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Abstract

Online perception, behavior, and learning in complex domains require an intelligent agent to
quickly and reliably access different types of knowledge. A cognitive architecture, therefore,
must implement a diverse set of memories that are optimized for storing, accessing, and learn-
ing these different types of knowledge. In this paper, we describe a complex Soar agent that
uses and learns multiple types of knowledge while interacting with a human in a real-world
domain. Our hypothesis is that a diverse set of memories is required for the different types
of knowledge. We first present the agent’s processing, highlighting the types of knowledge used
for each phase. We then present Soar’s memories and identify which memory is used for each
type of knowledge. We also analyze which properties of each memory make it appropriate for
the knowledge it encodes. These include procedural, semantic, and episodic knowledge, all of
which play critical roles in the agent’s ability to learn and extend its capabilities. We conclude
with a summary of our analysis, and conclude that a diversity of memory systems and knowl-
edge are useful for supporting general, integrated intelligence.
ª 2014 Elsevier B.V. All rights reserved.
Introduction

Today’s cognitive architectures provide one of the best
examples of integration of multiple components to support
the development of intelligent agents. The early version of
Soar had only two architectural memory modules: working
memory and production memory. Recently, we have signifi-
cantly extended Soar (Laird, 2012), so that it includes
multiple long-term declarative memories (semantic and
episodic), a spatial short-term memory (SVS), as well as
perceptual memories for robotic applications. These memo-
ries were added to expand ways in which knowledge can be
stored and accessed. For example, episodic memory auto-
matically records snapshots of working memory and supports
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cue-based retrieval using partial match, whereas produc-
tions are learned based on problem solving activity and per-
form their actions whenever all their conditions match.

With this diversity, Soar agents can exploit the differ-
ences in memory systems to encode and access different
types of knowledge. This is a case study of an agent that
embodies unique and diverse types of knowledge that take
advantage of the different characteristics of Soar’s memory
systems. The agent, called ROSIE1, learns new concepts,
words (nouns, adjectives, prepositions, and verbs), and
problem definitions for simple games and puzzles such as
Towers of Hanoi and Tic-Tac-Toe, from a human instructor
in a shared real-world environment. ROSIE employs real-
world visual sensing and motor control, limited language
processing, dialogue management, problem formulation,
internal problem solving and search, self-explanation, men-
tal imagery, and multiple forms of learning. Except for per-
ception, motor control, and some primitive parsing, all of
these capabilities are realized through knowledge encoded
in the architecture as opposed to through the addition of
separate modules. Moreover, ROSIE’s behavior and learning
is all in situ, such that it is always ‘‘on,’’ with online real-
time learning.

Many other cognitive architectures have similar sets of
memories as Soar; however, none of them have published
reports of running implementations of the complete suite
of memories that Soar has or examples of agents that learn
and use as diverse a set of knowledge types and memories as
described here.

In this paper, we begin with a short description of our
robotic domain, followed by an abstract overview of ROSIE’s
processing. The purpose of this overview is to identify the
different types of knowledge that are learned and used by
the agent. We then analyze the memory structures in Soar,
identifying their distinctive characteristics in terms of how
knowledge is encoded, stored, and accessed. Concurrently
we describe and analyze which knowledge types are stored
in each of the memory systems, identifying the features
that each memory system provides and how they are appro-
priate for specific types of knowledge. Thus, we first pres-
ent a functional analysis of our agent and then map those
functions onto the memory structures in Soar. We conclude
with a summary of our analysis.

The agent described in this paper has been previously
described in Mohan, Mininger, Kirk, & Laird, 2012; Mohan,
Kirk, and Laird (2013); however this paper provides a novel
analysis of memory systems used in the agent, building on
prior analyses of Soar memory systems (Derbinsky & Laird,
2010; Laird, 2012).

Domain

Our domain (as shown in Fig. 1) is a tabletop with an overhead
Kinect camera that extracts low-level sensory data, and a
robotic arm that canmanipulate foam blocks of different col-
ors, shapes, and sizes. The domain also includes four named
locations: pantry, stove, dishwasher, and garbage. These
locations have associated simulated functions. For example,
the stove can be turned on or off and the pantry can be
1 RObotic Soar Instructional Entity.
opened or closed. To act in the world, the agent sends dis-
crete commands to the robot controller that executes a cor-
responding closed-loop policy. The commands include object
manipulation: pointTo(obj), pickUp(obj), and put-

Down(x,y) and simulated location operations: open(loc),
close(loc), turnOn(stove), and turnOff(stove).
The instructor interacts with the agent through a chat inter-
face. Messages are fed to the agent through the LG parser
(Sleator & Temperley, 1991), which extracts syntactical
structure. Messages from the agent are translated to natural
language using pre-encoded templates.

Agent processing

ROSIE is tasked with acquiring diverse kinds of knowledge –
perceptual, spatial, semantic, action, task, and linguistic –
through collaborative human–agent interactions. Our
approach to learning – situated, interactive instruction –
imposes requirements on how the knowledge is represented
and accessed (described below) in ROSIE.

� Situated: The communication between the human expert
and ROSIE is situated in the current state of the collabo-
rative task. Through natural language-like utterances,
the expert instructs the agent to perform novel tasks.
ROSIE interprets the human’s utterances within the
real-world context by grounding words in visible objects,
known spatial relationships, and known actions. Situated
comprehension augments linguistic utterances with the
knowledge of the shared perceptual state and shared
knowledge of the domain and eliminates problems arising
from under-specific and ambiguous utterances. To sup-
port such comprehension, the agent must use diverse
kinds of knowledge and representations to extract the
current perceptual, relational state from sub-symbolic
sensory data; perform lexical analyses of utterances
using its knowledge of English syntax; and generate situ-
ated interpretations of utterances by exploiting its
knowledge of how lexical items are associated with the
real-world state and its domain knowledge.
� Interactive: The communication is mixed-initiative and
bi-directional, with both participants initiating interac-
tions in accordance with their intentions and goals. The
human and the learner form a system of joint learning
that distributes the onus of knowledge acquisition
between both partners. The human takes the initiative
in identifying properties of the environment useful in
learning novel concepts. The learner takes initiative in
interpreting the instructions, analyzing its success and
failures, and posing relevant questions. Knowledge rep-
resentation and access should inform what questions
the agent asks, when these questions are posed to the
instructor, and how the replies are integrated in a com-
prehensive domain knowledge schema.
� Distributed acquisition: ROSIE is endowed with diverse
capabilities including situated comprehension, learning,
and complex, hierarchical task execution. To continually
learn various concepts from instructions, ROSIE must
induce knowledge that spans different modalities.



Fig. 1 The table-top workspace, robotic arm, and interaction chat window.
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For example, the knowledge of spatial relationships is
represented such that it is useful in not only recognizing
useful relationships between objects in the visual sensory
stream but can also be used for executing actions that
establish the required relationship between target objects.
This knowledge is also associated with prepositions such as
left-of and therefore is useful in linguistic communication
with the instructor. The ability to communicate about spa-
tial relationships using prepositions allows ROSIE to learn
complex action and task knowledge that incorporates the
knowledge of those spatial relationships.

Fig. 2 shows ROSIE’s overall processing structure that
supports the above behavior. Various stages in processing
are shown in rounded rectangles. Below we analyze the pro-
cessing of each phase and its short-term (white rectangles)
and long-term (gray rectangles) knowledge requirements.

Perceptual processing

Visual sensing of the environment occurs via a Kinect cam-
era that provides color and depth data streams to the per-
ception system. The perception system segments the
scene into objects (blocks and locations). From examples
provided through instruction, the agent learns to classify
visible objects along three perceptual dimensions – color,
size, and shape. A class in a classifier corresponds to a per-
ceptual symbol. For example, a perceptual symbol R42 may
correspond to the color red in the color feature space. Along
with symbols that describe the perceptual features of an
objects, the agent also learns to recognize and use spatial
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Fig. 2 ROSIE’s processing structure. Gray boxes repre
relationship predicates such as S22 that correspond to spa-
tial prepositions such as left-of.

Through such perceptual processing, the agent generates
an object-oriented, relational, perceptual state description
of the environment from sensory data. This representation
is useful for acting in the environment through object
manipulation and for reasoning about goals of complex
tasks.

Lexical processing

LG-Soar (Lonsdale, Tustison, Parker, & Embley, 2006) is a
natural language component implemented as operators in
Soar. It generates a syntactic parse of the utterance using
a static dictionary and grammar. It uses part-of-speech tags
and grammar of English to create a parse in the agent’s
working memory, identifying the useful content in the mes-
sage. This parse is further categorized as verb-command,
goal-description, descriptive-sentence, etc. based on its
lexical structure. This categorization informs how the utter-
ance is processed.

Interaction state management

After an utterance has been categorized, the agent uses
knowledge of domain-general heuristics and the context of
the ongoing dialog to associate intentions with the utter-
ance. The intentions are useful in determining the next goal
ROSIE should pursue. The goal can be to manipulate the
environment through actions to establish certain state
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predicates or it can be to provide responses to the instruc-
tor’s queries.

Situated comprehension

To gain useful information from instructions, ROSIE associ-
ates lexical items, such as referring expressions, prepositions
and prepositional phrases, and verbs with their argument
structures, to state descriptions and domain knowledge.
Knowledge structures calledmaps encode how various lexical
items are associated with perceptual descriptive and spatial
symbols and action and task knowledge (referents). Maps are
learned from interactive instructions. The comprehension
process is formulated as memory search (or indexing) in
which the agent attempts to retrieve maps for lexical items
in an utterance. On successful retrievals, the agent composes
the referents under the constraints derived from the
retrieved maps, the current state of the environment, action
models, and the context of the ongoing communication to
generate a situated interpretation of the utterance. A failure
in the search indicates that ROSIE does not possess knowledge
to comprehend the utterance and triggers a learning phase in
which the agent attempts to acquire the missing knowledge.
If multiple interpretations are generated due to under-spe-
cific information in the utterance, the agent may initiate
sub-dialogs to gather more information that is useful for gen-
erating unambiguous interpretations. This stage is described
in detail in Mohan, Mininger, and Laird (2013).

Behavior generation

Apart from generating natural language-like responses to
the instructor when queried about the environment, ROSIE
also manipulates the environment in response to action
commands. The agent is pre-encoded with primitive behav-
iors such as pick-up(object), put(object, location, relation-
ship), and point-to(object). Through instruction, the agent
learns complex behaviors that involve executing multiple
primitive behaviors.

A behavior is represented by its availability conditions –
a set of state descriptors that indicate that the behavior is
available for execution; application knowledge – a set of
rules that implement a policy; and termination conditions
– a set of state descriptors, which when present, indicate
that the goal of the behavior has been achieved. The policy
is represented as rules that encode preferences for execut-
ing primitive behaviors given the current symbolic state
description generated by the perceptual system and the
goal the agent is pursuing. For example, for the behavior
store(object) with a goal to place the object such that the
spatial predicate in(object, pantry) is achieved, one policy
rules creates a preference for open(pantry), if the state
of the pantry is closed. If the pantry is open, a rule creates
a preference to prefer the action move(object) to the pan-
try. Once the object has been successfully placed in the
pantry, the action close(pantry) is preferred.

Learning

If failures occur in the situated comprehension or the
behavior generation phases because the agent lacks the
required long-term knowledge, an impasse arises. In
response to an impasse ROSIE initiates interactions with
the instructor to acquire the missing piece of knowledge.
Multiple failures are handled incrementally until the agent
resolves all impasses. From an impasse arising during situ-
ated comprehension and the ensuing interactions, the agent
learnsmaps for nouns/adjectives (to perceptual attributes),
spatial prepositions (to spatial relationships), and action
verbs (to behaviors) leveraging the structure of interac-
tions. Further semantic information of spatial compositions
is also acquired from impasses arising during comprehen-
sion. Complex behaviors are acquired through interactions
initiated in failures during the behavior generation phase.

To teach behaviors, the expert leads the agent through
an example of executing the behavior by providing the
sequences of primitive actions required to achieve the goal
conditions of the complex behavior. Our learning approach
uses chunking, which is a form of Explanation-Based Learn-
ing (EBL; Mitchell, Keller, & Kedar-Cabelli, 1986). A replay
of the experience of executing the example guides the cau-
sal analysis of why the sequence of primitive behaviors was
useful in achieving the goal of the complex behavior. The
by-product of this causal analysis is the creation of selection
rules that implement the behavior policy.
Summary

Across all of the processing, ROSIE uses a variety of distinc-
tive forms of knowledge. Below is a summary of these, high-
lighting the types of mapping that are most dominant in
each phase (each phase uses procedural knowledge to con-
trol its own processing; however, it is the behavior genera-
tion phase that procedural knowledge specific to the task
being instructed is used).

� Perceptual processing
Sensory data fi perceptual symbols

� Situated comprehension

Perceptual symbols M symbolic structures
Symbolic structures M symbolic structures

� Behavior generation
Symbolic state structure fi actions

� Behavior learning
Symbolic state structure fi ensuing symbolic state

Soar memory system analysis

In this section we analyze Soar’s memories from the
perspective of the agent described above. The overall
memory structure is shown in Fig. 3. See Laird (2012) for a
complete description of Soar. As shown in the diagram, Soar
has four different long-term memories and two different
short-term memories. The diagram also shows the types of
knowledge used in ROSIE. Colored blocks indicate innate
(pre-programmed) types of knowledge, while the white
blocks (with black lettering) indicate types of knowledge
that are learned by the agent.



Fig. 3 The memory structure of the Soar and the knowledge
types that are used in ROSIE.
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Why does Soar need two different types of short-term
memories and four different types of long-term memories?
These memories do correspond to different memories found
in humans, but what we are looking for is an independent
justification from the function perspective: in what
ways is each of the memories different so that they provide
better functionality for encoding, storing, and retrieving
different types of knowledge. In the previous section,
we identified different types of knowledge and in this
section we describe the characteristics of Soar’s
memories and how they satisfy the needs of those types
of knowledge.

Before describing the specific memories, we provide
some analysis on the key dimensions along which memories
differ: encoding, storage, and retrieval. Our analysis is
drawn in part from the distinctions made for episodic mem-
ory in Nuxoll and Laird (2010), but then focuses on the
dimensions that differentiate the memories (whereas the
original analysis focused on alternative designs for episodic
memory).

Encoding is the act of representing the data in the mem-
ory. Memory systems differ in the representations they sup-
port, the content of what is encoded, and when and from
where the information is encoded.

Storage is how a memory system maintains its data,
including whether the contents of the memory change over
time (such as through forgetting). The only dynamics for
Soar’s memories is that some have forgetting mechanisms,
but these were not used in this agent.

Retrieval is the way other processes and memories
access the information stored in the memory. Memory sys-
tems differ in whether data is always available or must be
explicitly retrieved; whether retrieval is automatic or delib-
erate; if retrieval is explicit, what the cue is for retrieval;
how a memory element is retrieved given a cue; and how
the retrieved element is made available. For almost all of
the memories, retrieval involves adding data to Soar’s
symbolic working memory.
We analyze memories in the order that they arise when
the agent processes a command where it knows all of the
words and can identify all of the referenced objects in the
scene. For each memory, we give a general overview of
its functionality, identify it functional characteristics, and
then discuss which types of knowledge identified in the pre-
vious section are stored in it and why. We only analyze
memories whose contents are open to change during the
agent’s processing, so that we do not analyze the fixed
architecture processing (mostly implemented in C or C++)
that operates over the memories, such as matching and fir-
ing rules or classifying perception using the contents of
long-term perceptual memory.

Perceptual long-term memory holds the instances of
training examples that are used to classify objects in terms
of color, size, and shape and is a mapping from continuous
sensory data to perceptual symbols. An instance is added
whenever the agent sends a perceptual symbol to the mem-
ory. The memory is accessed for every object sensed in the
environment, and if there is a successful match using its K-
nearest-neighbor (KNN) algorithm, the appropriate percep-
tual symbol is associated with the object in perceptual
short-term memory.

Although this has some similarities to matching rules in
procedural long-term memory, this memory classifies con-
tinuous quantities as symbols based on the K nearest neigh-
bors instead of via a symbolic match. Thus, it adjusts its
category dynamically to new exemplars over time.

Perceptual short-term memory maintains a representa-
tion of the perceptual scene that includes both symbolic
data (objects and their associated symbolic features
described above) and continuous metric spatial informa-
tion. These representations originate from perception or
through a process called projection that allows the agent
to imagine objects from symbolic working memory in the
scene. An agent can selectively extract symbolic spatial
relations (predicates) from the memory, such as the align-
ment of two objects in a plane. These relations are used
for learning the meaning of prepositions. This memory,
together with the associated processing for managing it, is
called the Spatial Visual System (SVS; Wintermute, 2009).

SVS provides an interface between the continuous data in
perception and the symbolic information in working
memory, as well as a medium for mental imagery and
spatial reasoning. Although this same information could be
represented in working memory, the computational com-
plexity of extracting predicates and projecting objects
through rules would be significantly higher, so that in order
to maintain reactivity, the agent would have to severely
restrict the number of objects represented in a scene.

Working memory maintains symbolic relational repre-
sentations of current and recent perceptual data, current
goals, and the agent’s interpretation of the current situa-
tion, which includes mappings between objects in the scene
and internal symbols and words. It allows the agent to inte-
grate data from perception with its long-term memories
during language comprehension, dialogue management,
problem solving, and acting in the world.

One weakness of using working memory to store large
amounts of data is that the complexity of accessing
procedural memory and the cost of storing memories in
and retrieving memories from episodic memory increases
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as the amount of data in working memory increases. Thus,
in order for an agent to maintain reactivity, it is not possible
to store large bodies of knowledge in working memory (such
as the knowledge of all the words it has learned). This weak-
ness is one of the motivations for adding a separate long-
term semantic memory.

Procedural memory contains a Soar agent’s knowledge
of how to select and perform both internal and external
actions. This knowledge is encoded as rules. The conditions
of the rules are continuously compared to working memory
and when all of the conditions of a rule match, the actions
make changes to working memory. Some changes are local
to working memory, while others initiate retrievals from
the long-term memories, interactions with SVS, or external
actions in the agent’s environment (such as moving the arm
or communicating with the instructor). Thus, Soar’s proce-
dural memory maps from a situation to an action.

As shown in Fig. 3, ROSIE includes innate procedural
knowledge for parsing sentences (LG-Soar), managing inter-
action with the instruction (interaction), and finding
matches between mappings in semantic memory and the
current instruction and the environment (indexing). Addi-
tional procedural knowledge guides the learning of words
(nouns, verbs, and prepositions), storing mapping knowledge
in semantic memory, and training the perceptual system
based on categories extracted from instructions. Procedural
memory also includes knowledge for acting in the world.
Thus, it includes action knowledge for selecting and execut-
ing the actions associated with newly learned verbs.

The rules are a natural and efficient representation for
this type of procedural knowledge. The efficiency is possible
because the conditions for matching a rule are fixed and all
conditions must match so that there is only one way the rule
can match. These types of rules can be compiled into a dis-
crimination network, so that the cost of matching scales
well to very large numbers of rules (Forgy, 1982). Although
it is possible to represent the same information in semantic
memory, searching semantic memory so that every rule is
matched every cycle is prohibitively expensive and does
not scale as more verbs are learned.

Semantic memory stores context-independent declara-
tive facts about the world, represented as symbolic graph
structures. The agent can store working memory elements
into semantic memory and it can retrieve them by creating
a cue in a working memory buffer. The best match to the
cue (biased by recency and frequency) is retrieved from
semantic memory to working memory.

In ROSIE, semantic memory holds all of the mappings
between words and their associated structures. There is a
general mapping between a word and its category (noun/
adjective, preposition, or verb), and then there are special-
ized mappings for each category. For nouns and adjectives,
these are mappings from words to perceptual symbols. For
prepositions, these are mappings between words and the
combination of spatial relations that define the preposition.
For verbs, there are mappings between the words and the
structure of the Soar operator, which provides access to
procedural knowledge.

ROSIE starts with somebuilt in semantic knowledge,which
includesmappings betweenwords for locations and their spa-
tial information, as well as the verb-operator mappings for
the verbs that the agent starts with (pick up, put, and point).
Semanticmemorymakes it possible for the agent to access
the information in each of these mappings in multiple ways.
For example, when the agent perceives an object, it can be
requested to describe it to the instructor using its acquired
words (‘‘This is a big red rectangle.’’). In this case, the agent
needs to map from a perceptual symbol to the appropriate
adjective. Conversely, if the agent is given a command from
the instructor that refers to the ‘‘red’’ object, the agent
needs to determine which perceptual symbol the word
‘‘red’’ maps to. It is this ability to access a memory using
multiple cues that distinguishes semantic memory from pro-
cedural memory. If this knowledge were encoded in proce-
dural memory, it would be necessary to have a separate
rule for every different way of accessing the memory. With
semantic memory, when the memory is stored, the architec-
ture does not need to know how it will be accessed. However,
to avoid high computation costs, semantic memory is
designed so that only one retrieval is attempted at a time;
whereas procedural memory matches all of working memory
and can fire multiple rules on every cycle.

Semantic memory has another feature that makes it very
valuable in language processing, which is related to its bias-
ing of retrievals to the most frequently and recently
accessed memory elements. We have exploited this bias
during sentence comprehension so that the instructor can
use ambiguous references (such as ‘‘that block’’ or ‘‘it’’),
and the Soar agent uses the retrieval bias in semantic mem-
ory to correctly identify the referenced object.

Episodic memory stores context-dependent records of
an agent’s experiences. It automatically takes snap-shots
of working memory (episodes) and stores them in chronolog-
ical order, enabling an agent to recall both the context and
temporal relations of past experiences. An agent can delib-
erately retrieve an episode by creating a cue in a working
memory buffer, and then retrieve subsequent episodes,
replaying an earlier experience.

Other Soar agents have used episodic memory for many
different purposes (Derbinsky, Li, & Laird, 2012). In ROSIE,
episodic memory is used only to recreate the initial situation
when it is learning a verb, and then replay its experience so
that it can determine the causal structure of its actions. That
causal structure is the basis for learning a generalized policy
for executing a new verb. No other memory in Soar automat-
ically maintains the data necessary for the experiential reply
that episodic memory affords. The agent could deliberately
store the same information in semantic memory, but that
requires storing the complete state of working memory
following every significant change to working memory, which
would interfere with the agent’s task performance.
Discussion

Our examination of ROSIE reveals a diverse set of knowledge
and a correspondingly diverse set of memory mechanisms
for storing those types of knowledge. The memories differ
in their underlying representations, although given Soar’s
roots in symbolic processing, many of them employ symbolic
representations. The inclusion of the short-term perceptual
memory is in direct response to the need to reason about
non-symbolic spatial representations for agents that inter-
act with external environments.
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Each of the symbolic long-term memories is optimized
for different types of knowledge, with each trading off
different capabilities to maintain reactivity in the face of
scaling to large memories.

� Procedural memory is optimized for matching all rules
against all of working memory, and then performing the
actions of only those that match. Its tradeoff is that that
it requires complete match of all conditions. Thus, each
way of accessing a memory structure must be repre-
sented as a separate rule, whereas in semantic and epi-
sodic memory, the more permissive partial matching
allows a single structure to be matched in many different
ways. If arbitrary partial match were allowed for proce-
dural memory, it would have little performance advan-
tage over semantic memory retrievals, and would be
distinguished only by the fact that it has separate actions
from its conditions.
� Semantic memory is optimized for matching all subsets
of a symbolic relational memory, and then providing
complete declarative access to the complete memory.
However, in contrast to procedural memory, it is
matched against only a single cue, and not against all
of working memory. Thus, it is not appropriate for fast
execution of procedural knowledge. Nor is it appropriate
for maintaining the context of specific experiences and
the temporal structure of those experiences of episodic
memory. However, it is well suited for representing
general, context-independent mappings of the knowl-
edge required in sentence comprehension, and scene
interpretation.
� Episodic memory is optimized for storing and accessing
the history of the agent’s experiences. In contrast to
semantic memory, it encodes specific instances of what
existed in working memory as opposed to more general,
context-independent knowledge. While episodic memory
can be used to access prior memories from when general
information was experienced, it requires knowing the
context of how that general information was repre-
sented, making it difficult to create an appropriate cue.

To conclude, our research on interactive situated
instruction has been a good case study for the integration
of learning and using multiple forms of knowledge, and
embedding of them in the memories of Soar. We lack a
detailed evaluation or comparison of how these memories
support these types of knowledge, although anecdotally,
ROSIE demonstrates that they are sufficient for the types
of instruction we have developed to date (Mohan et al.,
2013). These include learning ten nouns/adjectives, six
prepositions, and five verbs, in addition to ten different
puzzles/games (Kirk and Laird, 2013). Derbinsky (2012) con-
tains a rigorous evaluation of the performance of episodic
memory and semantic memory across a wide range of tasks,
but none have the variety of knowledge described here.
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