme’ in some way relative to the other possible
images, and where the extremes can be computed without

Figure 3. Directly vs. indirectly described images.
Left: indirect image ‘inside C, outside D, shaped like

E’; Right: direct image ‘intersection of A and B’.

explicitly representing the entire set. For example, if we
select the potential image which is nearest to a given
object, we are likely to greatly reduce the number of
images under consideration, and (as we will see) this
selection can be efficiently implemented.

This suggests a two-stage process: first, the constraints
are applied to the diagram to find the set of images fitting
them, then preferences are applied, which describe
properties that the final image should have compared to the
other potential images, such as ‘nearest to object A’.
Applying a preference will not always result in a single
image (many potential images could be equidistant to A),
but it will usually reduce (and never increase) the number
of potential solutions. Applying a preference will never
result in an overconstrained problem. In this way,
preferences are fundamentally different from constraints.

Since applying preferences will not always reduce the
problem to a single solution, the process can be extended
to any number of preference applications to refine the
image. The process may not always result in one image,
and the system will be forced to choose arbitrarily, but the
specification of preferences allows for much more precise
indirect qualitative descriptions of images.

The SRS Spatial Reasoning System
SRS (Spatial Reasoning for Soar) was developed to
enhance Soar’s spatial reasoning ability, creating the
bimodal system in Figure 12. For image creation, both
direct and indirect descriptions (with constraints and
preferences) were implemented. Tables 1 and 2 show the
available image description predicates. All descriptions
both refer to and describe objects, and can be composed
together – for example, it is legal to create an image that is
outside of the hull of object A and B, a constraint
expressed in this notation as outside(hull(A,B)).

Image Description Meaning
hull(O1..On) Image is the convex hull of objects

O1... On.
intersection(O1..On) Image is the geometric intersection

of convex objects O1... On.
scaled(O,<amount>) Image is object O, expanded by

<amount> units in every direction.
rectangle(<width>,
 <height>)

Image is an axis-aligned rectangle
with the given dimensions.

line(O1,O2) Image is a line intersecting the
centroids of objects O1 and O2.

perpendicularLine
(O1,O2)

Image is a line intersecting the
centroid of O1, and perpendicular
to the longest edge of O2.

2 The only Soar-dependent aspects of SRS are the low-level interfaces
used to connect to Soar.

indirect(C1..Cn,
 P1..Pm)

Image is indirectly specified, based
on constraints C1...Cn and
preferences P1...Pm.. Note that
preferences are order-dependent. P1
is applied first, Pm last.

Table 1. Direct image description predicates

Name Type Meaning
shapedLike(O) constraint Image has the same shape

as object O.
inside(O) constraint Image is located entirely

inside object O.
outside(O) constraint Image does not intersect

object O.
near(O) preference Image must be chosen

such that the distance to O
is minimal.

farFrom(O) preference Image must be chosen
such that the distance to O
is maximal.

Table 2. Indirect image constraints and preferences

The indirect image descriptions are implemented in SRS
such that all of the possible locations for a new image are
represented in a possibility space - a set of geometric
structures that encompass all points where the image could
be placed while meeting the description. The constraints
and preferences can all be mapped onto simple geometric
operations modifying this possibility space.

In SRS, the environment is bounded by a polygon.
Before any constraints are applied, the initial possibility
space is this polygon, and the initial image is a point
located somewhere inside it. Applying constraints and
preferences results in modifications of this space in
predictable ways. For example, the inside(O) constraint
transforms the possibility space to be the intersection of the
prior possibility space and object O. Applying a
shapedLike constraint transforms the space from the valid
locations for a point to the valid locations for the centroid
of a two-dimensional object, which can be accomplished
through a simple geometric operation (a Minkowski sum).

Preferences also operate on this possibility space. For
the near preference, the space is changed in one of several
ways: if the object that the image is near to intersects the
possibility space, the new possibility space is the
intersection of the space and the object (which is the region
where distance is at its absolute minimum, 0). Otherwise,
the image must lie at the edge of the possibility space, and
the space can either be reduced to a single point, or, if it
has an edge that lies equidistant (and closest) to the object,
the possibility space is reduced to a line. Once all
constraints and preferences are applied, an arbitrary point
in the possibility space is chosen as the location of the
image.

Considering how these constraints and preferences are
implemented also partly indicates why they are appropriate
to implement. Outside of being very general properties of
objects, they all correspond to efficient geometric
operations in our possibility space representation. As we
will demonstrate, their generality allows them to be
applicable in many contexts; however, that would be
irrelevant if the process of applying a predicate was NP-
complete. The appropriateness of any given predicate is
then partially a function of the underlying implementation,
but the nature of the predicates used in general (constraints,
preferences, direct descriptions) is not.

The system also extracts qualitative predicates from the
diagram, including RCC relationships (Cohn et al. 2001),
orientation relationships such as ‘object A is to the right of
object B’, and distances between objects. Although
distance is not a qualitative property, it is typically
reasoned over in Soar by using an operator such as less-
than, resulting in qualitative properties such as ‘object A is
closer to object B than object C is’.

The ORTS Environment
This system was applied to several problems that arise in
creating a complete agent in the ORTS real-time strategy
computer game (Buro & Furtak 2003). Real-time strategy
(RTS) games are class of computer games characterized by
continuous action, multiple players, control of multiple
units, resource economies, and complicated planning and
execution. Popular RTS games include StarCraft,
WarCraft, and Command and Conquer. The goal of the
game is to eliminate an opponent by exploring, gathering
resources, building structures, and building an army.
 In an RTS, the player is not embedded as an entity in the
world, but is a commander viewing the world from above.
In ORTS, the world is perceived as a two-dimensional map
of convex polygons. A typical game operation might
involve the player commanding a worker unit to build a
building. To do this, a human player would select a worker
unit and click on the location of the new building in the
GUI. The worker would then autonomously move to the
location and create the building. Soar has a similar
interface to the game. For Soar to command a unit to build
somewhere, it must generate an x, y coordinate of that
location. Since imagery and perception share a common
buffer in our system, this is accomplished by Soar creating
an image of the new building, and commanding a unit to
build at the location of that image. Most other game
actions have a similar structure – the location of the action
must be visualized, and used as part of the command
issued to the environment.

Implemented Agents
Evaluation of a system such as SRS is difficult, since our
goal is to extend the range of problems Soar can address,
rather than directly improve performance. To demonstrate
this range, we will describe how images are created and
used in the context of three problems in ORTS.

Base Layout. In this problem, the agent must find a
location for a new building. This location will become the
center of the new building, and no part of that building can
intersect another object. In addition to finding a large
enough empty space, many other details must be
considered. In most cases, the new building should be
close to existing buildings, so that it is easier to defend the
buildings and any movement between bases is minimized.
Buildings have properties specific to their type that
influence where they should be placed. Some buildings are
able to defend against attack, so they should be placed
toward the enemy, while others are exceptionally weak and
should be away from the enemy. A simplified scenario is
shown in Figure 4, where the new building is weak, and
must be hidden. These are the objects present:
A: Existing buildings owned by the player (real objects)
B: Existing buildings owned by the enemy (real objects)
C: Player’s base: an image, hull(A1..An).
D: Enemy base: an image, hull(B1..Bn).
E: New building location: an image,
indirect(rectangle(w,h), outside(C), near(C), farFrom(D)),
where w and h are the dimensions of the new building.

Once the final image (E) is placed, the agent can reparse
the information from the diagram, and reason accordingly.
For example, some object not previously considered could
intersect E, in which case the agent should modify E’s
description to be outside of that object. After a collision-
free image is created, it can be used in a command to
create the actual building. This is a form of the spatial
problem-solving loop described in the introduction.

A complete base layout agent has been developed, with
Soar using knowledge specific to each building type. Since
the knowledge Soar applies to building placement maps
directly onto the predicates available in SRS, the agent
solves this problem very well.

Obstacle Avoidance. In this problem, the agent must
determine a waypoint for a moving unit to divert around an
obstacle. This is the base functionality upon which general
path finding can be built. Path finding is a well-studied
problem with a plethora of algorithms for different
situations. In an RTS game, the interface software takes
care of it in most cases, but there are situations where a
human player must manually find a path, such as when
knowledge needs to be taken into account that the built-in
path finder cannot use (such as that the path must have a
wide berth around a particular enemy). For our purposes,
path finding is an interesting problem to address not only
to account for this case, but also to determine if our general
approach to spatial reasoning can address a problem that
has been solved with problem-specific techniques.
 We will demonstrate one component of our complete
path-finding agent using the abstract obstacle avoidance

Figure 4. A base layout problem.

problem in Figure 5. These are the objects present:
A: The moving unit that is to be controlled (a real object)
B: The obstacle (a real object)
C: The unit at its destination: an image, specified based on
objects not in the figure
D: The straight-line path for A to follow to C: an image,
hull(A,C).
E: An expanded version of the obstacle: an image,
scaled(B, x), where x is a small buffer amount.
F: Line image, perpendicularLine(B, D) .
G: Waypoint image,
 indirect(shapedLike(A), outside(E), near(F), near(D)).

Objects E and F are only used in the description of object
G, so they do not need to be explicitly created. In this case,
the description of G is:

indirect(shapedLike(A), outside(scaled(B,x)),
 near(perpendicularLine(B,D)), near(D)).
An image created with this compact description is

equivalent to one created by the step-by-step process of
creating images E, F, and G in order, but allows the agent
to keep track of less information – images E and F are
hidden from it.
 After creating image G, the agent can then carry out
more imagery and qualitative extraction procedures to
determine the suitability of the proposed waypoint (such as
checking whether the path to the waypoint collides with
any other obstacles), eventually building up to a path
finding algorithm.

A full agent was implemented using this approach to
path finding, and was run on several hundred problem
instances, with varying number of randomly placed
obstacles between the initial location of the unit and the
destination. The algorithm greedily moves toward the goal,
diverting around obstacles if they intersect the path from
the unit to the goal (as in Figure 5). Some capability is
present to divert around groups of obstacles if a waypoint
is unreachable. The agent’s paths were compared to those
found by the path finding system built into ORTS, with the
goal being to determine if a path finding agent
implemented in our system can solve the same problems as
the conventional approach, and how well it can solve them.
 An agent using this approach for generating waypoints
worked well on simple problems, often finding shorter
paths than the (non-optimal) built-in pathfinder, but it
could fail on more complicated problems where
backtracking was required. The reason for these failures
was not that the agent did not posses powerful enough
mechanisms for image creation, but that it used the greedy

search technique. Additional work is required to
completely address pathfinding by extending the high-level
strategy employed. The underlying spatial reasoning
mechanisms are sufficient to implement that strategy.

Path Following. Another approach to the problem is to
recognize potential paths in the empty space in the map,
instead of generating waypoints around obstacles as above.
For domains with clumps of obstacles, this might be more
efficient, if a suitable recognition system is present. In
addition to continuing our investigation of high-level
pathfinding techniques, this approach provides another
context to show how the imagery system in SRS can be
used in different problems.
 A simple path-recognition system was built to
investigate this capability. As shown in Figure 6, potential
paths are represented as overlapping rectangles. The agent
must reason about which rectangles must be traversed to
reach the goal, and issue commands to move the agent
accordingly. These are the objects present in the figure:
A: The moving unit (real object)
B: Obstacles (real objects)
C1-5: Path rectangles (provided by recognition system)
D: The unit at its destination: an image, defined based on
objects not in the figure
E1-4: Waypoints for A to move to D staying inside C1-5

The agent can determine that boxes C1-5 must be
traversed in order before reaching the goal, and generates
waypoints E1-4 to do this. E1 is described as

indirect(shapedLike(A), inside(C1), inside(C2),
 near(C3), near(A))

 Further waypoints are defined similarly, incrementing
the C objects and using the prior waypoint image as the
final near object. This can be considered the inverse of the
approach presented above, instead of guiding the unit such
that it never intersects any object, the unit must be guided
such that it is always inside an object. An agent using a
very similar algorithm has been implemented, and can
solve all problems where the recognition system provides
paths that lead to the goal.

Extensions
The system implemented in SRS does not represent the
entire range of what is possible in a system using this

Figure 5. An obstacle avoidance problem.

Figure 6. A path following problem.

framework. While constraints and preferences like inside,
outside, near, and far allow for a wide range of possible
images, there are many useful images that cannot be
expressed using only those predicates.

For example, consider the problem of constructing an
arch out of five blocks, as shown in Figure 7. The world is
initially given as a table (F) with one block on it (A). The
other blocks to place are present somewhere else in the
world (B, C, D, and E). Each block is placed in turn, by
first creating an image (for example, B’ in the second step),
which is then replaced with a real block in the next step.

The predicates used to construct the images are given in
the figure. Two new constraints were used, alignedWith
and centeredTo. An image is alignedWith a target object if
it lies entirely within a region bounded by normals
projected from the ends of an edge of that object (Figure 8,
left). This constraint is needed to place blocks C and D.
They cannot merely be considered near the blocks they are
on top of and farFrom the table, as the near preference
does not differentiate between C fully on top of A and C
hanging over the edge of A, since in both cases the
distance between the polygons is 0. An image is
centeredTo an object if its centroid lies on a normal
projected from the center of an edge of that object (Figure
8, right). This is needed to center block F over the arch.
These constraints, similar to those in SRS, can be easily
computed with geometric operations in a possibility space.

Conclusion
Predicate projection must be addressed in any bimodal
spatial reasoning system. Unlike predicate extraction,
projection entails a translation from the abstract to the
specific, requiring its own techniques. We have analyzed
the problem, and arrived at a scheme where images are
described directly, or built up through constraints and
preferences in an indirect description. The predicates used
in this framework are not only useful for problem solving,
but are also efficiently implemented. The combination of
these two factors makes them appropriate for a general
bimodal spatial reasoning system.
 More broadly, this analysis is a step towards a tighter
integration between qualitative and quantitative spatial
reasoning techniques. While some problems (such as
building the arch in Figure 7) can be solved by simply
translating qualitative predicates into quantitative images,
many others (like those solved by our ORTS agents)
require not only precise quantitative reasoning to correctly
place images in the diagram, but complex qualitative
reasoning to interpret and modify the diagram. The spatial
reasoning ability of Soar is greatly enhanced by careful
integration with a quantitative system, and the use of Soar
provides powerful qualitative reasoning that would not be
possible in a purely quantitative system.

References
Buro, M., Furtak, T. RTS Games as Test-Bed for Real-
Time Research, Invited Paper at the Workshop on Game
AI, JCIS 2003.

Chandrasekaran, B. Diagrammatic Representation and
Reasoning: Some Distinctions. Invited Paper at AAAI Fall
97 Symposium Series, Diagrammatic Reasoning, 1997

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson,
J.R., Winkler, R. An Architecture for Problem Solving
with Diagrams. in Diagrammatic Representation and
Inference, A. Blackwell, K. Marriott, A. Shimojima, eds.,
Springer-Verlang, 2004.

Cohn, A.G., Hazarika, S.M., Qualitative Spatial
Representation and Reasoning: An Overview. Fundamenta
Informaticae, 46(1-2):1–29, 2001.

Forbus, K.D., Nielsen, P., Faltings, B. Qualitative Spatial
Reasoning: the CLOCK Project. Artificial Intelligence,
51(1-3):417–471, 1991.

Kosslyn, S.., Thompson, W., Ganis, G., The Case for
Mental Imagery . Oxford University Press, 2006.

Lehman, J. F., Laird, J. E., Rosenbloom, P. S., A Gentle
Introduction to Soar, an Architecture for Human
Cognition, in Invitation to Cognitive Science, Vol. 4, S.
Sternberg, D. Scarborough, eds., MIT Press, 1998.

Figure 7. Building an arch in the blocks world.

Figure 8. The alignedWith and centeredTo
constraints.

