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Abstract 

This paper presents an approach for integrating action in the 
world with general symbolic reasoning. Instead of working 
with task-specific symbolic abstractions of continuous 
space, our system mediates action through a simple spatial 
representation. Low-level action controllers work in the 
context of this representation, and a high-level symbolic 
system has access to it. By allowing actions to be spatially 
simulated, general reasoning about action is possible. Only 
very simple task-independent symbolic abstractions of space 
are necessary, and controllers can be used without the need 
for symbolic characterization of their behavior. We draw 
parallels between this system and a modern robotic motion 
planning algorithm, RRT. This algorithm is instantiated in 
our system, and serves as a case study showing how the 
architecture can effectively address real robotics problems.  

Introduction 

 It has been argued by many that low-level motor control 
and perception are critically important for intelligent 
behavior in embodied agents (e.g., Brooks, 1991). These 
views are often put in contrast with more traditional views 
of intelligence that emphasize symbolic processing (e.g., 
Newell, 1992). To date, adherents on either side haven’t 
built robots that have exhibited anything close to general 
intelligence. Solely symbolic robots are rigid, and unable 
to deal with the subtlety of the real world, where every 
relevant perception needed to control action doesn’t 
directly map onto a symbol. Robots without a symbolic 
level, however, aren’t able to comprehend tasks anywhere 
near the level of complexity of those that humans perform, 
as those tasks can require reasoning at a much higher level 
than raw perception. 
 Attempts have been made to bridge deliberative 
symbolic reasoning and continuous reactive behavior. 
Many of these systems fit the general diagram in Figure 1a. 
In this sort of system, perception abstracts out information 
from the environment, and provides it to the symbolic 
system. The symbolic system reasons over this 
information, and invokes a controller with an abstract 
command. Following this command, the controller maps 
low-level input to output, causing action in the world. The 
perception box provides symbols that completely and 
concisely describe the environment, and invoking a 
particular action results in a predictable transition in these 
symbols. This is the classic blocks-world approach: the 

perception system provides symbols like (on a b), actions 
are represented by symbols like (move b table), and simple 
rules describe how the perception symbols will change in 
response to the action, enabling symbolic action planning.  
 Embodied AI systems have moved beyond this simple 
sort of system, but retain much of the flavor. In typical 
approaches, the core of the system deals with the world in 
terms of an abstract representation, and peripheral 
processes, considered as largely independent of the 
problem-solving part of the system, convert between the 
abstract representation and the world. This approach leads 
to systems where the perception and action pieces are 
designed together—each action corresponds to a 
straightforward transition in perception, so reasoning 
solely in terms of the abstract representation is possible. 
 We are investigating an alternative architecture that 
integrates action, perception, and reasoning in such a way 
that the generality of the overall system is increased. The 
key aspect of this system (Figure 1b) is that perception and 
action are mediated through a simple spatial representation. 
The interface between this representation and the symbolic 
system is generic and fixed. In addition to causing action in 
the world, controllers can simulate action in the spatial 
representation.  
 With this system, generality is enhanced in two ways 
compared to systems like those in Figure 1a. First, 
mediating action and perception through a spatial 
representation makes the system highly modular, allowing 
different low-level controllers or high-level strategies to be 
used without changing the rest of the system. Secondly, the 
need for complicated action-specific perception processes, 
as well as strategy-specific controllers, is greatly reduced. 

(a) 

Figure 1.  

a: Simple approach to integrating action and reasoning. 

b: Our approach, where a spatial imagery layer mediates 

between the world and the symbolic system. 

(b) 
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Since reasoning does not take place entirely at the abstract 
symbolic level, perception does not have to provide 
enough information to completely describe the world, nor 
must controllers be designed such that commands result in 
predetermined transitions between abstract states. 
 This work is done in the context of the Soar cognitive 
architecture (Laird, 2008). Soar has been extended recently 
to handle problems involving space and motion, using 
specialized representations and mechanisms inspired by 
human perception and mental imagery. The extension to 
Soar is SVS (Spatial/Visual System, Wintermute and 
Lathrop, 2008). SVS provides the core of an action 
simulation and execution system.  
 To examine this system in detail, a case study will be 
used. Since research in Soar/SVS is moving towards 
robotics, a modern robotic motion-planning algorithm will 
be examined. The RRT algorithm (LaValle, 2006) has been 
used in many recent robots (e.g., Leonard et al., 2008), and 
works through simulating action. Looking at developments 
in the field of motion planning that led to RRT and other 
similar algorithms, we can provide evidence that 
simulation is an appropriate way to reason about action. 
We will instantiate RRT in Soar/SVS, showing how all of 
the parts of the system work together, and the generality 
this approach affords. 

Simulation and Motion Planning 

A key aspect of our approach to action and planning is that 
simulation is used for planning, rather than abstract symbol 
transformations. Our chief reason for doing this is that it 
leads to a more general system; however, there is 
increasing evidence from robotic motion planning research 
that regardless of generality concerns, simulation is an 
appropriate way to plan motion.  
 Motion planning research has usually been pursued 
outside of the context of creating generally intelligent 
systems. Earlier approaches focused on efforts to exactly 
compute optimal paths for particular classes of robots, such 
as polygon robots that can move in any direction. This 
involves computing exactly the configuration space of the 
robot, a space in which any path corresponds to a real path 
to robot is able to follow. As motion planning has 
progressed to address problems involving more and more 
realistic robots, however, this exact computation has 
become intractable (Lindemann and LaValle, 2003).  
 One reason for this difficulty is that certain kinds of 
constraints on motion are infeasible to capture in 
representations like configuration spaces. Nonholonomic 
constraints result from systems where the number of 
controllable dimensions is less than the total number of 
degrees of freedom. For instance, a car is nonholonomic, 
since its position can be described by three parameters (x, 
y, and an angle), but it is only controllable in two 
dimensions (driving forward and reverse, and steering left 
and right). Where it is relatively straightforward to 
calculate the configuration space of a robot that can turn in 
place, this is not as simple with a car-like robot. In addition 

to nonholonomic constraints, traditional geometric motion 
planning approaches also have trouble incorporating 
dynamic constraints, where the path of the robot is affected 
by dynamics, such as a car that can’t stop without slowing. 
 Recently, sampling-based approaches have become 
popular for planning with dynamic and nonholonomic 
constraints (LaValle, 2006). In sampling-based motion 
planning, the goal is not to exactly compute the 
configuration space, but instead to sample it through 
simulation. While previous approaches required difficult-
to-calculate specialized representations that were specific 
to the particular motion under consideration, motion 
planning through simulation requires only a basic spatial 
representation, as details particular to the motion are 
encapsulated in the controller. If the simulation is accurate, 
motion plans can be guaranteed to meet nonholonomic and 
dynamic constraints.  
 This development from computation of configuration 
space to sampling reflects only two of many prominent 
techniques in motion planning. It is also worth mentioning 
behavior-based approaches, where representations are 
eschewed, and motion planning emerges from relatively 
simple mappings from perceptions to actions (e.g., Brooks, 
1991). While our approach most certainly involves 
representations, it allows techniques developed in this 
tradition to be used as controllers within a broader 
symbolic AI system (in our case, the equations of Fajen 
and Warren, 2003, are used). 

The RRT Algorithm 

RRT (Rapidly-exploring Random Trees, LaValle, 2006) is 
a sampling-based motion planning algorithm that works by 
constructing a tree of states of the robot, rooted at the 
initial state, and adding nodes until that tree reaches the 
goal. Nodes are generated by extending the tree in random 
directions, in such a way that it will eventually reach the 
goal, given enough time. Each path from the root of the 
tree to a leaf represents a path that the robot could take, 
constantly obeying all constraints on its motion. The tree is 
constructed by the algorithm in Figure 2. 
 Two of the steps in this figure hide the true complexity 
of the algorithm. The steps to get the closest node to the 
random state, and to extend that node towards the random 
state, can both take substantial computation. This 
computation is also specific to the exact problem being 
solved, where the rest of the algorithm is general to all 
motion planning problems. 
 To determine the closest existing state to a random state, 
some metric must be determined that can measure the 
distance between states. In the case of car path planning, a 
simple metric is the Euclidian distance between the two 

Figure 2. Basic RRT Algorithm 

make tree rooted at initial state 

while tree does not reach goal 

 generate random state -> Xr 

 get closest existing state to Xr -> Xc 

 extend Xc towards Xr -> Xn 

 if no collision occurred 

  add Xn to the tree, connected to Xc  



states, with the condition that the distance is infinite if the 
target state is not in front of the source. 
 The other problem-specific step in the algorithm is 
extending the chosen node towards the new state, while 
detecting collisions along the path. A typical approach is to 
numerically integrate differential equations to simulate 
motion, resulting in a sequence of states parameterized by 
time. This simulation must occur within a system capable 
of detecting collisions. 

The Soar/SVS Architecture 

The Soar cognitive architecture (Laird, 2008) provides the 
basis of our system. Work in Soar has traditionally focused 
on symbolic processing, and that remains a strength of the 
system. SVS builds on two prior lines of work on 
extending Soar to encompass non-symbolic spatial and 
visual representations, SVI (Lathrop, 2008), and SRS 
(Wintermute and Laird, 2008). 
 SVS encompasses the capabilities of both of these 
previous systems. Figure 3 shows the relevant parts of the 
system for this discussion. Compared to the generic 
diagram in Figure 1b, the names of some of the parts have 
changed, and two ways of adding objects to the scene from 
the top down have been added. SVS contains a long-term 
memory of the 3D structure of objects and the relationships 
between them, called the Perceptual LTM. By accessing 
this memory, Soar can recall objects or entire scenes to its 
Spatial Scene short-term memory as necessary. Sometimes, 
it is also necessary to add qualitatively described new 
objects to the scene, such as a line between two objects. 
This is called predicate projection (Chandrasekaran, 1998). 
A complementary process, predicate extraction, allows 
Soar to determine qualitative information about the 
contents of the scene, such as whether two objects 
intersect. This is the high-level perception box from Figure 
1b, it contains the fixed processes through which Soar 
perceives the spatial world. 
  SVS also contains representations and mechanisms for 
dealing with 2D visual data, which are not used in this 
work. An external environment is also not used, all 
reasoning occurs in scenes retrieved from memory. 
 SVS and its predecessor systems have been used to 
study problems such as reasoning about positioning of 
military scouts to observe enemy units (Lathrop, 2008), 
and determining the layout of buildings in a real-time 
strategy game (Wintermute and Laird, 2008). Particularly 

relevant to this work, we have previously addressed 
reasoning with motion (Wintermute and Laird, 2008). 
 The interface between SVS and Soar is designed to work 
at a qualitative level (outside of a few exceptions). This 
means that information exchanged between Soar and SVS 
is expressed chiefly in terms of references to known items 
in one of SVS’s memories and a library of fixed qualitative 
relationships. Detailed quantitative information, such as the 
continuous coordinates describing the polyhedrons in the 
scene, is inaccessible to Soar. 
 One way to add new objects to the SVS scene is by 
applying a known motion to an existing object. Motions 
are encapsulated as motion models. These allow stepwise 
simulations of particular motions to be invoked. To do this, 
the Soar agent specifics which motion model to apply, 
which existing object to move, and any other object 
parameters, such as a goal object. For example, the agent 
can apply motion drive to object car, moving towards 
object goal. SVS responds to this command by building 
an image of car, driving towards goal. The symbolic 
command also has a parameter for time—changing the 
time steps the motion forward.  
 Complex termination conditions are not declared to SVS 
beforehand, instead, the general capabilities that allow 
Soar to extract information from the scene are used. For 
example, Soar can query whether objects in the scene are 
intersecting. If the conditions for car-driving to terminate 
are that it has collided with an obstacle, Soar can query as 
to whether the moving car intersects with any obstacles, 
and stop updating the motion once this becomes true. 
 Motion models can be used to reason over any motion, 
including the agent’s own actions, actions of others, and 
environmental movement. In the first case, the motion 
model will be the same as the actual controller for the 
motion, just simulating its output in the scene, instead of 
executing it in the environment. We will use the terms 
“motion model” and “controller” interchangeably when 
talking about actions for this reason. 

Implementing RRT in Soar/SVS 

In order to explore reasoning about action in our system, 
we have instantiated the RRT algorithm in a Soar agent. 
The problem we considered is that of planning to drive a 
car from an initial state to a goal region, while avoiding 
obstacles in a known environment. The car motion model 
takes as input the identity of a car in the scene, and the 
location of a goal. Inside this model, a system of 
differential equations that describe the configuration of a 
simple car-like vehicle as a function of the time and goal 
location is used. When integrated numerically, these 
equations yield a sequence of configurations, allowing for 
simulation. These equations were determined by 
combining a model of human movement (Fajen and 
Warren, 2003) with a simple car model (LaValle, 2006). 
The human model controls the intended steering angle of 
the car, and this steering angle determines the next position 
of the car. A constant speed is assumed.  

Figure 3. The SVS system. 
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 The controller simulates motion towards a goal, while 
maintaining the nonholonomic constraints of the vehicle. 
Along with geometric models of the car and world in the 
LTM of SVS, it is the low-level knowledge that was added 
to the existing SVS system to implement this planner.  
 Symbolic Soar rules were written to perform the 
algorithm in Figure 2. The algorithm relies on existing 
architectural functionality in the interface between Soar 
and SVS. As a metric for node distance, our 
implementation used the Euclidean distance, with the 
condition that the distance is infinite where the goal is not 
“in front” of the node. SVS includes mechanisms for Soar 
to extract distances, and to query for an in-front 
relationship. The motion model described above enables 
simulation, and SVS supports querying for intersections 
between objects in the scene, enabling collision detection. 
The only new mechanism in SVS to support this algorithm 
was a method to generate random goal points in the scene, 
which was a simple addition. 
 Examples of the SVS scene during RRT planning are 
shown in Figure 4 (top). Soar stores, as a symbolic 
structure in its working memory, the RRT tree. The nodes 
in that tree are symbolic indexes into SVS—they point to 
specific objects in the scene, which can be seen in the 
figure. Soar proceeds by adding new random point objects 
to the scene, and querying for the distance from each node 
to that object, which are then compared to find the closest. 
A simulation is then instantiated with that node as the 
initial conditions (creating a new car object in the scene), 
this simulation is stepped until a certain time is reached, 
the goal is reached, or Soar detects a collision with an 
obstacle. In all but the last case, the termination of the 
simulation results in a new tree node being added. In 
addition to moving towards random points, with a certain 
probability the agent instead tries to extend the tree directly 
towards the overall goal, biasing the tree in that direction. 

RRT Planning with Local Obstacle Avoidance 

It is clear that the controller in the previous example leaves 
much room for improvement. The task is to avoid obstacles 
while driving towards the goal, but the controller knows 
nothing about obstacles. All obstacle avoidance happens by 
pruning the tree when simulations collide with obstacles. 
 As is done in Fajen and Warren (2003), the above 
controller can be enhanced to be biased to avoid obstacles, 
in addition to moving toward the goal. Each obstacle 
affects the steering of the car, with nearer obstacles located 
towards the front of the car having the most influence. This 
requires slightly more information to be provided to the 
controller: the identities of the obstacles. Other than that, 
the system outside of the controller remains unchanged. 
 With this new, smarter controller, performance is greatly 
increased. An example instance is shown in Figure 4 
(bottom), note that the number of states in the RRT tree 
before a solution is found is much less than in the top of 
the figure. Over 100 trials of the scenario presented in 
Figure 4, the average number of individual simulations 
needed to solve the problem was 128 without obstacle 
avoidance and only 12 when it was present. 

Discussion 

 These case studies exemplify how reasoning and action 
can be integrated through simulation. In general, problems 
are decomposed between high-level algorithmic 
knowledge, instantiated in the symbolic system, and low-
level action knowledge, instantiated as motion models. 
There is a spatial representation allowing real and 
imaginary situations to be instantiated, and fixed processes 
which communicate between that representation and the 
symbolic level. Complex reasoning about action occurs 
through interplay of low-level simulation and high-level 
symbolic reasoning over simulation results, detecting 
spatial interactions and making decisions accordingly. 
 The interface between the spatial and symbolic levels is 
the only means by which symbolic processing in Soar can 
obtain information about the results of lower-level 
processing. Soar uses the Predicate Extraction system in 
Figure 3 to query the scene for information such as which 
objects intersect which, relative directions, and other 
simple qualitative relationships. The commitment to make 
this system fixed is important, as it implies that the type of 
qualitative spatial information available to the symbolic 
system is the same, regardless of the task. The poverty 
conjecture of Forbus et al. (1991) states that “there is no 
purely qualitative, general-purpose, representation of 
spatial properties”, and if this is true, the decision to use a 
fixed representation, calculated without task knowledge, 
seems a poor choice. 
 However, this conjecture might not apply to our system, 
as the qualitative representation used does not have to be 
rich enough to enable purely qualitative reasoning (and 
hence is not really “general purpose”). The essential role of 
simulation with respect to symbolic reasoning is that of an 
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Figure 4. States of SVS Spatial Scene during RRT planning. 

The problem is to drive a car from lower-left to upper-right. 

(a). RRT tree for goal-seeking controller, just before a 
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(b). Sequence of car positions that solve the problem. 
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action model. The system is able to predict the symbolic 
consequences of symbolically described actions—for 
example, inferring that driving a certain car object toward 
the goal leads to a collision. Since simulation is available, 
the qualitative representation used needs to be only rich 
enough to capture important aspects of the current state of 
the spatial system, not the implications of action. 
 The alternative to this is to represent the consequences 
of actions completely symbolically, as in planning systems 
such as STRIPS. Consider a problem in a variant of the 
blocks world. In this problem, a robot finds itself in front 
of a table with blocks on it, and must stack them in a 
certain way (e.g, A on B, and C on A). Each time it 
encounters a table, the robot’s perception system must 
encode the problem in such a way that planning can be 
performed. This encoding must capture both the states of 
the world (such as on(B,C) and clear(C)), and the way 
those states are transformed by action. The robot can make 
certain assumptions about any table it encounters. For 
example, if a block is clear (has nothing on top of it), it can 
be moved to the top of a different clear block. However, in 
a divergence from the standard blocks world, the table is 
not always clear—in this case, the table is divided into 
numbered bins, and blocks must be placed entirely inside a 
bin. Not all of the bins are wide enough to fit a block, 
though, and the block will fall to the floor if the agent 
places it there. So depending on the exact table the robot 
has encountered, the result of moving block A into bin 3 is 
either inBin(A, bin3), or onFloor(A). 
 To allow purely symbolic planning in this domain, the 
perception system of the robot must then compare each 
bin’s size to the width of a block, and generate its state 
transition rules accordingly. In this way, creating the 
qualitative representation of the problem requires very 
task-specific calculations to be performed in the perception 
system in order for that representation to capture the 
consequences of actions. In contrast, if actions can be 
simulated in a spatial representation, this can instead be 
accounted for by simulating placing a block in the bin, and 
simply checking if it intersects a wall 
 While there is no proof that the symbolic representations 
used in Soar/SVS are general enough that all reasonable 
tasks can be represented, it is clear that the symbolic 
representation needed when actions can be simulated is 
much simpler than the representation needed to solve 
problems entirely at the symbolic level. The high-level 
perception system that builds this representation can then 
be much simpler if simulation is possible. 
 Similarly, the ability to simulate actions simplifies the 
requirements of the low-level action system. Consider 
again the standard planning approach to a problem like 
those in blocks world. In order to represent the problem 
completely symbolically, the effect of every possible 
action on every possible state must be characterized before 
the problem can be solved. In addition to increasing the 
need for task-dependant perception, as discussed above, 
this requires that the controllers used by the system have 
simple-to-characterize guarantees on their performance. 

For instance, in blocks world, it is assumed that the 
controller can reliably perform an action like moving a 
block from the top of one stack to another for any two 
stacks present. If actions can instead be simulated, these 
guarantees are unnecessary—the behavior of the controller 
does not need to be symbolically characterized before 
reasoning can begin. 
 To further illustrate this point, contrast the RRT agent 
with obstacle avoidance described above with a more 
traditional graph-search approach. If a robot can be 
approximated by a circle and can turn in place, concise 
representations of relevant locations for the robot to move 
in the world can be derived. Using this representation, a 
graph of nodes and distances between them, optimal path 
planning can be done using an algorithm like A*. If this 
graph is the robot’s perception, and its actions move 
between nodes, reasoning about action is a simple graph 
search. Consider the complication involved in using this 
form of perception and action, though. Perception involves 
computing the configuration space of the robot, and paths 
within it that lie entirely outside of obstacles. Actions must 
map directly onto transitions between nodes of the graph, 
so a controller must be used that guarantees accurate 
execution of these transitions. 
 In contrast, the RRT planner needs only very simple 
perceptions, such as which objects intersect which others, 
and the general direction and distance between objects. 
The actions of the robot do not have to be symbolically 
characterized beforehand for the planner to work. For a 
controller like the obstacle-avoiding car used above, it 
would be very hard to characterize in what cases it is able 
to guide the robot to the goal and in what cases it isn’t.  
 Ignoring other concerns, such as the limited applicability 
of graph-search planning for more complicated robots, and 
the suboptimal performance of RRT for simple robots, it is 
clear that integrating reasoning and action through 
simulation requires simpler perception and less-constrained 
action systems than reasoning solely at the symbolic level.  
 This simplification of perception and action systems 
afforded by the use of simulation allows for a highly 
modular overall system. The interface between the 
symbolic system and spatial representation, which involves 
complicated transformations between symbolic and 
quantitative representations, is fixed; new capabilities can 
be added to the system without modifying this interface. 
For example, a different approach to path planning has 
been previously implemented in Soar/SVS (Wintermute 
and Laird, 2008). In this case, the problem was approached 
by detecting which obstacles lie between the car and the 
goal, and deliberately creating waypoints in the scene to 
divert around them. This is a very different overall 
algorithm than RRT, but the agent itself differs only in the 
high-level Soar rules that describe it. Changes in the 
interface between Soar and the spatial system were not 
needed, nor were changes in the controller. 
 This fixed symbolic/quantitative interface also allows 
for modularity in the controllers used. This is seen in the 
above examination of the RRT planner, where an obstacle-



avoiding controller was substituted for a simpler goal-
seeking controller, while requiring minimal changes to the 
rest of the system. Controllers in the system take the 
majority of input and create output in terms of spatial 
objects. Their interface to the symbolic system simply 
points them to the relevant objects in the scene and 
provides time. Controllers can be built which work 
internally with continuous numbers, the same format in 
which the scene is represented, so there is no need for a 
difficult representation conversion at the controllers input 
and output like there might be if the controller interfaced 
only to the symbolic system. 

Related Work 

The integration of reactive behavior and deliberative 
reasoning in robotics architecture has been investigated, 
such as by Arkin (1989) and many others. However, most 
of these systems involve using deliberative reasoning to 
serialize different reactive behaviors (thus fitting Figure 
1a), and do not involve simulation. Some previous systems 
do use simulation of reactive behavior to guide reasoning. 
MetaToto (Stein, 1994) emphasizes this, but doesn’t focus 
on enabling general high-level reasoning as our system 
does. 4D/RCS (Albus, 2003) includes simulation ability, 
but is more of a scheme for organizing an agent, rather 
than a commitment to a specific set of components. 
 From an AI point of view, this work inherits much from 
research in diagrammatic reasoning (e.g., Chandrasekaran, 
1997). Comirit (Johnston and Williams, 2008) is also a 
similar approach to ours, integrating logic with physical 
simulation, but is not used for action and doesn’t have a 
spatial representation. Our use of a spatial representation to 
simplify symbolic reasoning builds on previous work 
looking at the frame problem (Huffman and Laird, 1992). 

Conclusion 

We have shown that Soar with SVS is able to use imagery 
to solve motion planning problems. This was done using 
the existing fixed functionality of SVS to communicate 
between Soar and the scene, and adding symbolic 
knowledge to Soar encoding the high-level RRT algorithm 
and low-level knowledge in the form of a controller. While 
this system has not yet been implemented on a real robot, 
RRT has (e.g., Leonard et al., 2008), so some version of 
this approach is feasible with current technology. 
 This system is presented as an example of integrating 
action and symbolic reasoning through spatial simulation. 
This allows the symbolic system to reason about the 
problem, but removes the requirement that the entire 
problem be represented symbolically. Because of this, the 
perception system needed is simpler and more problem-
independent than would otherwise be required, and 
controllers can be used without symbolically characterizing 
them beforehand. A very modular system is then possible, 
since symbolic and control processing are mediated by the 
spatial system and its fixed qualitative/spatial interface. 
While many existing systems use major elements of this 

approach, this work has attempted to make explicit the 
argument for how and why this form of integration is a 
step on the path toward more general AI systems. 
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