
Integrating Action and Reasoning through Simulation

Samuel Wintermute

University of Michigan

2260 Hayward St.

Ann Arbor, MI 48109-2121

swinterm@umich.edu

Abstract

This paper presents an approach for integrating action in the
world with general symbolic reasoning. Instead of working
with task-specific symbolic abstractions of continuous
space, our system mediates action through a simple spatial
representation. Low-level action controllers work in the
context of this representation, and a high-level symbolic
system has access to it. By allowing actions to be spatially
simulated, general reasoning about action is possible. Only
very simple task-independent symbolic abstractions of space
are necessary, and controllers can be used without the need
for symbolic characterization of their behavior. We draw
parallels between this system and a modern robotic motion
planning algorithm, RRT. This algorithm is instantiated in
our system, and serves as a case study showing how the
architecture can effectively address real robotics problems.

Introduction

 It has been argued by many that low-level motor control
and perception are critically important for intelligent
behavior in embodied agents (e.g., Brooks, 1991). These
views are often put in contrast with more traditional views
of intelligence that emphasize symbolic processing (e.g.,
Newell, 1992). To date, adherents on either side haven’t
built robots that have exhibited anything close to general
intelligence. Solely symbolic robots are rigid, and unable
to deal with the subtlety of the real world, where every
relevant perception needed to control action doesn’t
directly map onto a symbol. Robots without a symbolic
level, however, aren’t able to comprehend tasks anywhere
near the level of complexity of those that humans perform,
as those tasks can require reasoning at a much higher level
than raw perception.
 Attempts have been made to bridge deliberative
symbolic reasoning and continuous reactive behavior.
Many of these systems fit the general diagram in Figure 1a.
In this sort of system, perception abstracts out information
from the environment, and provides it to the symbolic
system. The symbolic system reasons over this
information, and invokes a controller with an abstract
command. Following this command, the controller maps
low-level input to output, causing action in the world. The
perception box provides symbols that completely and
concisely describe the environment, and invoking a
particular action results in a predictable transition in these
symbols. This is the classic blocks-world approach: the

perception system provides symbols like (on a b), actions
are represented by symbols like (move b table), and simple
rules describe how the perception symbols will change in
response to the action, enabling symbolic action planning.
 Embodied AI systems have moved beyond this simple
sort of system, but retain much of the flavor. In typical
approaches, the core of the system deals with the world in
terms of an abstract representation, and peripheral
processes, considered as largely independent of the
problem-solving part of the system, convert between the
abstract representation and the world. This approach leads
to systems where the perception and action pieces are
designed together—each action corresponds to a
straightforward transition in perception, so reasoning
solely in terms of the abstract representation is possible.
 We are investigating an alternative architecture that
integrates action, perception, and reasoning in such a way
that the generality of the overall system is increased. The
key aspect of this system (Figure 1b) is that perception and
action are mediated through a simple spatial representation.
The interface between this representation and the symbolic
system is generic and fixed. In addition to causing action in
the world, controllers can simulate action in the spatial
representation.
 With this system, generality is enhanced in two ways
compared to systems like those in Figure 1a. First,
mediating action and perception through a spatial
representation makes the system highly modular, allowing
different low-level controllers or high-level strategies to be
used without changing the rest of the system. Secondly, the
need for complicated action-specific perception processes,
as well as strategy-specific controllers, is greatly reduced.

(a)

Figure 1.

a: Simple approach to integrating action and reasoning.

b: Our approach, where a spatial imagery layer mediates

between the world and the symbolic system.

(b)

Symbolic System

Environment

Perception Controller

Symbolic System

Environment

High-Level

Perception
Controller

Spatial Representation

Since reasoning does not take place entirely at the abstract
symbolic level, perception does not have to provide
enough information to completely describe the world, nor
must controllers be designed such that commands result in
predetermined transitions between abstract states.
 This work is done in the context of the Soar cognitive
architecture (Laird, 2008). Soar has been extended recently
to handle problems involving space and motion, using
specialized representations and mechanisms inspired by
human perception and mental imagery. The extension to
Soar is SVS (Spatial/Visual System, Wintermute and
Lathrop, 2008). SVS provides the core of an action
simulation and execution system.
 To examine this system in detail, a case study will be
used. Since research in Soar/SVS is moving towards
robotics, a modern robotic motion-planning algorithm will
be examined. The RRT algorithm (LaValle, 2006) has been
used in many recent robots (e.g., Leonard et al., 2008), and
works through simulating action. Looking at developments
in the field of motion planning that led to RRT and other
similar algorithms, we can provide evidence that
simulation is an appropriate way to reason about action.
We will instantiate RRT in Soar/SVS, showing how all of
the parts of the system work together, and the generality
this approach affords.

Simulation and Motion Planning

A key aspect of our approach to action and planning is that
simulation is used for planning, rather than abstract symbol
transformations. Our chief reason for doing this is that it
leads to a more general system; however, there is
increasing evidence from robotic motion planning research
that regardless of generality concerns, simulation is an
appropriate way to plan motion.
 Motion planning research has usually been pursued
outside of the context of creating generally intelligent
systems. Earlier approaches focused on efforts to exactly
compute optimal paths for particular classes of robots, such
as polygon robots that can move in any direction. This
involves computing exactly the configuration space of the
robot, a space in which any path corresponds to a real path
to robot is able to follow. As motion planning has
progressed to address problems involving more and more
realistic robots, however, this exact computation has
become intractable (Lindemann and LaValle, 2003).
 One reason for this difficulty is that certain kinds of
constraints on motion are infeasible to capture in
representations like configuration spaces. Nonholonomic
constraints result from systems where the number of
controllable dimensions is less than the total number of
degrees of freedom. For instance, a car is nonholonomic,
since its position can be described by three parameters (x,
y, and an angle), but it is only controllable in two
dimensions (driving forward and reverse, and steering left
and right). Where it is relatively straightforward to
calculate the configuration space of a robot that can turn in
place, this is not as simple with a car-like robot. In addition

to nonholonomic constraints, traditional geometric motion
planning approaches also have trouble incorporating
dynamic constraints, where the path of the robot is affected
by dynamics, such as a car that can’t stop without slowing.
 Recently, sampling-based approaches have become
popular for planning with dynamic and nonholonomic
constraints (LaValle, 2006). In sampling-based motion
planning, the goal is not to exactly compute the
configuration space, but instead to sample it through
simulation. While previous approaches required difficult-
to-calculate specialized representations that were specific
to the particular motion under consideration, motion
planning through simulation requires only a basic spatial
representation, as details particular to the motion are
encapsulated in the controller. If the simulation is accurate,
motion plans can be guaranteed to meet nonholonomic and
dynamic constraints.
 This development from computation of configuration
space to sampling reflects only two of many prominent
techniques in motion planning. It is also worth mentioning
behavior-based approaches, where representations are
eschewed, and motion planning emerges from relatively
simple mappings from perceptions to actions (e.g., Brooks,
1991). While our approach most certainly involves
representations, it allows techniques developed in this
tradition to be used as controllers within a broader
symbolic AI system (in our case, the equations of Fajen
and Warren, 2003, are used).

The RRT Algorithm

RRT (Rapidly-exploring Random Trees, LaValle, 2006) is
a sampling-based motion planning algorithm that works by
constructing a tree of states of the robot, rooted at the
initial state, and adding nodes until that tree reaches the
goal. Nodes are generated by extending the tree in random
directions, in such a way that it will eventually reach the
goal, given enough time. Each path from the root of the
tree to a leaf represents a path that the robot could take,
constantly obeying all constraints on its motion. The tree is
constructed by the algorithm in Figure 2.
 Two of the steps in this figure hide the true complexity
of the algorithm. The steps to get the closest node to the
random state, and to extend that node towards the random
state, can both take substantial computation. This
computation is also specific to the exact problem being
solved, where the rest of the algorithm is general to all
motion planning problems.
 To determine the closest existing state to a random state,
some metric must be determined that can measure the
distance between states. In the case of car path planning, a
simple metric is the Euclidian distance between the two

Figure 2. Basic RRT Algorithm

make tree rooted at initial state

while tree does not reach goal

 generate random state -> Xr

 get closest existing state to Xr -> Xc

 extend Xc towards Xr -> Xn

 if no collision occurred

 add Xn to the tree, connected to Xc

states, with the condition that the distance is infinite if the
target state is not in front of the source.
 The other problem-specific step in the algorithm is
extending the chosen node towards the new state, while
detecting collisions along the path. A typical approach is to
numerically integrate differential equations to simulate
motion, resulting in a sequence of states parameterized by
time. This simulation must occur within a system capable
of detecting collisions.

The Soar/SVS Architecture

The Soar cognitive architecture (Laird, 2008) provides the
basis of our system. Work in Soar has traditionally focused
on symbolic processing, and that remains a strength of the
system. SVS builds on two prior lines of work on
extending Soar to encompass non-symbolic spatial and
visual representations, SVI (Lathrop, 2008), and SRS
(Wintermute and Laird, 2008).
 SVS encompasses the capabilities of both of these
previous systems. Figure 3 shows the relevant parts of the
system for this discussion. Compared to the generic
diagram in Figure 1b, the names of some of the parts have
changed, and two ways of adding objects to the scene from
the top down have been added. SVS contains a long-term
memory of the 3D structure of objects and the relationships
between them, called the Perceptual LTM. By accessing
this memory, Soar can recall objects or entire scenes to its
Spatial Scene short-term memory as necessary. Sometimes,
it is also necessary to add qualitatively described new
objects to the scene, such as a line between two objects.
This is called predicate projection (Chandrasekaran, 1998).
A complementary process, predicate extraction, allows
Soar to determine qualitative information about the
contents of the scene, such as whether two objects
intersect. This is the high-level perception box from Figure
1b, it contains the fixed processes through which Soar
perceives the spatial world.
 SVS also contains representations and mechanisms for
dealing with 2D visual data, which are not used in this
work. An external environment is also not used, all
reasoning occurs in scenes retrieved from memory.
 SVS and its predecessor systems have been used to
study problems such as reasoning about positioning of
military scouts to observe enemy units (Lathrop, 2008),
and determining the layout of buildings in a real-time
strategy game (Wintermute and Laird, 2008). Particularly

relevant to this work, we have previously addressed
reasoning with motion (Wintermute and Laird, 2008).
 The interface between SVS and Soar is designed to work
at a qualitative level (outside of a few exceptions). This
means that information exchanged between Soar and SVS
is expressed chiefly in terms of references to known items
in one of SVS’s memories and a library of fixed qualitative
relationships. Detailed quantitative information, such as the
continuous coordinates describing the polyhedrons in the
scene, is inaccessible to Soar.
 One way to add new objects to the SVS scene is by
applying a known motion to an existing object. Motions
are encapsulated as motion models. These allow stepwise
simulations of particular motions to be invoked. To do this,
the Soar agent specifics which motion model to apply,
which existing object to move, and any other object
parameters, such as a goal object. For example, the agent
can apply motion drive to object car, moving towards
object goal. SVS responds to this command by building
an image of car, driving towards goal. The symbolic
command also has a parameter for time—changing the
time steps the motion forward.
 Complex termination conditions are not declared to SVS
beforehand, instead, the general capabilities that allow
Soar to extract information from the scene are used. For
example, Soar can query whether objects in the scene are
intersecting. If the conditions for car-driving to terminate
are that it has collided with an obstacle, Soar can query as
to whether the moving car intersects with any obstacles,
and stop updating the motion once this becomes true.
 Motion models can be used to reason over any motion,
including the agent’s own actions, actions of others, and
environmental movement. In the first case, the motion
model will be the same as the actual controller for the
motion, just simulating its output in the scene, instead of
executing it in the environment. We will use the terms
“motion model” and “controller” interchangeably when
talking about actions for this reason.

Implementing RRT in Soar/SVS

In order to explore reasoning about action in our system,
we have instantiated the RRT algorithm in a Soar agent.
The problem we considered is that of planning to drive a
car from an initial state to a goal region, while avoiding
obstacles in a known environment. The car motion model
takes as input the identity of a car in the scene, and the
location of a goal. Inside this model, a system of
differential equations that describe the configuration of a
simple car-like vehicle as a function of the time and goal
location is used. When integrated numerically, these
equations yield a sequence of configurations, allowing for
simulation. These equations were determined by
combining a model of human movement (Fajen and
Warren, 2003) with a simple car model (LaValle, 2006).
The human model controls the intended steering angle of
the car, and this steering angle determines the next position
of the car. A constant speed is assumed.

Figure 3. The SVS system.

Soar

Environment

Predicate

Extraction

Spatial Scene

Motion

Model

Predicate

Projection

Perceptual

LTM

 The controller simulates motion towards a goal, while
maintaining the nonholonomic constraints of the vehicle.
Along with geometric models of the car and world in the
LTM of SVS, it is the low-level knowledge that was added
to the existing SVS system to implement this planner.
 Symbolic Soar rules were written to perform the
algorithm in Figure 2. The algorithm relies on existing
architectural functionality in the interface between Soar
and SVS. As a metric for node distance, our
implementation used the Euclidean distance, with the
condition that the distance is infinite where the goal is not
“in front” of the node. SVS includes mechanisms for Soar
to extract distances, and to query for an in-front
relationship. The motion model described above enables
simulation, and SVS supports querying for intersections
between objects in the scene, enabling collision detection.
The only new mechanism in SVS to support this algorithm
was a method to generate random goal points in the scene,
which was a simple addition.
 Examples of the SVS scene during RRT planning are
shown in Figure 4 (top). Soar stores, as a symbolic
structure in its working memory, the RRT tree. The nodes
in that tree are symbolic indexes into SVS—they point to
specific objects in the scene, which can be seen in the
figure. Soar proceeds by adding new random point objects
to the scene, and querying for the distance from each node
to that object, which are then compared to find the closest.
A simulation is then instantiated with that node as the
initial conditions (creating a new car object in the scene),
this simulation is stepped until a certain time is reached,
the goal is reached, or Soar detects a collision with an
obstacle. In all but the last case, the termination of the
simulation results in a new tree node being added. In
addition to moving towards random points, with a certain
probability the agent instead tries to extend the tree directly
towards the overall goal, biasing the tree in that direction.

RRT Planning with Local Obstacle Avoidance

It is clear that the controller in the previous example leaves
much room for improvement. The task is to avoid obstacles
while driving towards the goal, but the controller knows
nothing about obstacles. All obstacle avoidance happens by
pruning the tree when simulations collide with obstacles.
 As is done in Fajen and Warren (2003), the above
controller can be enhanced to be biased to avoid obstacles,
in addition to moving toward the goal. Each obstacle
affects the steering of the car, with nearer obstacles located
towards the front of the car having the most influence. This
requires slightly more information to be provided to the
controller: the identities of the obstacles. Other than that,
the system outside of the controller remains unchanged.
 With this new, smarter controller, performance is greatly
increased. An example instance is shown in Figure 4
(bottom), note that the number of states in the RRT tree
before a solution is found is much less than in the top of
the figure. Over 100 trials of the scenario presented in
Figure 4, the average number of individual simulations
needed to solve the problem was 128 without obstacle
avoidance and only 12 when it was present.

Discussion

 These case studies exemplify how reasoning and action
can be integrated through simulation. In general, problems
are decomposed between high-level algorithmic
knowledge, instantiated in the symbolic system, and low-
level action knowledge, instantiated as motion models.
There is a spatial representation allowing real and
imaginary situations to be instantiated, and fixed processes
which communicate between that representation and the
symbolic level. Complex reasoning about action occurs
through interplay of low-level simulation and high-level
symbolic reasoning over simulation results, detecting
spatial interactions and making decisions accordingly.
 The interface between the spatial and symbolic levels is
the only means by which symbolic processing in Soar can
obtain information about the results of lower-level
processing. Soar uses the Predicate Extraction system in
Figure 3 to query the scene for information such as which
objects intersect which, relative directions, and other
simple qualitative relationships. The commitment to make
this system fixed is important, as it implies that the type of
qualitative spatial information available to the symbolic
system is the same, regardless of the task. The poverty
conjecture of Forbus et al. (1991) states that “there is no
purely qualitative, general-purpose, representation of
spatial properties”, and if this is true, the decision to use a
fixed representation, calculated without task knowledge,
seems a poor choice.
 However, this conjecture might not apply to our system,
as the qualitative representation used does not have to be
rich enough to enable purely qualitative reasoning (and
hence is not really “general purpose”). The essential role of
simulation with respect to symbolic reasoning is that of an

(c)

Figure 4. States of SVS Spatial Scene during RRT planning.

The problem is to drive a car from lower-left to upper-right.

(a). RRT tree for goal-seeking controller, just before a

solution is found.

(b). Sequence of car positions that solve the problem.

(c), (d). Same, for obstacle-avoiding controller.

(b)

(d)

(a)

action model. The system is able to predict the symbolic
consequences of symbolically described actions—for
example, inferring that driving a certain car object toward
the goal leads to a collision. Since simulation is available,
the qualitative representation used needs to be only rich
enough to capture important aspects of the current state of
the spatial system, not the implications of action.
 The alternative to this is to represent the consequences
of actions completely symbolically, as in planning systems
such as STRIPS. Consider a problem in a variant of the
blocks world. In this problem, a robot finds itself in front
of a table with blocks on it, and must stack them in a
certain way (e.g, A on B, and C on A). Each time it
encounters a table, the robot’s perception system must
encode the problem in such a way that planning can be
performed. This encoding must capture both the states of
the world (such as on(B,C) and clear(C)), and the way
those states are transformed by action. The robot can make
certain assumptions about any table it encounters. For
example, if a block is clear (has nothing on top of it), it can
be moved to the top of a different clear block. However, in
a divergence from the standard blocks world, the table is
not always clear—in this case, the table is divided into
numbered bins, and blocks must be placed entirely inside a
bin. Not all of the bins are wide enough to fit a block,
though, and the block will fall to the floor if the agent
places it there. So depending on the exact table the robot
has encountered, the result of moving block A into bin 3 is
either inBin(A, bin3), or onFloor(A).
 To allow purely symbolic planning in this domain, the
perception system of the robot must then compare each
bin’s size to the width of a block, and generate its state
transition rules accordingly. In this way, creating the
qualitative representation of the problem requires very
task-specific calculations to be performed in the perception
system in order for that representation to capture the
consequences of actions. In contrast, if actions can be
simulated in a spatial representation, this can instead be
accounted for by simulating placing a block in the bin, and
simply checking if it intersects a wall
 While there is no proof that the symbolic representations
used in Soar/SVS are general enough that all reasonable
tasks can be represented, it is clear that the symbolic
representation needed when actions can be simulated is
much simpler than the representation needed to solve
problems entirely at the symbolic level. The high-level
perception system that builds this representation can then
be much simpler if simulation is possible.
 Similarly, the ability to simulate actions simplifies the
requirements of the low-level action system. Consider
again the standard planning approach to a problem like
those in blocks world. In order to represent the problem
completely symbolically, the effect of every possible
action on every possible state must be characterized before
the problem can be solved. In addition to increasing the
need for task-dependant perception, as discussed above,
this requires that the controllers used by the system have
simple-to-characterize guarantees on their performance.

For instance, in blocks world, it is assumed that the
controller can reliably perform an action like moving a
block from the top of one stack to another for any two
stacks present. If actions can instead be simulated, these
guarantees are unnecessary—the behavior of the controller
does not need to be symbolically characterized before
reasoning can begin.
 To further illustrate this point, contrast the RRT agent
with obstacle avoidance described above with a more
traditional graph-search approach. If a robot can be
approximated by a circle and can turn in place, concise
representations of relevant locations for the robot to move
in the world can be derived. Using this representation, a
graph of nodes and distances between them, optimal path
planning can be done using an algorithm like A*. If this
graph is the robot’s perception, and its actions move
between nodes, reasoning about action is a simple graph
search. Consider the complication involved in using this
form of perception and action, though. Perception involves
computing the configuration space of the robot, and paths
within it that lie entirely outside of obstacles. Actions must
map directly onto transitions between nodes of the graph,
so a controller must be used that guarantees accurate
execution of these transitions.
 In contrast, the RRT planner needs only very simple
perceptions, such as which objects intersect which others,
and the general direction and distance between objects.
The actions of the robot do not have to be symbolically
characterized beforehand for the planner to work. For a
controller like the obstacle-avoiding car used above, it
would be very hard to characterize in what cases it is able
to guide the robot to the goal and in what cases it isn’t.
 Ignoring other concerns, such as the limited applicability
of graph-search planning for more complicated robots, and
the suboptimal performance of RRT for simple robots, it is
clear that integrating reasoning and action through
simulation requires simpler perception and less-constrained
action systems than reasoning solely at the symbolic level.
 This simplification of perception and action systems
afforded by the use of simulation allows for a highly
modular overall system. The interface between the
symbolic system and spatial representation, which involves
complicated transformations between symbolic and
quantitative representations, is fixed; new capabilities can
be added to the system without modifying this interface.
For example, a different approach to path planning has
been previously implemented in Soar/SVS (Wintermute
and Laird, 2008). In this case, the problem was approached
by detecting which obstacles lie between the car and the
goal, and deliberately creating waypoints in the scene to
divert around them. This is a very different overall
algorithm than RRT, but the agent itself differs only in the
high-level Soar rules that describe it. Changes in the
interface between Soar and the spatial system were not
needed, nor were changes in the controller.
 This fixed symbolic/quantitative interface also allows
for modularity in the controllers used. This is seen in the
above examination of the RRT planner, where an obstacle-

avoiding controller was substituted for a simpler goal-
seeking controller, while requiring minimal changes to the
rest of the system. Controllers in the system take the
majority of input and create output in terms of spatial
objects. Their interface to the symbolic system simply
points them to the relevant objects in the scene and
provides time. Controllers can be built which work
internally with continuous numbers, the same format in
which the scene is represented, so there is no need for a
difficult representation conversion at the controllers input
and output like there might be if the controller interfaced
only to the symbolic system.

Related Work

The integration of reactive behavior and deliberative
reasoning in robotics architecture has been investigated,
such as by Arkin (1989) and many others. However, most
of these systems involve using deliberative reasoning to
serialize different reactive behaviors (thus fitting Figure
1a), and do not involve simulation. Some previous systems
do use simulation of reactive behavior to guide reasoning.
MetaToto (Stein, 1994) emphasizes this, but doesn’t focus
on enabling general high-level reasoning as our system
does. 4D/RCS (Albus, 2003) includes simulation ability,
but is more of a scheme for organizing an agent, rather
than a commitment to a specific set of components.
 From an AI point of view, this work inherits much from
research in diagrammatic reasoning (e.g., Chandrasekaran,
1997). Comirit (Johnston and Williams, 2008) is also a
similar approach to ours, integrating logic with physical
simulation, but is not used for action and doesn’t have a
spatial representation. Our use of a spatial representation to
simplify symbolic reasoning builds on previous work
looking at the frame problem (Huffman and Laird, 1992).

Conclusion

We have shown that Soar with SVS is able to use imagery
to solve motion planning problems. This was done using
the existing fixed functionality of SVS to communicate
between Soar and the scene, and adding symbolic
knowledge to Soar encoding the high-level RRT algorithm
and low-level knowledge in the form of a controller. While
this system has not yet been implemented on a real robot,
RRT has (e.g., Leonard et al., 2008), so some version of
this approach is feasible with current technology.
 This system is presented as an example of integrating
action and symbolic reasoning through spatial simulation.
This allows the symbolic system to reason about the
problem, but removes the requirement that the entire
problem be represented symbolically. Because of this, the
perception system needed is simpler and more problem-
independent than would otherwise be required, and
controllers can be used without symbolically characterizing
them beforehand. A very modular system is then possible,
since symbolic and control processing are mediated by the
spatial system and its fixed qualitative/spatial interface.
While many existing systems use major elements of this

approach, this work has attempted to make explicit the
argument for how and why this form of integration is a
step on the path toward more general AI systems.

Acknowledgements

John Laird provided guidance and support on this project,
and assisted in editing. Joseph Xu and Nicholas Gorski
provided useful conversations in formulating the ideas
behind this paper. This research was funded by a grant
from US Army TARDEC.

References

Albus, J.S., 2003. 4D/RCS: A reference model architecture for

intelligent unmanned ground vehicles. In Proceedings of SPIE.

Arkin, R.C., 1989. Towards the unification of navigational

planning and reactive control. In AAAI Spring Symposium on

Robot Navigation. Stanford, CA.

Brooks, R.A., 1991. Intelligence without representation. Artificial

Intelligence, 47, 139-159.

Chandrasekaran, B., 1997. Diagrammatic representation and

reasoning: some distinctions. In AAAI Fall Symposium on

Diagrammatic Reasoning. Boston, MA.

Fajen, B.R. & Warren, W.H., 2003. Behavioral dynamics of

steering, obstacle avoidance, and route selection. J. Experimental

Psychology: Human Perception and Performance, 29(2).

Forbus, K.D., Nielsen, P. & Faltings, B., 1991. Qualitative spatial

reasoning: the CLOCK project. Artificial Intelligence, 51(1-3).

Huffman, S. & Laird, J.E., 1992. Using Concrete, Perceptually-

Based Representations to Avoid the Frame Problem. In AAAI

Spring Symp. on Reasoning with Diagrammatic Representations.

Johnston, B. & Williams, M., 2008. Comirit: Commonsense

Reasoning by Integrating Simulation and Logic. In Proc. First

Conference on Artificial General Intelligence.

Laird, J.E., 2008. Extending the Soar Cognitive Architecture. In

Proc. First Conference on Artificial General Intelligence.

Lathrop, S.D., 2008. Extending Cognitive Architectures with

Spatial and Visual Imagery Mechanisms. PhD Thesis, University

of Michigan.

LaValle, S.M., 2006. Planning Algorithms, Cambridge U. Press.

Leonard, J. et al., 2008. A perception-driven autonomous urban

vehicle. Journal of Field Robotics, 25(10)

Lindemann, S.R. & LaValle, S.M., 2003. Current issues in

sampling-based motion planning. In Proceedings of the

International Symposium of Robotics Research. Springer.

Newell, A., 1990. Unified theories of cognition, Harvard

University Press Cambridge, MA.

Stein, L.A., 1994. Imagination and situated cognition. Journal of

Experimental and Theoretical Artificial Intelligence, 6.

Wintermute, S. & Laird, J.E., 2008. Bimodal Spatial Reasoning

with Continuous Motion. In Proceedings of AAAI-08. Chicago.

Wintermute, S. & Lathrop, S.D., 2008. AI and Mental Imagery.

In AAAI Fall Symposium on Naturally Inspired AI.

