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Abstract 

In this paper, we explore the hypothesis that episodic 
memory is a critical component for cognitive architectures 
that support general intelligence. Episodic memory overlaps 
with case-based reasoning (CBR) and can be seen as a task-
independent, architectural approach to CBR. We define the 
design space for episodic memory systems and the criteria 
any implementation must meet to be useful in a cognitive 
architecture. We present an implementation and 
demonstrate how episodic memory, combined with other 
components of a cognitive architecture, supports a wealth of 
cognitive capabilities that are difficult to attain without it. 

Introduction   

Episodic memory was first described in detail by Tulving 
(1983). Episodic memory is what you “remember,” and 
includes contextualized information about specific events, 
such as a memory of a vacation or the last time you had 
dinner. In contrast, semantic memory is what you “know,” 
and consists of isolated facts that are decontextualized – 
they are not organized in a specific experience and are 
useful in reasoning about general properties of the world, 
such as knowing that George W. Bush is president in 2007. 
Episodic memories allow you to extract information and 
regularities that where not noticed during the original 
experience and combine them with current knowledge. 
Episodic memories can sometimes be retrieved as a 
sequence (like a movie) and commonly contain 
approximate or relative temporal information. 

Episodic memory is a capability that we take for granted 
in humans, except when an accident or disease disables it. 
When that happens, the resulting amnesia is devastating. 
Oddly enough, the vast majority of integrated intelligent 
systems ignore episodic memory, which often dooms them 
to what can be achieved by people with amnesia, which is 
demonstrably limited. Our hypothesis, supported by human 
amnesia data, is that episodic memory is critical for 
providing a memory of previous events, but also for 
supporting a host of additional cognitive capabilities that 
greatly enhance the reasoning and learning capabilities of 
an integrated intelligent agent. 
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There are only limited examples of computational 
implementations of episodic memory for integrated agents. 
The “basic agent” created by Vere and Bickmore (1990) 
had a primitive episodic memory capability (a linked list of 
prior states), that was used only in a limited capacity (such 
as to answer questions). Ho et al. (2003) describe an agent 
that uses a task-specific implementation of episodic 
memory to locate previously encountered resources.  
 Episodic memory is related to case-based reasoning 
(CBR) (Kolodner 1993). In many CBR systems, a case 
describes the solution to a previously encountered problem 
that the system retrieves and adapts to new problems. No 
matter what the exact approach, the structure of cases (the 
specific fields in the case) are designed by a human for a 
specific task or set of tasks, limiting their generality. For 
example, continuous case-based reasoning (Ram & 
Santamaría 1997) relies upon cases that consist of the 
agent’s sensory experiences, but none of its internally 
generated abstractions. 
 We extend the CBR paradigm by integrating episodic 
memory with a general cognitive architecture and 
developing task independent mechanisms for encoding, 
storing, and retrieving episodes, none of which make 
assumptions about the structure or contents of the episodes.  

In this paper, we present the design space for episodic 
memory implementations, followed by a description of our 
implementation(s) of episodic memory as integrated with 
the Soar cognitive architecture. Our hypothesis is that 
episodic memory supports multiple cognitive capabilities, 
which we describe. We confirm our hypothesis with 
implementations of three of those capabilities in a 
moderately complex task. Previous work on integrating 
episodic memory with Soar (Nuxoll & Laird, 2004) has 
studied only a simple task and a single cognitive capability. 

Episodic Memory Design Space 

Learning mechanisms embedded in cognitive architectures 
have three stages: encoding information from the current 
situation, storing it, and retrieving it. There is also a final 
stage of using the information to influence behavior, but 
this draws on the general capabilities of the architecture, 
independent of the structure of episodic memory. Each of 
these stages has subparts, with design choices that together 
determine the space of possible episodic memory designs. 
Thus, one aspect of our research is to search through this 
space of possible designs considering the implications of 



each choice on episodic memory functionality. This section 
describes the design space and the choices we made for our 
current implementation. For the most part, we have chosen 
the most general approach to episodic memory.  

Encoding 
• Encoding initiation: When is an episode encoded? This 

can be determined deliberately by the agent or could be 
automatic at some specific time during the agent’s 
processing. In our current approach, an episode is 
encoded each time the agent takes an action. 

• Episode determination: What are the contents of an 
episode? In our implementation, an episode consists of 
the agent’s current state, which includes perception, 
motor commands, and internal data structures. When the 
episode is recorded, only features whose activation level 
(defined later) exceeds a preset threshold are included. 

• Feature selection: Is a subset of features in the stored 
episodes selected for matching during retrieval? In our 
current implementation, the entire memory is used.  

Storage 
• Episode structure: What is the structure of the episodic 

memory store? This is important because the structure 
influences the efficiency of storage and retrieval. We 
describe two alternatives in subsequent sections. 

• Episode dynamics: Does the content or organization of 
the episodic store change over time, such as through 
forgetting or generalization? In our system, the episodic 
store is static without forgetting or reorganization.  

Retrieval 
• Retrieval initiation: When is an episode retrieved? Is 

retrieval initiated deliberately or is spontaneous retrieval 
possible using the complete current situation as a cue? In 
our implementation, deliberation retrieval is initiated 
when the agent creates a cue. 

• Cue determination: How is the cue specified? In our 
implementation, a cue is created in a reserved portion of 
the agent’s temporary memory and the cue can include 
not only specifications of what exists in the retrieved 
episode, but also what cannot exist.  

• Retrieval: Given a cue, which episode is retrieved? Our 
system uses activation and recency biased partial match. 
Details of our matching algorithm are in the next section. 

• Retrieved episode representation: When an episode is 
retrieved, how is it represented in the agent? Our 
implementation represents the episode in its entirety with 
an annotation that it is a retrieved episode.  

• Retrieval meta-data: Is there additional meta-data about 
the episode and its match to the cue? Our system’s meta-
data includes: data about the strength of the match and 
the relative time that the episode was recorded. 

 
Outside of the mechanics of the episodic memory 

system is the question, “How is the retrieved memory 

used?” Addressing this question leads directly to the 
cognitive capabilities described later in this paper.  

One final concern is that an episodic memory system 
must meet practical resource requirements – the cost of 
using it should not outweigh its benefit. Thus, a goal is that 
the growing need for computational resources can be met 
at reasonable cost for the predicted existence of the agent.  

Episodic Memory Implementation in Soar 

Our implementation of episodic memory is embedded in 
Soar (Newell 1990) as shown in Figure 1. Soar represents 
it procedural long-term knowledge as production rules. It 
represents short-term declarative knowledge in its working 
memory, which includes internally generated structures, 
motor commands, and structures created by perception. 
When conditions of rules match working memory, rules 
“fire” and create new structures in working memory. 
Deliberate action in Soar is generated by rules proposing, 
comparing, and evaluating, and applying operators. While, 
rules fire in parallel as soon as they match, only a single 
operator is selected and fired during Soar’s decision cycle. 

 To provide a task-independent method of identifying 
important working memory elements (WMEs), a working 
memory activation system was added to Soar (Nuxoll, et 
al. 2004) that was based on the activation scheme in 
ACT-R (Anderson and Labiere 1998). The activation 
levels of WMEs are increased whenever it is tested by a 
rule, indicating it is important to the current processing. 
The activation of a WME decays exponentially over time.  

Episodic Memory Integration 
In our implementation, snapshots of working memory are 
captured and automatically stored in episodic memory. 
Everything in working memory is stored in the episode 
except for WMEs with very low activation (indicating they 
were not recently created or tested).  
 Episodic memory is queried by an operator creating a 
structure in the cue area of working memory. The episode 
that is the best match to the cue is found and deposited in 
the retrieved area of working memory.  

Figure 1: The Soar Architecture with Episodic Memory 
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Episodic Memory Matching Algorithms 
 An effective and efficient episodic memory system is 
dependent on the data structures for storing episodes and 
the algorithms for retrieving episodes, which must 
minimize storage and computational expense, while 
providing an expressive language for retrieving episodes 
using partial match. (Early experiments using exact match, 
while efficient proved inadequate for flexible retrieval.) 
Thus we developed and experimented with two algorithms 
and associated data structures, which we label instance-
based (where each episode instance is explicitly stored) 
and interval-based (where episodes are represented by a 
record of the intervals when individual WMEs existed). 
Both partial matching algorithms rely upon a data structure 
called the working memory tree. The tree retains a record 
of each unique WME that has ever existed.  

The instance-based approach uses a data structure that 
holds instances of each episode. Instead of storing the 
actual WMEs, it stores pointers to nodes in the working 
memory tree (see Figure 2). A memory cue is a 
conjunction of WMEs. In response to a cue, the instance-
based algorithm retrieves a matching episode as follows: 

1. For each element in the cue, the corresponding entry 
in the working memory tree is found, which 
includes a list of all episodes it appeared in.  

2. The set of episodes that contain at least one feature 
of the cue are collected.  

3. The “best matching” episode is then selected. In the 
simple case, this means selecting the episode that 
includes the most cue elements (biased by recency). 

The instance-based algorithm requires O(nm) time to 
complete (where ‘n’ is the size of the cue and ‘m’ is the 
number of episodic memories that include at least one cue 
element). The cue is usually small and does not grow over 
time. In the worst case, the size of ‘m’ is equal to the size 
of the episodic memory store, but its expected size is much 
smaller, especially as different tasks are pursued. Empirical 
measurements of existing systems show that the time 
grows linearly with the size of the episodic store. 
 Our second matching algorithm was inspired by the 
observation that two sequential episodes are very similar. 
In this approach, we eliminate the explicit representation of 
the episodic memories. To compensate, we modified the 

working memory tree so that each node contains a list of 
the intervals in which the WME existed (see Figure 3). 

 When a memory cue is created, the interval-based 
algorithm retrieves a matching episode as follows: 

1. For each entry in the memory cue, the system finds 
the corresponding node in the working memory tree, 
and extracts its interval list.  

2. All extracted intervals are merged together into a 
larger set of intervals where each interval 
corresponds to a unique combination of matching 
cue elements at a specific time.  

3. The merged list is traversed to locate the range with 
the highest match score. 

4. The episode is recreated by traversing the working 
memory tree and locating each node that includes 
the selected interval. 

The complexity of this algorithm is O(n2l) where ‘n’ is the 
size of the cue and ‘l’ is the average size of the list of 
intervals in each node of the working memory tree. As 
with the instance-based algorithm, these two variables are 
not independent. If the size of the cue is small and 
relatively constant, we observe linear growth in processing 
time. In our research domains, the interval-based algorithm 
was approximately 15% faster than the instance-based 
algorithm and required roughly on quarter of the memory 
to store the same number of episodes. 
 Both of these methods fail the computation bound 
requirements. There are three responses to this problem: 

1. Develop new algorithms that meet these 
requirements. Given the inherent need for more and 
more memory to store episodes, this is unlikely using 
standard von Neumann architectures, but may be 
possible with alternative computational architectures, 
such as content-addressable memories. 

2. Modify the dynamics of episodic memory so that the 
number of episodes is bounded. This could be 
achieved via forgetting. Although this has 
possibilities, any fixed bound will ultimately have a 
negative impact on a general intelligent agent. 

3. Determine the bound on the number of episodes that 
can be efficiently processed and restrict our use of 
episodic memory to problems that meet that limit. 

We have adopted approach #3. We use and experiment 
with episodic memory in agents we develop, but we are 

Figure 3:  Data structures for interval-based matching 

Figure 2:  Data structures for instance-based matching 
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limited to the length of our system’s experiences by the 
computational demands of episodic memory (these 
correspond to roughly four hours of human experience). In 
the end, option #1 is probably the only viable approach, but 
that requires development of special purpose hardware, 
which is beyond our current resources.  

Selection Bias  
As episodic memory grows, usually there will be more and 
more episodes that have some relationship to the cue. Of 
all these episodes, which one should be selected? The 
simplest approach it to choose the episode that includes the 
largest number of elements from the cue, giving all 
elements of the cue equal weight. This puts the onus on the 
agent to create a selective cue, which can be difficult. The 
agent might not know which features are important. Early 
work on episodic memory in Soar demonstrated that using 
activation level for biasing episodic retrieval significantly 
improved the quality of performance (Nuxoll & Laird 
2004). Activation provides a simple but powerful heuristic 
for selecting which elements of the cue are important 
within the current problem-solving context. 

Our research has extended that work by enriching the 
cue description so that the agent can also specify specific 
WMEs that cannot be in the cue. This extension improves 
performance by eliminating the retrieval of episodes that 
the agent knows it will not use. In addition, when 
requesting a retrieval, the agent can signal that a specific 
episode should not be retrieved (such as when an episode 
has been retrieved and found to be inadequate).  

Episodic Memory Cognitive Capabilities  

Once we have an episodic memory system, what good is 
it? In this section, we list cognitive capabilities that 
episodic memory helps support. We do not claim that this 
list is complete, or that episodic memory is necessary to 
achieve these capabilities (which would require a much 
more extensive analysis of the cognitive capabilities and 
alternative implementations). We are prepared to claim and 
demonstrate that a single implementation of episodic 
memory is sufficient for supporting some of these 
capabilities.  

Sensing: 
• Noticing Novel Situations: By failing to retrieve episodic 

memory similar to the current situation, the agent can 
detect when it is in a novel situation. “I’ve never been 
here before.” 

• Detecting Repetition: Retrieval of episodes that are 
identical (or close to identical) can inform an agent that 
it is repeating situations and possibly not making any 
progress toward its goals. “I’ve was just here. I must be 
going in circles.” 

• Virtual Sensing: An agent can retrieve past episodes that 
include sensory information relevant to the current task 
that are beyond its current perceptual range. “I remember 
seeing a coffee shop just around the corner from here.” 

Reasoning: 
• Action Modeling: An agent can retrieve an episode of a 

similar situation where it has performed an action. It can 
then compare that episode to what came next to 
determine how the action affects the world.  

• Environment Modeling: This is similar to action 
modeling, except the agent is using sequences of 
episodes to predict how the world will change 
(independent of its own actions).  

• Predicting Successes/Failures: This extends the previous 
two by using episodic memory to recall the expected 
value of an action and the ensuing changes in the world 
that eventually lead to some feedback for the agent in 
terms of success or failure.  

• Managing Long Term Goals: Episodic memory 
remembers whether or not goals have been achieved, 
eliminating the need to maintain goals in working 
memory, which for long-term goals can be difficult. 

 

Learning: 
• Retroactive Learning: An agent might acquire 

experiences when performing under time pressure. Later, 
when sufficient time becomes available, the agent can 
analyze the experience.  

• Reanalysis of Knowledge: As new information becomes 
available, episodes can be retrieved and reanalyzed using 
the new information. “Now that I know he was lying, 
everything that happened makes sense.” 

•  Explaining Behavior: An agent can use episodic 
memory to replay earlier behavior to explain its behavior 
to others, tell stories or relate prior experiences.  

• “Boost” other Learning Mechanisms: Episodic memory 
can provide the “grist” for the “mill” of other learning 
mechanisms such as explanation-based learning and 
reinforcement learning.  

These capabilities could be realized by individual 
architectural modules. However, many, if not all of them 
require the recording and retrieval of the agent’s 
experiences. A single general-purpose episodic memory 
simplifies the implementation of the cognitive capabilities 
and eliminates redundant functionality.  

Experimental Environment 

For the experiments described in this paper, we use a 
single environment called TankSoar. In TankSoar, the 
agent controls a tank moving in a two dimensional (tile-
based) maze. It has three resources: missiles, energy, and 
health, which are expended by the tank’s actions in the 
world. Without energy, a tank cannot see or shield itself 
against attach. Without missiles, a tank cannot attack 
another tank, and without health, a tank is destroyed.  
 The agent’s goal is to destroy other tanks in the maze by 
firing missiles while avoiding enemy missiles. Figure 4 
depicts a portion of a TankSoar map. While the human 
observer can see the entire map, the tank has limited 
sensors, with radar being the most important. A battery and 
health charger recharge the agent’s energy and health.  



 For each of the cognitive capabilities we implemented, 
we focused on a specific task that a TankSoar agent might 
undertake. For these experiments, we used the instance-
based algorithm (biased by activation and recency) because 
even though it is less efficient, it is easier to modify. 

Cognitive Capability: Action Modeling 

An agent with episodic memory can predict the immediate 
effects of its actions by examining similar situations in its 
past wherein it took the same actions. Our action-modeling 
experiment in TankSoar focuses on the problem of energy 
management. A tank uses its radar to sense the 
environment immediately in front of it. The radar can be 
set to different distances with further distances requiring 
more energy. Energy is wasted if the radar is blocked by an 
obstacle (e.g., a wall or another tank).  
 Our agent uses its episodic memory to predict what it 
will see when it turns on its radar, and uses that 
information to set the radar distance. In this task, it is 
essential that the episodic memory is effective at retrieving 
a relevant memory. The agent performed best when an 
exact match (even with lower activation) was preferred 
over the best activation-biased match (and this preference 
was used in all of the remaining experiments). 
 Figure 5 depicts the agent’s performance over one 
hundred radar settings while the agent explores a map. The 
y axis is the fraction of the last ten settings that were 
correct (the first nine settings are not shown). Each data 
point is the average of five runs. The dashed line at the 
bottom of the graph indicates the performance of an agent 
that selects its radar setting randomly. As the graph shows, 
the agent quickly learns to make effective radar settings as 
it navigates the maze. 

Cognitive Capability: Virtual Sensors 

When an agent senses something at one moment, it may 
seem irrelevant to its task. Then, at some future point, that 
past sensing may become important. An agent with 
episodic memory can retrieve details of its sensing. This 
capability is most useful in environments with large bodies 
of data that are irrelevant to the current task, but may be 
relevant to future tasks. 
 To demonstrate this cognitive capability, we chose the 
task of locating the battery used to recharge the tank’s 
energy supply, where we assume the tank does not know 
the importance of the battery until it is low on energy. 
When the tank’s energy supply runs low the tank 
remembers where it has last seen the battery and uses that 
information to direct its search for the battery.  
 Figure 6 depicts the number of moves required to find 
the battery for two agents over twelve subsequent searches. 
The first agent searches randomly for the battery. The 
second agent uses its episodic memory to attempt to find 
the battery before resorting to random search.  
 As the graph shows, the virtual sensor agent located the 
battery an order of magnitude faster than the random agent. 
In addition, the episodic memory agent’s performance 
continued to improve as it gained more memories. 

Cognitive Capability: Learning from Past 
Successes and Failures 

 Action modeling allows an agent to predict the 
immediate outcome of an action. However, success in 
many tasks requires a coherent strategy with multiple 
actions taken in concert.  To demonstrate this cognitive 
capability, we took an existing hand-coded agent for the 
TankSoar domain, removed its tactical knowledge and 
modified it to use episodic memory to make tactical 
decisions. When considering a particular action, the 
episodic memory tank would query episodic memory to 
find an episode in which it took the same action in a 
similar, but possibly not identical, situation. It would then 
evaluate the overall effectiveness of each of those actions 
by doing repeated retrievals of subsequent episodes until 
there was a clear outcome or a maximum depth was 
reached. To account for the delay between the agent’s Figure 5: Agent performance in the action modeling task. 
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action and success or failure, we added a discount factor. 
The agent did some tracking of the effectiveness of its 
episodes. If a memory consistently led to poor decisions, 
the agent would avoid using that memory in the future. 
Each episode contained ~120 WMEs.  
 We pitted the episodic memory tank against the original 
tank.  Figure 7 shows how the episodic agent’s average 
margin of victory changes as more games are played – a 
game ends when one tank achieves 50 points. At first, the 
episodic memory tank loses most games (negative margin 
of victory) but after 20 matches it wins consistently. 

 Two learned tactics had a significant impact on 
performance. First, the agent learned to predict enemy 
actions and thus dodge short-range enemy missile attacks 
before they occurred. Second, the agent learned to back 
away from an enemy while firing its missiles. This opened 
up future opportunities to dodge (moved to the side) if the 
agent was currently blocked on both sides. 

Conclusion 

This work defines the design space for episodic memory 
and provides an implementation of episodic memory 
within a cognitive architecture. We have also demonstrated 
that episodic memory is a useful architectural component 
and can support many important cognitive capabilities. 
Each of these capabilities could be implemented 
individually using various techniques but, inevitably, these 
implementations must include redundant functionality that 
is captured singularly in episodic memory.  

Episodic memory and similar case-based learning 
methods are “lazy” while methods such as reinforcement 
learning are “eager.” Lazy mechanisms do minimal 
generalization so nothing is lost. Generalization and 
combination with new knowledge is possible at retrieval, 
but at some computational expense. Eager methods 
generalize immediately, trading some of the knowledge for 
efficient application. Thus, lazy methods provide maximal 
flexibility and are useful when the agent does not know 
how it will use what it has learned. Eager methods are best 
when the agent knows how it will use the knowledge. Both 
approaches are important and an agent should have a 
combination of these approaches available.  
 There are many challenges ahead. Our plans include:  

1. Demonstrate the usefulness of episodic memory for 
additional cognitive capabilities. An important part 
of these demonstrations is developing general 
procedural knowledge so that a given capability can 
be used across many tasks without starting from 
scratch. The implementations of the current 
capabilities approach this, but we need to test their 
generality across a range of tasks. For us, the most 
interesting capability is the interaction of episodic 
memory with other learning mechanisms.  

2. Explore algorithms and data structures for efficient 
implementations of episodic memory, including 
hardware solutions.  

3. Explore the design space of episodic memory 
systems. The current design has been successful, but 
we have not investigated dynamic storage 
(forgetting and generalization), spontaneous 
retrieval, and meta-data. 
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Figure 7: Agent performance learning from past successes 
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