
Extending Cognitive Architecture with Episodic Memory

Andrew M. Nuxoll and John E. Laird

University of Michigan
2260 Hayward St.

Ann Arbor, MI 48109-2121
{anuxoll, laird}@umich.edu

Abstract

In this paper, we explore the hypothesis that episodic
memory is a critical component for cognitive architectures
that support general intelligence. Episodic memory overlaps
with case-based reasoning (CBR) and can be seen as a task-
independent, architectural approach to CBR. We define the
design space for episodic memory systems and the criteria
any implementation must meet to be useful in a cognitive
architecture. We present an implementation and
demonstrate how episodic memory, combined with other
components of a cognitive architecture, supports a wealth of
cognitive capabilities that are difficult to attain without it.

Introduction

Episodic memory was first described in detail by Tulving
(1983). Episodic memory is what you “remember,” and
includes contextualized information about specific events,
such as a memory of a vacation or the last time you had
dinner. In contrast, semantic memory is what you “know,”
and consists of isolated facts that are decontextualized –
they are not organized in a specific experience and are
useful in reasoning about general properties of the world,
such as knowing that George W. Bush is president in 2007.
Episodic memories allow you to extract information and
regularities that where not noticed during the original
experience and combine them with current knowledge.
Episodic memories can sometimes be retrieved as a
sequence (like a movie) and commonly contain
approximate or relative temporal information.

Episodic memory is a capability that we take for granted
in humans, except when an accident or disease disables it.
When that happens, the resulting amnesia is devastating.
Oddly enough, the vast majority of integrated intelligent
systems ignore episodic memory, which often dooms them
to what can be achieved by people with amnesia, which is
demonstrably limited. Our hypothesis, supported by human
amnesia data, is that episodic memory is critical for
providing a memory of previous events, but also for
supporting a host of additional cognitive capabilities that
greatly enhance the reasoning and learning capabilities of
an integrated intelligent agent.

Compilation copyright © 2007, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

There are only limited examples of computational
implementations of episodic memory for integrated agents.
The “basic agent” created by Vere and Bickmore (1990)
had a primitive episodic memory capability (a linked list of
prior states), that was used only in a limited capacity (such
as to answer questions). Ho et al. (2003) describe an agent
that uses a task-specific implementation of episodic
memory to locate previously encountered resources.
 Episodic memory is related to case-based reasoning
(CBR) (Kolodner 1993). In many CBR systems, a case
describes the solution to a previously encountered problem
that the system retrieves and adapts to new problems. No
matter what the exact approach, the structure of cases (the
specific fields in the case) are designed by a human for a
specific task or set of tasks, limiting their generality. For
example, continuous case-based reasoning (Ram &
Santamaría 1997) relies upon cases that consist of the
agent’s sensory experiences, but none of its internally
generated abstractions.
 We extend the CBR paradigm by integrating episodic
memory with a general cognitive architecture and
developing task independent mechanisms for encoding,
storing, and retrieving episodes, none of which make
assumptions about the structure or contents of the episodes.

In this paper, we present the design space for episodic
memory implementations, followed by a description of our
implementation(s) of episodic memory as integrated with
the Soar cognitive architecture. Our hypothesis is that
episodic memory supports multiple cognitive capabilities,
which we describe. We confirm our hypothesis with
implementations of three of those capabilities in a
moderately complex task. Previous work on integrating
episodic memory with Soar (Nuxoll & Laird, 2004) has
studied only a simple task and a single cognitive capability.

Episodic Memory Design Space

Learning mechanisms embedded in cognitive architectures
have three stages: encoding information from the current
situation, storing it, and retrieving it. There is also a final
stage of using the information to influence behavior, but
this draws on the general capabilities of the architecture,
independent of the structure of episodic memory. Each of
these stages has subparts, with design choices that together
determine the space of possible episodic memory designs.
Thus, one aspect of our research is to search through this
space of possible designs considering the implications of

each choice on episodic memory functionality. This section
describes the design space and the choices we made for our
current implementation. For the most part, we have chosen
the most general approach to episodic memory.

Encoding
• Encoding initiation: When is an episode encoded? This

can be determined deliberately by the agent or could be
automatic at some specific time during the agent’s
processing. In our current approach, an episode is
encoded each time the agent takes an action.

• Episode determination: What are the contents of an
episode? In our implementation, an episode consists of
the agent’s current state, which includes perception,
motor commands, and internal data structures. When the
episode is recorded, only features whose activation level
(defined later) exceeds a preset threshold are included.

• Feature selection: Is a subset of features in the stored
episodes selected for matching during retrieval? In our
current implementation, the entire memory is used.

Storage
• Episode structure: What is the structure of the episodic

memory store? This is important because the structure
influences the efficiency of storage and retrieval. We
describe two alternatives in subsequent sections.

• Episode dynamics: Does the content or organization of
the episodic store change over time, such as through
forgetting or generalization? In our system, the episodic
store is static without forgetting or reorganization.

Retrieval
• Retrieval initiation: When is an episode retrieved? Is

retrieval initiated deliberately or is spontaneous retrieval
possible using the complete current situation as a cue? In
our implementation, deliberation retrieval is initiated
when the agent creates a cue.

• Cue determination: How is the cue specified? In our
implementation, a cue is created in a reserved portion of
the agent’s temporary memory and the cue can include
not only specifications of what exists in the retrieved
episode, but also what cannot exist.

• Retrieval: Given a cue, which episode is retrieved? Our
system uses activation and recency biased partial match.
Details of our matching algorithm are in the next section.

• Retrieved episode representation: When an episode is
retrieved, how is it represented in the agent? Our
implementation represents the episode in its entirety with
an annotation that it is a retrieved episode.

• Retrieval meta-data: Is there additional meta-data about
the episode and its match to the cue? Our system’s meta-
data includes: data about the strength of the match and
the relative time that the episode was recorded.

Outside of the mechanics of the episodic memory

system is the question, “How is the retrieved memory

used?” Addressing this question leads directly to the
cognitive capabilities described later in this paper.

One final concern is that an episodic memory system
must meet practical resource requirements – the cost of
using it should not outweigh its benefit. Thus, a goal is that
the growing need for computational resources can be met
at reasonable cost for the predicted existence of the agent.

Episodic Memory Implementation in Soar

Our implementation of episodic memory is embedded in
Soar (Newell 1990) as shown in Figure 1. Soar represents
it procedural long-term knowledge as production rules. It
represents short-term declarative knowledge in its working
memory, which includes internally generated structures,
motor commands, and structures created by perception.
When conditions of rules match working memory, rules
“fire” and create new structures in working memory.
Deliberate action in Soar is generated by rules proposing,
comparing, and evaluating, and applying operators. While,
rules fire in parallel as soon as they match, only a single
operator is selected and fired during Soar’s decision cycle.

 To provide a task-independent method of identifying
important working memory elements (WMEs), a working
memory activation system was added to Soar (Nuxoll, et
al. 2004) that was based on the activation scheme in
ACT-R (Anderson and Labiere 1998). The activation
levels of WMEs are increased whenever it is tested by a
rule, indicating it is important to the current processing.
The activation of a WME decays exponentially over time.

Episodic Memory Integration
In our implementation, snapshots of working memory are
captured and automatically stored in episodic memory.
Everything in working memory is stored in the episode
except for WMEs with very low activation (indicating they
were not recently created or tested).
 Episodic memory is queried by an operator creating a
structure in the cue area of working memory. The episode
that is the best match to the cue is found and deposited in
the retrieved area of working memory.

Figure 1: The Soar Architecture with Episodic Memory

Working Memory

Long-Term Memories

Episodic

Body

Perception Action

D
e

ci
si

on

P
ro

ce
du

re

Procedural

Retrieved Cue

Episodic Memory Matching Algorithms
 An effective and efficient episodic memory system is
dependent on the data structures for storing episodes and
the algorithms for retrieving episodes, which must
minimize storage and computational expense, while
providing an expressive language for retrieving episodes
using partial match. (Early experiments using exact match,
while efficient proved inadequate for flexible retrieval.)
Thus we developed and experimented with two algorithms
and associated data structures, which we label instance-
based (where each episode instance is explicitly stored)
and interval-based (where episodes are represented by a
record of the intervals when individual WMEs existed).
Both partial matching algorithms rely upon a data structure
called the working memory tree. The tree retains a record
of each unique WME that has ever existed.

The instance-based approach uses a data structure that
holds instances of each episode. Instead of storing the
actual WMEs, it stores pointers to nodes in the working
memory tree (see Figure 2). A memory cue is a
conjunction of WMEs. In response to a cue, the instance-
based algorithm retrieves a matching episode as follows:

1. For each element in the cue, the corresponding entry
in the working memory tree is found, which
includes a list of all episodes it appeared in.

2. The set of episodes that contain at least one feature
of the cue are collected.

3. The “best matching” episode is then selected. In the
simple case, this means selecting the episode that
includes the most cue elements (biased by recency).

The instance-based algorithm requires O(nm) time to
complete (where ‘n’ is the size of the cue and ‘m’ is the
number of episodic memories that include at least one cue
element). The cue is usually small and does not grow over
time. In the worst case, the size of ‘m’ is equal to the size
of the episodic memory store, but its expected size is much
smaller, especially as different tasks are pursued. Empirical
measurements of existing systems show that the time
grows linearly with the size of the episodic store.
 Our second matching algorithm was inspired by the
observation that two sequential episodes are very similar.
In this approach, we eliminate the explicit representation of
the episodic memories. To compensate, we modified the

working memory tree so that each node contains a list of
the intervals in which the WME existed (see Figure 3).

 When a memory cue is created, the interval-based
algorithm retrieves a matching episode as follows:

1. For each entry in the memory cue, the system finds
the corresponding node in the working memory tree,
and extracts its interval list.

2. All extracted intervals are merged together into a
larger set of intervals where each interval
corresponds to a unique combination of matching
cue elements at a specific time.

3. The merged list is traversed to locate the range with
the highest match score.

4. The episode is recreated by traversing the working
memory tree and locating each node that includes
the selected interval.

The complexity of this algorithm is O(n2l) where ‘n’ is the
size of the cue and ‘l’ is the average size of the list of
intervals in each node of the working memory tree. As
with the instance-based algorithm, these two variables are
not independent. If the size of the cue is small and
relatively constant, we observe linear growth in processing
time. In our research domains, the interval-based algorithm
was approximately 15% faster than the instance-based
algorithm and required roughly on quarter of the memory
to store the same number of episodes.
 Both of these methods fail the computation bound
requirements. There are three responses to this problem:

1. Develop new algorithms that meet these
requirements. Given the inherent need for more and
more memory to store episodes, this is unlikely using
standard von Neumann architectures, but may be
possible with alternative computational architectures,
such as content-addressable memories.

2. Modify the dynamics of episodic memory so that the
number of episodes is bounded. This could be
achieved via forgetting. Although this has
possibilities, any fixed bound will ultimately have a
negative impact on a general intelligent agent.

3. Determine the bound on the number of episodes that
can be efficiently processed and restrict our use of
episodic memory to problems that meet that limit.

We have adopted approach #3. We use and experiment
with episodic memory in agents we develop, but we are

Figure 3: Data structures for interval-based matching

Figure 2: Data structures for instance-based matching

E
le
m
e
n
ts
 f
ro
m
 W
o
rk
in
g
 M
e
m
o
ry

limited to the length of our system’s experiences by the
computational demands of episodic memory (these
correspond to roughly four hours of human experience). In
the end, option #1 is probably the only viable approach, but
that requires development of special purpose hardware,
which is beyond our current resources.

Selection Bias
As episodic memory grows, usually there will be more and
more episodes that have some relationship to the cue. Of
all these episodes, which one should be selected? The
simplest approach it to choose the episode that includes the
largest number of elements from the cue, giving all
elements of the cue equal weight. This puts the onus on the
agent to create a selective cue, which can be difficult. The
agent might not know which features are important. Early
work on episodic memory in Soar demonstrated that using
activation level for biasing episodic retrieval significantly
improved the quality of performance (Nuxoll & Laird
2004). Activation provides a simple but powerful heuristic
for selecting which elements of the cue are important
within the current problem-solving context.

Our research has extended that work by enriching the
cue description so that the agent can also specify specific
WMEs that cannot be in the cue. This extension improves
performance by eliminating the retrieval of episodes that
the agent knows it will not use. In addition, when
requesting a retrieval, the agent can signal that a specific
episode should not be retrieved (such as when an episode
has been retrieved and found to be inadequate).

Episodic Memory Cognitive Capabilities

Once we have an episodic memory system, what good is
it? In this section, we list cognitive capabilities that
episodic memory helps support. We do not claim that this
list is complete, or that episodic memory is necessary to
achieve these capabilities (which would require a much
more extensive analysis of the cognitive capabilities and
alternative implementations). We are prepared to claim and
demonstrate that a single implementation of episodic
memory is sufficient for supporting some of these
capabilities.

Sensing:
• Noticing Novel Situations: By failing to retrieve episodic

memory similar to the current situation, the agent can
detect when it is in a novel situation. “I’ve never been
here before.”

• Detecting Repetition: Retrieval of episodes that are
identical (or close to identical) can inform an agent that
it is repeating situations and possibly not making any
progress toward its goals. “I’ve was just here. I must be
going in circles.”

• Virtual Sensing: An agent can retrieve past episodes that
include sensory information relevant to the current task
that are beyond its current perceptual range. “I remember
seeing a coffee shop just around the corner from here.”

Reasoning:
• Action Modeling: An agent can retrieve an episode of a

similar situation where it has performed an action. It can
then compare that episode to what came next to
determine how the action affects the world.

• Environment Modeling: This is similar to action
modeling, except the agent is using sequences of
episodes to predict how the world will change
(independent of its own actions).

• Predicting Successes/Failures: This extends the previous
two by using episodic memory to recall the expected
value of an action and the ensuing changes in the world
that eventually lead to some feedback for the agent in
terms of success or failure.

• Managing Long Term Goals: Episodic memory
remembers whether or not goals have been achieved,
eliminating the need to maintain goals in working
memory, which for long-term goals can be difficult.

Learning:
• Retroactive Learning: An agent might acquire

experiences when performing under time pressure. Later,
when sufficient time becomes available, the agent can
analyze the experience.

• Reanalysis of Knowledge: As new information becomes
available, episodes can be retrieved and reanalyzed using
the new information. “Now that I know he was lying,
everything that happened makes sense.”

• Explaining Behavior: An agent can use episodic
memory to replay earlier behavior to explain its behavior
to others, tell stories or relate prior experiences.

• “Boost” other Learning Mechanisms: Episodic memory
can provide the “grist” for the “mill” of other learning
mechanisms such as explanation-based learning and
reinforcement learning.

These capabilities could be realized by individual
architectural modules. However, many, if not all of them
require the recording and retrieval of the agent’s
experiences. A single general-purpose episodic memory
simplifies the implementation of the cognitive capabilities
and eliminates redundant functionality.

Experimental Environment

For the experiments described in this paper, we use a
single environment called TankSoar. In TankSoar, the
agent controls a tank moving in a two dimensional (tile-
based) maze. It has three resources: missiles, energy, and
health, which are expended by the tank’s actions in the
world. Without energy, a tank cannot see or shield itself
against attach. Without missiles, a tank cannot attack
another tank, and without health, a tank is destroyed.
 The agent’s goal is to destroy other tanks in the maze by
firing missiles while avoiding enemy missiles. Figure 4
depicts a portion of a TankSoar map. While the human
observer can see the entire map, the tank has limited
sensors, with radar being the most important. A battery and
health charger recharge the agent’s energy and health.

 For each of the cognitive capabilities we implemented,
we focused on a specific task that a TankSoar agent might
undertake. For these experiments, we used the instance-
based algorithm (biased by activation and recency) because
even though it is less efficient, it is easier to modify.

Cognitive Capability: Action Modeling

An agent with episodic memory can predict the immediate
effects of its actions by examining similar situations in its
past wherein it took the same actions. Our action-modeling
experiment in TankSoar focuses on the problem of energy
management. A tank uses its radar to sense the
environment immediately in front of it. The radar can be
set to different distances with further distances requiring
more energy. Energy is wasted if the radar is blocked by an
obstacle (e.g., a wall or another tank).
 Our agent uses its episodic memory to predict what it
will see when it turns on its radar, and uses that
information to set the radar distance. In this task, it is
essential that the episodic memory is effective at retrieving
a relevant memory. The agent performed best when an
exact match (even with lower activation) was preferred
over the best activation-biased match (and this preference
was used in all of the remaining experiments).
 Figure 5 depicts the agent’s performance over one
hundred radar settings while the agent explores a map. The
y axis is the fraction of the last ten settings that were
correct (the first nine settings are not shown). Each data
point is the average of five runs. The dashed line at the
bottom of the graph indicates the performance of an agent
that selects its radar setting randomly. As the graph shows,
the agent quickly learns to make effective radar settings as
it navigates the maze.

Cognitive Capability: Virtual Sensors

When an agent senses something at one moment, it may
seem irrelevant to its task. Then, at some future point, that
past sensing may become important. An agent with
episodic memory can retrieve details of its sensing. This
capability is most useful in environments with large bodies
of data that are irrelevant to the current task, but may be
relevant to future tasks.
 To demonstrate this cognitive capability, we chose the
task of locating the battery used to recharge the tank’s
energy supply, where we assume the tank does not know
the importance of the battery until it is low on energy.
When the tank’s energy supply runs low the tank
remembers where it has last seen the battery and uses that
information to direct its search for the battery.
 Figure 6 depicts the number of moves required to find
the battery for two agents over twelve subsequent searches.
The first agent searches randomly for the battery. The
second agent uses its episodic memory to attempt to find
the battery before resorting to random search.
 As the graph shows, the virtual sensor agent located the
battery an order of magnitude faster than the random agent.
In addition, the episodic memory agent’s performance
continued to improve as it gained more memories.

Cognitive Capability: Learning from Past
Successes and Failures

 Action modeling allows an agent to predict the
immediate outcome of an action. However, success in
many tasks requires a coherent strategy with multiple
actions taken in concert. To demonstrate this cognitive
capability, we took an existing hand-coded agent for the
TankSoar domain, removed its tactical knowledge and
modified it to use episodic memory to make tactical
decisions. When considering a particular action, the
episodic memory tank would query episodic memory to
find an episode in which it took the same action in a
similar, but possibly not identical, situation. It would then
evaluate the overall effectiveness of each of those actions
by doing repeated retrievals of subsequent episodes until
there was a clear outcome or a maximum depth was
reached. To account for the delay between the agent’s Figure 5: Agent performance in the action modeling task.

Radar Tank Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Radar Settings (time)

F
ra

ct
io

n
 C

o
rr

ec
t

Figure 6: Agent performance in the virtual sensors task
(Note: the ordinal is in logarithmic scale.)

Energy Search Time

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12

Searches

N
u

m
b

er
 o

f
M

o
ve

s

Random

Ep. Mem.

Figure 4: A subset of the TankSoar environment

action and success or failure, we added a discount factor.
The agent did some tracking of the effectiveness of its
episodes. If a memory consistently led to poor decisions,
the agent would avoid using that memory in the future.
Each episode contained ~120 WMEs.
 We pitted the episodic memory tank against the original
tank. Figure 7 shows how the episodic agent’s average
margin of victory changes as more games are played – a
game ends when one tank achieves 50 points. At first, the
episodic memory tank loses most games (negative margin
of victory) but after 20 matches it wins consistently.

 Two learned tactics had a significant impact on
performance. First, the agent learned to predict enemy
actions and thus dodge short-range enemy missile attacks
before they occurred. Second, the agent learned to back
away from an enemy while firing its missiles. This opened
up future opportunities to dodge (moved to the side) if the
agent was currently blocked on both sides.

Conclusion

This work defines the design space for episodic memory
and provides an implementation of episodic memory
within a cognitive architecture. We have also demonstrated
that episodic memory is a useful architectural component
and can support many important cognitive capabilities.
Each of these capabilities could be implemented
individually using various techniques but, inevitably, these
implementations must include redundant functionality that
is captured singularly in episodic memory.

Episodic memory and similar case-based learning
methods are “lazy” while methods such as reinforcement
learning are “eager.” Lazy mechanisms do minimal
generalization so nothing is lost. Generalization and
combination with new knowledge is possible at retrieval,
but at some computational expense. Eager methods
generalize immediately, trading some of the knowledge for
efficient application. Thus, lazy methods provide maximal
flexibility and are useful when the agent does not know
how it will use what it has learned. Eager methods are best
when the agent knows how it will use the knowledge. Both
approaches are important and an agent should have a
combination of these approaches available.
 There are many challenges ahead. Our plans include:

1. Demonstrate the usefulness of episodic memory for
additional cognitive capabilities. An important part
of these demonstrations is developing general
procedural knowledge so that a given capability can
be used across many tasks without starting from
scratch. The implementations of the current
capabilities approach this, but we need to test their
generality across a range of tasks. For us, the most
interesting capability is the interaction of episodic
memory with other learning mechanisms.

2. Explore algorithms and data structures for efficient
implementations of episodic memory, including
hardware solutions.

3. Explore the design space of episodic memory
systems. The current design has been successful, but
we have not investigated dynamic storage
(forgetting and generalization), spontaneous
retrieval, and meta-data.

Acknowledgment

This material is based upon work supported by the
National Science Foundation under Grant No. 0413013.

References

Anderson, J. R. & Lebiere C. (1998) The Atomic
Components of Thought. Mahwah, NJ: Lawrence
Erlbaum Associates.

Ho, W.C., Dautenhahn, K., Nehaniv, C.L. (2003)
Comparing different control architectures for
autobiographic agents in static virtual environments.
Intelligent Virtual Agents, Springer Lecture Notes in
Artificial Intelligence, Volume 2792, 182-191.

Kolodner, J. (1993) Case-Based Reasoning, Morgan
Kaufmann Publishers, San Mateo, CA.

Newell, A. (1990) Unified Theories of Cognition. Harvard
University Press, Cambridge, Mass.

Nuxoll, A. & Laird, J. (2004). A Cognitive Model of
Episodic Memory Integrated With a General Cognitive
Architecture. International Conference on Cognitive
Modeling 2004.

Nuxoll, A., Laird, J., James, M. (2004). Comprehensive
Working Memory Activation in Soar. International
Conference on Cognitive Modeling.

Ram, A. and Santamaría, J.C. (1997) Continuous Case-
Based Reasoning. Artificial Intelligence, (90)1-2:25--77.

Tulving, E. (1983). Elements of Episodic Memory. Oxford:
Clarendon Press.

Vere, S. and Bickmore, T. (1990). A Basic Agent.
Computational Intelligence. 6, 41-60.

Figure 7: Agent performance learning from past successes
and failures

Average Margin of Victory (3 runs)

-30

-20

-10

0

10

20

30

40

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

Successive Games

M
ar

g
in

 o
f

V
ic

to
ry

