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Abstract 
Spatial reasoning is a fundamental aspect of intelligent 
behavior, which cognitive architectures must address in a 
problem-independent way. Bimodal systems, employing 
both qualitative and quantitative representations of spatial 
information, are efficient and psychologically plausible 
means for spatial reasoning. Any such system must employ 
a translation from the qualitative level to the quantitative, 
where new objects (images) are created through the process 
of predicate projection. This translation has received little 
scrutiny. We examine this issue in the context of a bimodal 
spatial reasoning system integrated with a cognitive 
architecture (Soar). As part of this system, we define an 
expressive language for predicate projection that supports 
general and flexible image creation. We demonstrate this 
system on multiple spatial reasoning problems in the ORTS 
real-time strategy game environment. 

Introduction 
Representations of spatial relations employed in symbolic 
systems are qualitative in nature. For example, in the 
blocks world, problems are solved by manipulating 
predicates like on(a, b) or clear(c). These are qualitative 
properties, as opposed to quantitative properties such as the 
x, y coordinates of each block. Qualitative reasoning is a 
powerful approach, but the poverty conjecture posited by 
Forbus et al. (1991) states that qualitative reasoning alone 
might not be sufficient in the general case. Bimodal 
systems, where spatial reasoning occurs through the 
interaction of qualitative and quantitative representations, 
have been proposed as remedies to this problem 
(Chandrasekaran et al. 2004). Additionally, bimodal 
approaches have been proposed for explaining human 
mental imagery phenomena (Kosslyn et al. 2006). 

A high-level diagram of our overall approach to bimodal 
representation is shown in Figure 1. Soar (Lehman et al., 
1998) is our cognitive architecture at the top of the figure. 
Soar maintains mostly symbolic qualitative representations 
of the current situation. Below Soar is the diagram module, 
which uses quantitative representations. Soar can extract 
qualitative properties of objects from the diagram, or insert 
new objects (images) in the diagram. Both of these 
processes involve translation between qualitative and 
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quantitative representations. Following Chandrasekaran 
(1997), we call the first process predicate extraction, and 
the second predicate projection. 

Many forms of spatial problem solving follow a loop 
where the agent inserts an image in the diagram, extracts 
properties of that image relative to other objects in the 
diagram, reasons over that information to create a new 
image, etc., until the problem is solved. For example, 
consider the minimalist system in Figure 2. The goal is to 
find a position for image C so that it does not intersect with 
A or B. The agent achieves this by repeated predicate 
projection, where it inserts images in the diagram, and 
predicate extraction, where it receives qualitative 
descriptions (whether the images intersect) of the current 
state. To support these processes, images created by the 
symbolic system are represented and processed identically 
to perceived environmental objects (except for annotations 
that distinguish between them) so that perception and 
imagery share a common buffer.  

An alternative is to integrate qualitative and quantitative 
representations that they co-exist in Soar’s working 
memory. However, there would be nothing to be gained by 

Figure 1. A bimodal spatial reasoning system. 

Figure 2. Simple bimodal spatial problem solving. 



such a tight integration. Soar’s existing reasoning involves 
matching, retrieving, and combining symbolic structures, 
while predicate extraction and projection require complex 
numeric calculations that would not intermix with 
symbolic processing or behavior control.  

The translation from objects in a diagram to qualitative 
properties (predicate extraction) has been well studied 
(Cohn & Hazarika 2001). This is a translation from the 
specific to the general: relations such as ‘object A 
intersects object B’ are extracted from a diagram, 
condensing objects that share similar properties into well-
defined qualitative categories. In this paper, we will 
examine the opposite problem, that of using a qualitative 
description to create a quantitatively represented image in 
the diagram. While sharing many similarities, this process 
is fundamentally different from predicate extraction, as it 
translates from the general to the specific. 

Predicate Projection 
Creating a new image involves translating a qualitative 
representation of the image (present in Soar) to a 
quantitative representation in the diagram. This problem 
has not been as well studied as predicate extraction 
(Chandrasekaran 1997). We call the qualitative 
representation of a new image the description of that 
image. Our goal is to create a system with broad 
applicability, which requires a qualitative language for 
describing new images that is as expressive and general as 
possible. Broadly, there are two kinds of possible 
descriptions: direct and indirect. 

Indirect Descriptions 
An indirect description for a new image is constructed 
from the same kind of abstract predicates as are extracted 
from the diagram. A description is a set of one or more 
predicates, such as “the image is to the right of object A 
and the left of object B”. These predicates are constraints, 
each of which narrows down the space of potential images. 
Even with multiple constraints, though, there still may be 
an infinite number of images that satisfy those constraints.  

For example, the image on the left of Figure 3 is 
described as ‘shaped like object E, located inside of object 
D, and outside of object C’. This might describe an infinite 
number of images (top left of the figure), a finite number 
of images (middle left), or no images (bottom left), 
depending on the details of C, D, and E. Feeding the 
abstract predicates extracted from a diagram back as image 
constraints will usually result in an infinite set of potential 
images, of which the original is but one. Due to this 
property, descriptions of this form are underdetermined. In 
the general case, a set of constraints may result in an 
under-constrained problem (as in the top left of the figure), 
a critically constrained problem (middle left), or an 
overconstrained problem (bottom left).  

To support efficient spatial reasoning, all objects in the 
diagram must have a unique representation there, grounded 

in specific quantitative values (such as coordinates). If the 
description of an image is underdetermined, exactly one 
image must be created by the projection process, either via 
an arbitrary choice, or (as we will see) using more 
information to select a single image.  

Direct Descriptions 
In contrast to indirect descriptions, a direct description is 
always unambiguous – it describes only one image. An 
example is ‘the image is a straight line from point A to 
point B’. For any diagram that has points A and B, there is 
exactly one such line. Other descriptions are those such as 
‘the image is the intersection of objects A and B’. For any 
convex objects A and B in the diagram, the image may or 
may not exist, depending on their positions in the diagram, 
but if it does exist, there is only one. Thus, a direct 
description describes exactly one image, not a category of 
images. An example is shown on the right of Figure 3 
where we are describing the region of intersection between 
two existing objects, A and B. In each of the top two cases, 
the description “the intersection of A and B” corresponds 
to a single image, which varies based on A and B. In the 
bottom case, no such image exists.  

Adding More Information to Indirect Descriptions 
Since our goal is an image description system that is as 
expressive as possible, we consider whether more 
information can be added to indirect descriptions. Adding 
constraints is not always sufficient because there is no 
guarantee that the result will be single image – adding a 
single constraint may change an under-constrained 
problem into an over-constrained problem. Since an over-
constrained image description is usually undesirable, 
images described solely with constraints will often be 
under-constrained. It is easy to choose randomly from the 
possible images, but in some cases, additional knowledge 
can be available to select among the alternatives.  
 One approach is to reason over the images meeting the 
constraints and use qualitative properties to select a single 
image. This appears difficult because there can be an 
infinite number of such images. However, it is possible to 
consider qualitative properties that select images that are 
‘extreme’ in some way relative to the other possible 
images, and where the extremes can be computed without 

Figure 3. Directly vs. indirectly described images.  
Left: indirect image ‘inside C, outside D, shaped like 

E’; Right: direct image ‘intersection of A and B’. 



explicitly representing the entire set. For example, if we 
select the potential image which is nearest to a given 
object, we are likely to greatly reduce the number of 
images under consideration, and (as we will see) this 
selection can be efficiently implemented. 

This suggests a two-stage process: first, the constraints 
are applied to the diagram to find the set of images fitting 
them, then preferences are applied, which describe 
properties that the final image should have compared to the 
other potential images, such as ‘nearest to object A’. 
Applying a preference will not always result in a single 
image (many potential images could be equidistant to A), 
but it will usually reduce (and never increase) the number 
of potential solutions. Applying a preference will never 
result in an overconstrained problem. In this way, 
preferences are fundamentally different from constraints.  

Since applying preferences will not always reduce the 
problem to a single solution, the process can be extended 
to any number of preference applications to refine the 
image. The process may not always result in one image, 
and the system will be forced to choose arbitrarily, but the 
specification of preferences allows for much more precise 
indirect qualitative descriptions of images. 

The SRS Spatial Reasoning System 
SRS (Spatial Reasoning for Soar) was developed to 
enhance Soar’s spatial reasoning ability, creating the 
bimodal system in Figure 12. For image creation, both 
direct and indirect descriptions (with constraints and 
preferences) were implemented. Tables 1 and 2 show the 
available image description predicates. All descriptions 
both refer to and describe objects, and can be composed 
together – for example, it is legal to create an image that is 
outside of the hull of object A and B, a constraint 
expressed in this notation as outside(hull(A,B)).  
 
Image Description Meaning 
hull(O1..On) Image is the convex hull of objects 

O1... On. 
intersection(O1..On) Image is the geometric intersection 

of convex objects O1... On. 
scaled(O,<amount>) Image is object O, expanded by 

<amount> units in every direction.  
rectangle(<width>, 
               <height>) 

Image is an axis-aligned rectangle 
with the given dimensions. 

line(O1,O2) Image is a line intersecting the 
centroids of objects O1 and O2. 

perpendicularLine 
(O1,O2) 

Image is a line intersecting the 
centroid of O1, and perpendicular 
to the longest edge of O2. 
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used to connect to Soar. 

indirect(C1..Cn, 
              P1..Pm) 

Image is indirectly specified, based 
on constraints C1...Cn and 
preferences P1...Pm.. Note that 
preferences are order-dependent. P1 
is applied first, Pm last. 

Table 1. Direct image description predicates 

 
Name Type Meaning 
shapedLike(O) constraint Image has the same shape 

as object O. 
inside(O) constraint Image is located entirely 

inside object O. 
outside(O) constraint Image does not intersect 

object O.  
near(O) preference Image must be chosen 

such that the distance to O 
is minimal. 

farFrom(O) preference Image must be chosen 
such that the distance to O 
is maximal. 

Table 2. Indirect image constraints and preferences 

 
The indirect image descriptions are implemented in SRS 
such that all of the possible locations for a new image are 
represented in a possibility space - a set of geometric 
structures that encompass all points where the image could 
be placed while meeting the description. The constraints 
and preferences can all be mapped onto simple geometric 
operations modifying this possibility space.  

In SRS, the environment is bounded by a polygon. 
Before any constraints are applied, the initial possibility 
space is this polygon, and the initial image is a point 
located somewhere inside it. Applying constraints and 
preferences results in modifications of this space in 
predictable ways. For example, the inside(O) constraint 
transforms the possibility space to be the intersection of the 
prior possibility space and object O. Applying a 
shapedLike constraint transforms the space from the valid 
locations for a point to the valid locations for the centroid 
of a two-dimensional object, which can be accomplished 
through a simple geometric operation (a Minkowski sum). 

Preferences also operate on this possibility space. For 
the near preference, the space is changed in one of several 
ways: if the object that the image is near to intersects the 
possibility space, the new possibility space is the 
intersection of the space and the object (which is the region 
where distance is at its absolute minimum, 0). Otherwise, 
the image must lie at the edge of the possibility space, and 
the space can either be reduced to a single point, or, if it 
has an edge that lies equidistant (and closest) to the object, 
the possibility space is reduced to a line. Once all 
constraints and preferences are applied, an arbitrary point 
in the possibility space is chosen as the location of the 
image. 

 
 



Considering how these constraints and preferences are 
implemented also partly indicates why they are appropriate 
to implement. Outside of being very general properties of 
objects, they all correspond to efficient geometric 
operations in our possibility space representation. As we 
will demonstrate, their generality allows them to be 
applicable in many contexts; however, that would be 
irrelevant if the process of applying a predicate was NP-
complete. The appropriateness of any given predicate is 
then partially a function of the underlying implementation, 
but the nature of the predicates used in general (constraints, 
preferences, direct descriptions) is not. 

The system also extracts qualitative predicates from the 
diagram, including RCC relationships (Cohn et al. 2001), 
orientation relationships such as ‘object A is to the right of 
object B’, and distances between objects. Although 
distance is not a qualitative property, it is typically 
reasoned over in Soar by using an operator such as less-
than, resulting in qualitative properties such as ‘object A is 
closer to object B than object C is’.  

The ORTS Environment 
This system was applied to several problems that arise in 
creating a complete agent in the ORTS real-time strategy 
computer game (Buro & Furtak 2003). Real-time strategy 
(RTS) games are class of computer games characterized by 
continuous action, multiple players, control of multiple 
units, resource economies, and complicated planning and 
execution. Popular RTS games include StarCraft, 
WarCraft, and Command and Conquer. The goal of the 
game is to eliminate an opponent by exploring, gathering 
resources, building structures, and building an army. 
 In an RTS, the player is not embedded as an entity in the 
world, but is a commander viewing the world from above. 
In ORTS, the world is perceived as a two-dimensional map 
of convex polygons. A typical game operation might 
involve the player commanding a worker unit to build a 
building. To do this, a human player would select a worker 
unit and click on the location of the new building in the 
GUI. The worker would then autonomously move to the 
location and create the building. Soar has a similar 
interface to the game. For Soar to command a unit to build 
somewhere, it must generate an x, y coordinate of that 
location. Since imagery and perception share a common 
buffer in our system, this is accomplished by Soar creating 
an image of the new building, and commanding a unit to 
build at the location of that image. Most other game 
actions have a similar structure – the location of the action 
must be visualized, and used as part of the command 
issued to the environment. 

Implemented Agents 
Evaluation of a system such as SRS is difficult, since our 
goal is to extend the range of problems Soar can address, 
rather than directly improve performance. To demonstrate 
this range, we will describe how images are created and 
used in the context of three problems in ORTS. 

Base Layout. In this problem, the agent must find a 
location for a new building. This location will become the 
center of the new building, and no part of that building can 
intersect another object. In addition to finding a large 
enough empty space, many other details must be 
considered. In most cases, the new building should be 
close to existing buildings, so that it is easier to defend the 
buildings and any movement between bases is minimized. 
Buildings have properties specific to their type that 
influence where they should be placed. Some buildings are 
able to defend against attack, so they should be placed 
toward the enemy, while others are exceptionally weak and 
should be away from the enemy. A simplified scenario is 
shown in Figure 4, where the new building is weak, and 
must be hidden. These are the objects present: 
A: Existing buildings owned by the player (real objects) 
B: Existing buildings owned by the enemy (real objects) 
C: Player’s base: an image, hull(A1..An). 
D: Enemy base: an image, hull(B1..Bn). 
E: New building location: an image,  
indirect(rectangle(w,h), outside(C), near(C), farFrom(D)), 
where w and h are the dimensions of the new building. 

Once the final image (E) is placed, the agent can reparse 
the information from the diagram, and reason accordingly. 
For example, some object not previously considered could 
intersect E, in which case the agent should modify E’s 
description to be outside of that object. After a collision-
free image is created, it can be used in a command to 
create the actual building. This is a form of the spatial 
problem-solving loop described in the introduction. 

A complete base layout agent has been developed, with 
Soar using knowledge specific to each building type. Since 
the knowledge Soar applies to building placement maps 
directly onto the predicates available in SRS, the agent 
solves this problem very well. 
 
Obstacle Avoidance. In this problem, the agent must 
determine a waypoint for a moving unit to divert around an 
obstacle. This is the base functionality upon which general 
path finding can be built. Path finding is a well-studied 
problem with a plethora of algorithms for different 
situations. In an RTS game, the interface software takes 
care of it in most cases, but there are situations where a 
human player must manually find a path, such as when 
knowledge needs to be taken into account that the built-in 
path finder cannot use (such as that the path must have a 
wide berth around a particular enemy). For our purposes, 
path finding is an interesting problem to address not only 
to account for this case, but also to determine if our general 
approach to spatial reasoning can address a problem that 
has been solved with problem-specific techniques. 
 We will demonstrate one component of our complete 
path-finding agent using the abstract obstacle avoidance 

Figure 4. A base layout problem. 



problem in Figure 5. These are the objects present: 
A: The moving unit that is to be controlled (a real object) 
B: The obstacle (a real object) 
C: The unit at its destination: an image, specified based on 
objects not in the figure 
D: The straight-line path for A to follow to C: an image, 
hull(A,C). 
E: An expanded version of the obstacle: an image, 
scaled(B, x), where x is a small buffer amount. 
F: Line image, perpendicularLine(B, D) . 
G: Waypoint image,  
     indirect(shapedLike(A), outside(E), near(F), near(D)). 

Objects E and F are only used in the description of object 
G, so they do not need to be explicitly created. In this case, 
the description of  G is: 

indirect(shapedLike(A), outside(scaled(B,x)),  
              near(perpendicularLine(B,D)), near(D)). 
An image created with this compact description is 

equivalent to one created by the step-by-step process of 
creating images E, F, and G in order, but allows the agent 
to keep track of less information – images E and F are 
hidden from it. 
 After creating image G, the agent can then carry out 
more imagery and qualitative extraction procedures to 
determine the suitability of the proposed waypoint (such as 
checking whether the path to the waypoint collides with 
any other obstacles), eventually building up to a path 
finding algorithm. 

A full agent was implemented using this approach to 
path finding, and was run on several hundred problem 
instances, with varying number of randomly placed 
obstacles between the initial location of the unit and the 
destination. The algorithm greedily moves toward the goal, 
diverting around obstacles if they intersect the path from 
the unit to the goal (as in Figure 5). Some capability is 
present to divert around groups of obstacles if a waypoint 
is unreachable. The agent’s paths were compared to those 
found by the path finding system built into ORTS, with the 
goal being to determine if a path finding agent 
implemented in our system can solve the same problems as 
the conventional approach, and how well it can solve them. 
 An agent using this approach for generating waypoints 
worked well on simple problems, often finding shorter 
paths than the (non-optimal) built-in pathfinder, but it 
could fail on more complicated problems where 
backtracking was required. The reason for these failures 
was not that the agent did not posses powerful enough 
mechanisms for image creation, but that it used the greedy 

search technique. Additional work is required to 
completely address pathfinding by extending the high-level 
strategy employed. The underlying spatial reasoning 
mechanisms are sufficient to implement that strategy. 
 
Path Following. Another approach to the problem is to 
recognize potential paths in the empty space in the map, 
instead of generating waypoints around obstacles as above. 
For domains with clumps of obstacles, this might be more 
efficient, if a suitable recognition system is present. In 
addition to continuing our investigation of high-level 
pathfinding techniques, this approach provides another 
context to show how the imagery system in SRS can be 
used in different problems. 
 A simple path-recognition system was built to 
investigate this capability. As shown in Figure 6, potential 
paths are represented as overlapping rectangles. The agent 
must reason about which rectangles must be traversed to 
reach the goal, and issue commands to move the agent 
accordingly. These are the objects present in the figure: 
A: The moving unit (real object) 
B: Obstacles (real objects) 
C1-5: Path rectangles (provided by recognition system) 
D: The unit at its destination: an image, defined based on 
objects not in the figure 
E1-4: Waypoints for A to move to D staying inside C1-5 

The agent can determine that boxes C1-5 must be 
traversed in order before reaching the goal, and generates 
waypoints E1-4 to do this. E1 is described as  

indirect(shapedLike(A), inside(C1), inside(C2),  
              near(C3), near(A)) 

 Further waypoints are defined similarly, incrementing 
the C objects and using the prior waypoint image as the 
final near object. This can be considered the inverse of the 
approach presented above, instead of guiding the unit such 
that it never intersects any object, the unit must be guided 
such that it is always inside an object. An agent using a 
very similar algorithm has been implemented, and can 
solve all problems where the recognition system provides 
paths that lead to the goal. 

Extensions 
The system implemented in SRS does not represent the 
entire range of what is possible in a system using this 

Figure 5. An obstacle avoidance problem. 

Figure 6. A path following problem. 



framework. While constraints and preferences like inside, 
outside, near, and far allow for a wide range of possible 
images, there are many useful images that cannot be 
expressed using only those predicates.  

For example, consider the problem of constructing an 
arch out of five blocks, as shown in Figure 7. The world is 
initially given as a table (F) with one block on it (A). The 
other blocks to place are present somewhere else in the 
world (B, C, D, and E). Each block is placed in turn, by 
first creating an image (for example, B’ in the second step), 
which is then replaced with a real block in the next step. 

The predicates used to construct the images are given in 
the figure. Two new constraints were used, alignedWith 
and centeredTo. An image is alignedWith a target object if 
it lies entirely within a region bounded by normals 
projected from the ends of an edge of that object (Figure 8, 
left). This constraint is needed to place blocks C and D. 
They cannot merely be considered near the blocks they are 
on top of and farFrom the table, as the near preference 
does not differentiate between C fully on top of A and C 
hanging over the edge of A, since in both cases the 
distance between the polygons is 0. An image is 
centeredTo an object if its centroid lies on a normal 
projected from the center of an edge of that object (Figure 
8, right). This is needed to center block F over the arch.  
These constraints, similar to those in SRS, can be easily 
computed with geometric operations in a possibility space. 

Conclusion 
Predicate projection must be addressed in any bimodal 
spatial reasoning system. Unlike predicate extraction, 
projection entails a translation from the abstract to the 
specific, requiring its own techniques. We have analyzed 
the problem, and arrived at a scheme where images are 
described directly, or built up through constraints and 
preferences in an indirect description. The predicates used 
in this framework are not only useful for problem solving, 
but are also efficiently implemented. The combination of 
these two factors makes them appropriate for a general 
bimodal spatial reasoning system. 
 More broadly, this analysis is a step towards a tighter 
integration between qualitative and quantitative spatial 
reasoning techniques. While some problems (such as 
building the arch in Figure 7) can be solved by simply 
translating qualitative predicates into quantitative images, 
many others (like those solved by our ORTS agents) 
require not only precise quantitative reasoning to correctly 
place images in the diagram, but complex qualitative 
reasoning to interpret and modify the diagram. The spatial 
reasoning ability of Soar is greatly enhanced by careful 
integration with a quantitative system, and the use of Soar 
provides powerful qualitative reasoning that would not be 
possible in a purely quantitative system. 
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