
Development and Evaluation of a Multi-Agent System for Gas-Turbine Engine
Health Management

Paolo Gunetti, Haydn Thompson

Department of Automatic Control and Systems Engineering

The University of Sheffield
Mappin Street, Sheffield, UK, S1 3JD

Email: p.gunetti@shef.ac.uk, h.thompson@shef.ac.uk

Abstract

The development of Unmanned Aerial Vehicles (UAVs) is continuously pushing the boundaries for more autonomous

systems. In order to make realistic the goal of autonomous civil UAVs flying within civil airspace, technology must be

developed so that UAVs and all their critical subsystems can be certified for autonomous flight. In this paper, we address

specifically the Propulsion subsystem and the problems that arise when engines are affected by failures. In a Pilot-Out-Of-the-

Loop situation, the engine controller must be able to autonomously detect, isolate and eventually mitigate failures, which
involves making decisions that are delegated to the pilot in current systems. We propose a Propulsion Health Management

System for a general twin-engine UAV, based on Intelligent Agent technology. The system fuses different software techniques

to achieve the Fault Evaluation and Fault Mitigation functions, which would normally be performed by the pilot after Fault

Detection and Fault Isolation. The proposed system is described in detail and then the results of simulation tests are presented.

Keywords
intelligent agents, multi-agent systems, autonomous vehicles, UAVs, gas-turbine engine, GTE health management

1. Introduction: Autonomous UAVs and subsystems

Unmanned Aerial Vehicles (UAVs) started being

developed even before World War II, although their main

function at the time was as target drones (Goebel, 2008).

These were simple Radio-Controlled (RC) aircraft that

focused on low cost and expendability, and were produced in

large scale during the war. After WW2, UAVs gathered an

increasing amount of interest and started being used for other
functions. A whole new market was opened with the

introduction of missiles, and in the 1960s the first

reconnaissance UAVs were deployed. However, these were

plagued by many issues and were not a credible solution for

missions where expendability was not an asset, including of

course all types of civil use. The problems included but were

not limited to the following list:

 ensuring a radio link with sufficient bandwidth as the

range increases

 having on-board instrumentation allowing the remote

pilot to get complete situational awareness

 designing complex control systems that could reduce the

workload on the remote pilot

 implementing the control systems using the limited

capabilities of available computer hardware

 dealing with safety issues which are worsened by the lack

of situational awareness

However, UAVs present a series of potential advantages over

piloted aircraft:

 operating costs can be greatly reduced, especially for

aircraft with small payload

 UAVs are generally more expendable, which is an asset

for military application

 flight performance can be greatly increased, for example

achieving longer endurance or making possible high-G

manoeuvres that would render a human pilot unconscious.

Such advantages kept high the interest in developing

military and commercial use of UAVs and, thanks to the huge

advances in avionics and related technologies, UAVs rapidly

became popular in the early 1990s. Especially in the last
decade, there has been a great increase of interest in the

development and use of UAVs. They are now very common

in military operations, especially reconnaissance and

intelligence, but also for attack missions. UAVs have also

found use in civil applications, mainly related to surveillance

and environmental protection.

Military applications usually do not involve flight within

civil airspace, which

allowed for earlier

application, since in such

cases UAVs are subject

to military flight rules,
which can be generally

seen as more permissive

than civil flight rules.

For instance, this had led

to greater levels of

autonomy for military

Figure 1. Predator UAV

UAVs, while civil regulations are far from allowing UAV

flight without strict supervision. Current military UAVs (like

the Predator in Figure 1) are capable of carrying out an entire

pre-planned mission, and generally only need supervision in

order to address situational changes that ask for a modification

to the flight plan. Civil applications are instead generally

restrained by the need to avoid commercial airspace for safety

reasons (UAV Task Force, 2004).

It is foreseeable that UAVs will present increasing levels

of autonomy in the future, as many research studies focus on

two trends: control of UAVs by personnel without full pilot
training and control of multiple UAVs by a single user. Also,

civil applications would certainly receive great help by the

opening of civil airspace to UAV traffic. The challenges

presented by such objectives are great, since an autonomous

UAV must be able not only to fly a pre-planned mission, but

also to actively adapt to situational changes (such as the

detection of new obstacles or the occurrence of a fault),

communicate with other entities and follow flight rules.

It is important to understand that UAV autonomy

involves not only the ability of the UAV to control its path

and perform its planned mission, but also the need to achieve
sufficient external and internal situational awareness so that it

can react properly to changes: on one hand, the UAV must be

aware of what is happening around itself, on the other hand it

must have knowledge about the operation of all of its

subsystems. While there are many specific tasks that are

usually handled by automatic control systems on a piloted

aircraft (for example, an autopilot usually keeps the aircraft on

its intended route during normal cruise), several other

decisions are delegated to the pilot (for example, the action to

take after the occurrence of a fault). A completely

autonomous UAV must be able to make all types of decisions,

including those that are normally delegated to the pilot, since
minimal supervision is to be assumed.

In the UK, the ASTRAEA (Autonomous Systems

Technology Related Airborne Evaluation and Assessment)

programme was launched with the intention to develop the

technology that would make autonomous UAV flight within

civil airspace possible. ASTRAEA is a £32 million civil

programme led by an industrial consortium incorporating

Agent Oriented Software, BAE Systems, EADS, Flight

Refuelling, QinetiQ, Rolls-Royce and Thales UK, working

with leading academics and supported by investment from the

DTI, Welsh Assembly Government, Scottish Enterprise and
regional development agencies covering the North West,

South East and South West of England.

Within the ASTRAEA programme, our group has

focused on the development of technologies for the

Propulsion subsystem. We particularly considered the case of

Gas-turbine Engines, due to familiarity with related problems

and the complexity of the problem space. When introducing

autonomy, the main challenge related to this subsystem is

Health Management. While automatic control systems have

been developed for decades and are fully capable of ensuring

smooth engine operation in normal situations, long-term

mitigation actions to be taken after the occurrence of faults are
decided by the pilot in current systems. Using Failure Modes

Effect and Criticality Analysis (FMECA) data provided by

Rolls-Royce, our industrial partner, we first developed a

Prognosis framework that allows to quantitatively estimate the

effect of a fault. Then, we used Intelligent Agent technology

to build a Multi-Agent System capable of devising fault

mitigation plans using the Prognosis information. The entire

system (which will be referred to as the “Planner” from now

on), comprising the Prognosis framework and the fault

mitigation Planning Agents, was then tested in a simulated

environment in order to demonstrate its ability to properly

assess faults and propose effective mitigation plans.

At present, a consistent amount of research is dedicated to

new Fault Detection and Isolation (FDI techniques for aircraft
engine (Kobayashi and Simon, 2003, and Austin et al., 2004).

This research focuses heavily on the Detection, Isolation and

Prognosis of faults, and the outputs are generally represented

by warnings to the pilot or to ground maintenance. This paper

aims instead at introducing a system that can use the output of

a FDI system in order to determine the course of action that an

autonomous UAV should follow after a fault is detected. This

task is usually left to the judgement of the pilot, but similar

functionality is to be included in a truly autonomous UAV.

The paper presents a Fault-Prognosis and Fault Mitigation

system, based on the integration of conventional technologies
(for the Fault Prognosis part) and unconventional ones

(Cognitive Intelligent Agents are used for Fault Mitigation).

The system is tested in a simulated environment and

simulation results are included.

The paper is organized in three main sections; following

this introduction (section 1), in section 2 the requirements for

the Planner will be introduced; in section 3, the details of the

system implementation will be covered; in section 4, the

simulation environment will be presented together with

simulation results; finally, a conclusions and future work

section is placed in the end.

2. Propulsion subsystem: what is needed when the

Pilot is out-of-the-loop

The Propulsion subsystem of an aircraft is the system

which provides the thrust for forward movement and

generates the electricity needed by other on-board subsystems
and actuators. There are two main types of propulsion

systems: alternative engines (usually comprising an Otto cycle

engine and an alternator) and jet engines (with the typical

layout of air inlet, compressor, combustion chamber, turbine

and exhaust nozzle). For this study, we focused exclusively on

jet engines, since these are the main product of our industrial

partner and are more likely to be used within long endurance

UAVs.

At the current state of technology, jet engines are

equipped with Full Authority Digital Engine Controllers

(FADECs), which are basically computer systems that control
and monitor the state of the engine using various sensors and

actuators and digital signal processing (DSP). FADECs are

usually capable of detecting unusual or dangerous running

conditions of an engine (such as a surge or an airflow stall)

and perform immediate reversionary action to counter these

conditions. These actions are fully automated, since they can

happen in the timescale of tens of milliseconds, so that the

pilot would not be able to react in time. However, when such

an event occurs, the pilot gets a warning through his

instrumentation.

Usually, a FADEC can detect several other types of

anomalies that do not represent an immediate risk to the

engine but are rather general hints of deteriorating engine

performance. In such cases, the pilot would receive a warning

through the instrumentation and the event would be recorded

for ground inspection. A pilot could also detect unusual

behaviour of the engine. In any case, the pilot will then use

his experience and knowledge in operating the specific

aircraft and engine configuration to determine the course of

action.

When the pilot is taken out-of-the-loop, it is particularly
this type of decision-making which is mostly affected. In fact,

there is a great level of uncertainty related to such corrective

action, and the judgement of a pilot is usually driven by a

mixture of expert knowledge and experience that is very

difficult to recreate in a computer system. While the

mitigating actions for specific faults such as a surge are

straight-forward decisions (fault is detected mitigating

action is taken), decisions about the course of action to take in

the case of uncertain faults and in general non-severe

propulsion subsystem anomalies are influenced by many

factors and in general will fall under the realm of multi-
objective optimization (since usually decisions involve a

trade-off between various aspects of the mission). In fact,

such decisions are influenced by not only the situation of the

propulsion subsystem, but also the general condition of the

aircraft and knowledge about the current state of the mission.

It is understood that a UAV which can fly in civil

airspace must be able to make correct decisions on the

occurrence of a fault, so as to ensure safety of other aircraft

and on-ground structures at all times. Our aim is therefore to

develop technology that will allow a fully autonomous UAV

to make such correct decisions involving the propulsion

subsystem. The resulting system has to be fully interfaced
with the UAV supervisory authority and has four main

functions: Fault Detection, which is the ability to detect

anomalies in engine operation using sensor data; Fault

Isolation, which is the ability to fuse information from Fault

Detection to derive a Diagnosis of the current engine

situation; Fault Evaluation, which is the ability to prognose

the escalation of fault to higher levels of criticality and

evaluate the effect of a fault in terms of airframe operations;

Fault Mitigation, which is the ability to counteract a fault by

performing various types of reversionary action, such as

placing limitations on engine usage or demanding an engine
shutdown and relight.

For the purpose of this project, we focus exclusively on

Fault Evaluation and Fault Mitigation. We are going to

consider Fault Detection and Fault Isolation to have already

been achieved, and the output of the Fault Isolation function

will basically constitute the main input for the functions

which we will develop. Fault Detection and Fault Isolation are

considered important for all types of engine-aircraft

configuration, and great effort is already spent within industry

in improving systems that perform those functions. The

system we propose is based on a FMECA database provided

by Rolls-Royce; we used a representative subset of the
database, in order to focus on the development of the

technology rather than the implementation within a real

system (proof-of-concept). The Planner system is modelled

Figure 2. Screens of Visual Interface

using the

Simulink

software tool as a

basis; other

technologies

(Soar Intelligent

Agents) are

integrated within

Simulink, as is a

visual interface

that allows to
fully control the

execution of

simulations.

Although it can be adapted to other cases, the system is

configured to handle the case of a twin-engine UAV

configuration. An input interface was developed, allowing

injection of faults at different severity stages, along with

thrust demands from the UAV supervisory authority. Inputs

can come in two different formats: as manual input or as

recorded input. Manual input is mainly used for demonstration

purposes; a dedicated visual interface (Figure 2) was
developed using NI LabView software, and is fully integrated

with the Planner system model. The visual interface also

shows the output in an easily understandable format, without

the use of graphs. Recorded input takes the form of pre-

prepared files that take the system through a series of different

input conditions, and are mainly used during simulations. In

the case of recorded input, data is also recorded in data files

for further analysis. The FMECA database subset models a

total of 12 realistic faults; many of these faults can escalate

through different severity stages, for a total of 28 possible

fault input conditions for each engine. It is assumed that a

single engine will only ever be in one of these states – in case
of multiple faults, it is assumed that only the most critical will

be addressed by the system. However, it is possible to inject

separate faults into the two engines, leading to a total number

of fault input combinations of 841 (including no-fault states).

Within this project, we always assume the presence of a

UAV supervisory authority, which is supposed to provide

additional input for the Planner, represented by the total

engine thrust demand and thrust asymmetry limits. Thrust

asymmetry is calculated as (Tl-Tr)/(Tl+Tr), where Tl and Tr are

the thrust demands in the left and right engines respectively

(see Figure 3); the supervisory authority inputs an allowed
range for asymmetry, for example -0.5/0.5.

We make the assumption that the supervisory authority

will possess the situational awareness needed to make the

final decision regarding the course of action to take. Based on

this assumption, the Planner system in practice generates a list

of different reversionary action plans, ranging from the

“optimal” plan (the best plan from the point of view of the

engine subsystem) to the “do-nothing” plan (which basically

ignores the fault). The number of generated plans is dependent

on fault criticality and additional plans between the two

extremes present “middle” options that are a trade-off. The

Fault Evaluation algorithms are used to give an estimate of

how effective a plan will be in mitigating the fault. The plans

are then sent to the supervisory authority, together with the

prognosis results from the Fault Evaluation algorithms. The

authority can then decide which plan to apply, combining the

data sent by the Planner system with its situational awareness.

Overall, the Planner system we propose (which will be

thoroughly described in Section 3) takes Fault Isolation data

as input and then develops the Fault Evaluation and Fault

Mitigation functions, which are in current Propulsion systems

completely delegated to the pilot (whereas Fault Detection

and Isolation are already automated, at least partially,
although they are extremely complex tasks in their own). The

next section will describe the algorithms and software

technology that we employed to achieve this functionality in

the Planner system.

3. Propulsion Health Management System: Prognosis

Framework, Agents

“Propulsion Health Management System” is a more

complete definition of the Planner system that has been
introduced in the first two sections. In this section, the system

will be described in detail.

The system was designed using Simulink as the main

development tool. The main architecture is modelled in

Simulink, and non-Simulink modelling tools are implemented

within the architecture as S-Functions. The architecture

relative to a single-engine configuration is described in

(Gunetti et al, 2008), although it has been complemented by

new functions since then.

Within the Planner system, three major subsystems can

be identified: the Prognosis Framework, the Single-Engine
Planner Agent (SEPA) and the Multi-Engine Manager Agent

(MEMA). Figure 4 represents the top-level architecture of the

Planner; the two cyan blocks represent the two engines, while

the yellow block represents the MEMA. As can be seen in

Figure 5, each of the engine blocks contains the Prognosis

Framework (yellow and orange blocks) and SEPA (blue

block) relative to that engine.

Figure 3. Thrust asymmetry scheme

Figure 4. Top-level Planner architecture

Copyright Notice
All material, excluding Engine Model, is

Intellectual Property of the Univeristy of Sheffield.
The Engine Model is Intellectual Property of

Rolls-Royce Plc.

Paolo Gunetti
University of Sheffield

Jan 2007

Post-SLP

MEMA_Output

Engine1

Engine2

Thrust1

Thrust2

To Labview

Engine1

Engine2

PL1

ENC

FDP1

FDP2

Asym

Thrust1

Thrust2

Post-SLP

MEMA-Output

MEMA

-K-
-K-

FDP1

FDP2

PL1

Asym

From Labview

FDP2

PL1

ENC

Thrust2

Engine2

Engine 2

FDP1

PL1

ENC

Thrust1

Engine1

Engine 1
ENC

ENC

While the Prognosis Framework is based on standard

control systems modelling techniques, the SEPA and MEMA

components are based on Intelligent Agents. Intelligent agents

are a new paradigm in the development of software

applications (Jennings and Wooldridge, 1998) and are

designed to address the need for flexible and autonomous

computer systems. This technology is still at an early stage; it

has been exploited thoroughly in certain areas of application

(like internet search engines), but its use in other areas of

software engineering is restricted at best. In fact, even

agreement on the definition of IA is not universally accepted

among computer scientists. A popular definition, which we

take as our own point of view, is that “an Agent is a computer
system situated in some environment, and that is capable of

autonomous action in this environment in order to meet its

design objectives” (Wooldridge, 1999). Furthermore, we can

say that an Intelligent Agent is one that is capable of flexible

autonomous action, where flexible implies reactivity (ability

to understand the environment and react to its changes),

proactiveness (goal-oriented behaviour) and social ability

(ability to interact with other agents).

The use of Intelligent Agents was one of the key elements

to this project, because of a growing interest in the

commercial application of this technology. In particular,

results form the project will help in determining whether
Intelligent Agents are ready for commercial application in the

aerospace market, which is conservative in nature but also

naturally open to new technologies (Dorfman, 1999).

We now proceed to describe each of the subsystems in

detail.

3.1 Prognosis Framework

The Prognosis Framework performs the Fault Evaluation

function described in section 2, which means that it must be

able to complement Fault Diagnosis with two types of data: a

Prognosis of how the fault can be expected to escalate based
on engine usage and FMECA data (Fault Escalation

Prognosis), and a Prognosis of how the airframe is affected by

the fault (System-Level Prognosis).

Fault Escalation Prognosis is basically a direct

implementation of the data extrapolated from the FMECA

database. It uses a three-dimensional look-up table to

prognose how a fault is expected to escalate in time. Each

modelled fault is classified in a varying number of severity

stages and the Fault Escalation Prognosis block estimates the

timescale after which the fault can be expected to escalate to a

higher severity stage.

The key point is that the Escalation time is heavily

influenced by engine usage, so the time to escalation generally

increases as thrust demand reduces. This is the reason for

using a 3D look-up table, as it necessary to provide escalation

estimates for different running conditions. The output of the

look-up table is the “time to escalation” estimate for the

current stage of the fault towards more critical stages.
Both the fault severity stages and the timescale values are

discretized. Table 1 lists the currently modelled faults and

their stages, while Table 2 indicates the timescale

discretization we used. Obviously, Fault Escalation Prognosis

is useless for faults that have reached their final stage, but the

real value of the entire Planner system is evident before a fault

reaches the final stage. In fact, in this

case the Planner will generate

reversionary action plans that will

maximise the time to escalation for a

fault, while when the final stage is

reached the plan is usually a very
straight-forward action.

System-Level Prognosis is

instead aimed at extracting useful

information from the Fault Diagnosis

input and the Fault Escalation

Prognosis. From a theoretical point of

view, it provides an answer to the

question: “How will this engine fault affect the operation of

the entire UAV?”. The concept behind this is the fact that a

UAV supervisory authority is not concerned about the actual

nature of an engine fault, but only about its effects on UAV
capabilities. As an example, the supervisory authority is not

interested in knowing that the outer annulus in the low-

pressure compressor casing is cracked, but it needs to know

that this will cause a reduction in actual thrust that is

dependant on how severe the crack is. This is the rationale

behind the System-Level Prognosis function.

Figure 5. Engine subsystem

1
Engine1

FDP

ENC

Thrust1

FEP

FDC

SPFD

FEP

FDC

SLPgen

Criticality

CriticalityGen

SHA

FEP

SLPgen

Criticality

CriticalityGen

PL1

ENC

Thrust1

AgentOutput

PA

4
Thrust1

3
ENC

2
PL1

1
FDP1

Table 3 lists the 7 different types of System-Level Effects

(SLEs) that have been identified for the purpose of this

project. Some of these can evolve through subsequent stages,

which are discretized as is the case with fault severity stages,

leading to a total of 12

SLEs. The SLEs are

directly derived from the

FMECA database. The

system uses a simple two-

dimensional look-up table

to calculate the SLEs
related to a fault, since the

relationship between fault

and SLE is straight-

forward.

The System-Level Prognosis function also performs

another calculation: it assigns a Criticality level to the current

detected fault and also to the relative escalation stages that are

prognosed. These Criticality levels provide an immediate way

of classifying the severity of a fault, and are discretized as per

common practice within FMECA databases. Table 4 lists

Criticality levels and their definitions.
Overall, the output of the Prognosis Framework consists

of three vectors, reporting respectively Fault Escalation

Prognosis, System-Level Effects and Criticality levels. The

Framework operates on single engines, so that three of these

vectors will be generated for each engine, just as Fault

Diagnosis input is separate for each engine.

3.2 Single-Engine Planner Agent (SEPA)

The Single-Engine Agent Planner or SEPA is the agent

entity which performs the Fault Mitigation function related to

a single engine. Its task is to develop reversionary action plans

that address a fault from the point of view of a single engine.
Once a fault is detected and evaluated through the Prognosis

Framework, the SEPA proposes two courses of action: a “do-

nothing” plan and an

“optimal” plan, which

is the best action

course for the engine

regardless of what is

the situation in the rest

of the Propulsion

system or the entire

UAV. It is then the
task of MEMA (subsequently described) to contextualize the

plans and derive alternative ones.

The SEPA has been thoroughly described in a previous

paper. Therefore, in this section we will only introduce its

main characteristics; for more details, please refer to (Gunetti

and Thompson, 2008).

The SEPA is modelled using the Soar Intelligent Agent

tool. Soar is the computational implementation of a cognitive

architecture which has been developed at the University of

Michigan since the late 1980s (Soar Technology Inc., 2002).

It provides a robust architecture for building complex human

behaviour models and intelligent systems that use large
amounts of knowledge. At a high level of abstraction, it uses a

standard information processing model including a processor,

memory store, and peripheral components for interaction with

the outside world. At a low level of abstraction, Soar uses a

Perceive-Decide-Act cycle to sample the current state of the

world, make knowledge-rich decisions in the service of

explicit goals, and

perform goal-

directed actions to

change the world in

intelligent ways. The

distinguishing

features of Soar are:

parallel and
associative memory,

belief maintenance,

preference-based deliberation, automatic sub-goaling, goal

decomposition and adaptation via generalization of

experience. A Soar agent is based on its production rules;

these represent long-term knowledge and are practically the

program code for the agent. Production rules are in the form

of if-then statements, where an action is performed only if the

conditions are met. When the conditions of a production are

met, the production is said to fire; as Soar treats all

productions as being tested in parallel, several productions can
fire at once, and this can happen at different levels of

abstraction, giving the Soar agent natural pro-active behaviour

(the agent is inherently aware whether the conditions to apply

certain production rules are still valid). Short-term knowledge

is instead constituted by external input, and appropriate

functions must be developed to interface the Soar agent with

its environment.

A dedicated interface was developed in order to

implement Soar agents within the Simulink model of the

Planner system. This is achieved by executing the Soar kernel

as an S-Function within the model. Multiple agents can run at

the same time, and in fact two instantiations of the SEPA are
executed, each connected to a single engine.

The SEPA core rules implement a decision making

scheme that uses data generated by the Prognosis Framework

to propose reversionary action plans. The SEPA enters

different states depending on the current input and goes

through a stepped decisional tree in order to derive a full

action plan. The plan consists of a proposed thrust value for

the engine (usually limited to some degree if a fault is

detected), a “do-nothing” thrust value and three binary

indicators that complement the plan by indicating other

possible reversionary action.

Table 5 lists the possible states that the SEPA can enter

when generating the most important part of the plan, which is

the proposed engine thrust value.

3.3 Multi-Engine Manager Agent (MEMA)
Once a reversionary action plan is generated for a single

engine by the SEPA, this plan needs to be put in the context of

the entire propulsion system. This involves considering the
situation of the other engine at first, and then the demands that

are coming from the UAV supervisory authority.

The MEMA generates at first a “do-nothing” plan and an

“optimal” plan, which are basically a symmetric thrust

distribution and an asymmetrical one respectively. The

asymmetric thrust distribution usually found in the optimal

plan is a consequence of the usage limitations that are placed

on a faulty engine. In practice, the plan will usually involve

following the advice from SEPA regarding the faulty engines,

and then compensating a decrease in thrust on that engine by

increasing the thrust on the other engine. The “optimal” plan

will always keep the usage limits requested by SEPA, whereas
the “do-nothing” plan disregards these and just provides a

symmetrical thrust distribution that matches the total engine

thrust demand by the supervisory authority. It is important to

understand that the optimal plan does not guarantee that the

total thrust provided will be meeting the total demand.

The MEMA then eventually generates alternative plans

that are a trade-off between the optimal and “do-nothing”

plans. The number of alternative plans is dependant on the

Criticality of the faults being addressed, and the total number

of plans ranges between two (Criticality Level 4, no

alternative plans) and five (Criticality level 1, three alternative

plans).

Since the system is meant to address the situation where

both engines present a fault, a series of decisional behaviours
have been outlined. Depending on the state of SEPA on each

engine (see Table 5), the MEMA enters a combined state,

which is an abstraction of the type of action that must be

taken, basically indicating whether one engine should get

priority in Fault Mitigation or if it is instead advisable to

simply decrease the total thrust demand. Table 6 represents

the decisional matrix for the MEMA state, depending on

SEPA state, and explains the meaning of MEMA states.

In the end, the MEMA outputs a list of plans; each plan is

represented by two thrust values, one for each engine. The

plans are then sent to the supervisory authority, which has the
final word on choosing the plan to be actuated. In order to

make this decision, the supervisory authority needs an

evaluation of the expected outcome of the plans. To obtain

this, the proposed thrust levels are fed into the Fault

Escalation Prognosis algorithms used in the Prognosis

Framework; in this way, each plan can be presented to the

supervisory authority together with an estimate of how the

plan will affect the escalation timescale. The authority is then

able to make a decision based on this data and other data

situational awareness data that is not concerning the

propulsion subsystem.

As an example, let us consider the following case: while
the total engine thrust demand is 70%, a fault at the first

severity stage is detected on the right engine. At 70% thrust,

the fault would escalate to the next severity stage in one hour

time (timecode 6). The SEPA proposes a plan that reduces

thrust on the faulty engine to 40%, thus the MEMA proposes

an optimal plan with thrust distribution 40%-100%. This plan

is evaluated to extend the escalation of the fault to 5 hours

time (timecode 8). However, this means that the asymmetrical

thrust coefficient is -0.43. Due to the low fault severity, only

one alternative plan is generated, corresponding to a 55%-

85% thrust distribution (asymmetry coefficient -0.21) and an
escalation timescale of 2 hours (timecode 7). These options

are presented to the supervisory authority; we can assume that

the supervisory authority has knowledge of a minor rudder

fault that does not allow for an asymmetry coefficient greater

than ±0.3, therefore excluding the optimal plan; however, it

knows that the remaining mission time is between one and

two hours, so the middle option is chosen since it represents a

good trade-off, as the fault does not escalate before the end of

the mission and the thrust is provided with an acceptable

asymmetry.

This is just an example of how the decision process might

work for our proposed Planner system; the range of possible
situations is much wider and largely different strategies will

be adopted under different conditions, however the governing

philosophy remains the same: mitigating faults by reducing

Figure 6. Full fault input combination tests

engine usage, while at the same time considering situational

awareness that is not related directly to the Propulsion system.

4. Simulation tests: Architecture and Results

The Propulsion Health Management System was tested

using a simulation environment, also modelled in Simulink.

Within this environment, the system receives input including
Isolated Faults and UAV supervisory authority commands,

processes it and then outputs the plans together with their

respective evaluation data. While most of the simulations stop

here, where the output of the system is in a format that is

meaningful only within this research, we have also performed

simulations that included a real engine model. In this case, the

plans are fed into a very simple decision-making algorithm

that simulates the presence of the supervisory authority by

choosing a plan among the proposed ones. The plan is then

executed by feeding it into a twin-engine model, so that actual

engine running parameters can be monitored. However, these
engine models do not take account of the existence of a fault,

so they are useful only in determining that the proposed plan

can be realistically actuated by an engine.

The results presented in this section are obtained from

simulations that do not include an engine model. Simulation

runs use files for input and output, so that pre-recorded input

can be used and output can be recorded for later analysis.

One type of simulation run is made assigning fixed

demands from the supervisory authority and then inputting all

of the 841 possible fault input combinations; this type of

simulation is useful in proving the determinism of the system
and verifying that it always responds within certain

constraints. Other simulations involve verifying the behaviour

of the system when demands from the supervisory authority

are changing.

Finally, since evaluating the correctness and

appropriateness of generated plans can be a very complex

task, manual simulations were also performed. In these cases,

a set of input configurations was determined randomly and

then the behaviour of the system verified directly by a human

user, which could evaluate the performance of the various

components of the system. Such tests made large use of the

LabView visual interface, which allows for a clear and
immediate understanding of the results.

4.1 Full fault input combination tests

This is the type of test where the demands from the

supervisory authority are set and the fault input spans all the

841 possible combinations. The simulation involves changing

the fault input at every second of simulation. Figure 6 shows

part of the results for such a test; in this case, the total thrust

demand is set to 70% (which would normally require 70% on

each engine). It is possible to note that the “do-nothing” plan

is stable at 70%, while the “optimal” plan varies depending on
the type of fault. The number of generated plans also changes,

ranging from cases where only two plans are present to cases

with five generated plans. It is also possible to note how the

non-faulty engine is used to compensate for proposed

limitations to the faulty engine, but in many cases cannot

guarantee the same amount of thrust since it cannot go over

100%.

4.2 Platform input variation tests

This is a type of test in which a specific fault condition is

fixed and the behaviour of the system on the occurrence of

changes in the demands from the supervisory authority (or

platform) is monitored. Figure 7 shows the results for such a

test; in this case, an outer annulus crack fault at the second

severity stage is injected in the left engine and total thrust

demand is varied in time. The number of generated plans in
this case is four, and the fault is addressed using a limitation at

20% thrust. Note that for total thrust demand equal or less

than 20%, four plans are still generated but they converge.

4.3 Manual tests

This type of tests is very simple in concept, just involving

manual input through the interface and visual verification of

the output. However, due to the complexity of the output data

of the Planner system, these manual tests cannot easily be

replaced with automated tests, since the analysis of the results

involves evaluating a huge amount of data and the
relationships between certain values.

For this reason, a representative set of input

configurations was chosen and visually verified by a human

user in order to verify the correctness and appropriateness of

generated plans. Going back to Figure 2 (section 2), we can

see capture screens for the visual interface (input and output)

for one of these cases. In particular, a case with 80% total

Figure 7. Platform input variation tests

thrust demand and different faults on both engines is

presented. Looking at the first output screen, it is possible to

notice that the fault on the left engine is expected to escalate

in timecode 4,while the fault on the right engine is expected to

escalate in timecode 7. The faults present different SLEs that

are also expected to escalate when the fault reaches the

highest severity stage. The fault on the left engine is classified

at Criticality Level 2 (Severe) while the fault on the right

engine is classified as Negligible; however, both faults are

prognosed to escalate to Criticality Level 1 (Catastrophic),

although they will do so at different times. The SEPAs
generate that place a 20% limit on the left engine and a 50%

limit on the right engine. The MEMA decides to follow the

“risk-situation” protocol, due to current low level of

Criticality on the right engine. This involves actually

increasing usage on this engine, since priority is given to

addressing the other fault. The four generated plans are 80%-

80% (do-nothing), 20%-100% (optimal), 40%-100%

(alternative 1) and 60%-100% (Alternative 2). Note that only

the Alternative plan 2 does not require a reduction of total

thrust provided.

The second output screen analyzes plans in detail,
providing the thrust asymmetry and thrust deficiency for each

plans and showing the estimated effects on fault escalation. It

is possible to note that the limitations on the left engine

provide a substantial benefit (from timecode 4 to timecode 7

for the optimal plan), while the added usage on the right

engine does not involve a reduced time to escalation (although

in reality there will be a reduction, this is not big enough to be

captured using the discretized timescale values).

5. Conclusions

This paper presents a system that is designed to maximize

the advantages provided by advanced techniques for Gas-

Turbine Engine Fault Detection and Fault Isolation. This is

obtained by automating the Fault Evaluation and Fault

Mitigation functions, which are in current systems delegated

to the pilot. The system is designed to be useful in improving

autonomous UAV safety by strengthening situational

awareness through a detailed and meaningful analysis of the

state of the engine and providing reversionary action plans
from which the UAV supervisory authority can choose,

considering general airframe situation in addition to engine

situation. The system is described in detail and examples of

simulation results are presented. The system is based on a

novel Systems Engineering approach which integrates Soar

Intelligent Agents and conventional control systems

techniques. This approach was proven to be feasible, but

unable to bring significant advantages within this application

field. In fact, a comparison with a similar “conventional”

system was performed, and the only clearly perceived

advantage was a faster development time. This is offset by the
many issues that arise when trying to apply unconventional

software like Soar within a safety-critical application field

such as Gas-Turbine Engines. It is now planned to use the

same Systems Engineering approach within the larger

problem of UAV Mission Management, which offers

significantly more degrees of freedom. It is hoped that the

higher complexity of the problem will allow to bring forward

more significant advantages in the use of the integrated Soar

approach, since Soar agents should scale better in terms of

software complexity and hardware requirements when

problem complexity arises.

Acknowledgments

The authors would like to acknowledge the support of the

DTI, the ASTRAEA Consortium and Rolls-Royce Plc in this
work.

References

[1] Goebel G., “History of Unmanned Aerial Vehicles”,

http://www.vectorsite.net/twuav.html, 2008

[2] UAV Task Force, “The Joint JAA/EUROCONTROL

Initiative on UAVs”, UAV Task Force Final Report, 2004.

[3] Gunetti P., Mills A. and Thompson H., “A distributed

Intelligent Agent architecture for Gas-Turbine Engine Health

Management”, 46th AIAA Aerospace Sciences Meeting and

Exhibit, 7 – 10 January 2008, Reno, NV

[4] Gunetti, Thompson, "A Soar-based Planning Agent for

Gas-Turbine Engine Control and Health Management", 17th

IFAC World Congress, Seoul, Korea, July 2008

[5] Soar Technology Inc, “Soar – An overview”, © 2002

[6] Jennings N., Wooldridge M., “Applications of Intelligent
Agents”, in “Agent Technology: Foundation, Applications

and Markets”, Springer, 1998

[7] Wooldridge W., “Intelligent Agents”, in “Multi-Agent

Systems: a modern approach to distributed artificial

intelligence”, the MIT Press, 1999

[8] Dorfman M., “Commercial vs. Aerospace Worlds:

Comparing Software Engineering Culture”, in IEEE Software

Journal, November/December 1999

[9] Kobayashi T., Simon D., “Application of a bank of

Kalman filters for Aircraft Engine Fault Diagnostics”,

NASA/TM-2003-212526

[10] Austin J., Jackson T., Fletcher M., Jessop M., Cowley C.

and Lobner P., “Predictive Maintenance: Distributed Aircraft

Engine Diagnostics”, from “The Grid 2: blueprint for a new

computing infrastructure”, edited by Ian Foster and Karl

Morgan, Kaufmann Publishers, 2004.

