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Abstract 

We investigate the hypothesis that historical information 

plays an important role in learning action selection via 

reinforcement learning. In particular, we consider the value of 

the history of prior actions in the classic T maze of Tolman 

and Honzik (Tolman & Honzik 1930). We show that 

including a sequence of actions in the state makes it possible 

to learn the task using reinforcement learning. Moreover we 

show that learning over sequences of length 0 ~ 4 is necessary 

to model rat behavior. This behavior is modeled in Soar-RL 

and compared to an earlier model created in ACT-R.  

Introduction 

In many tasks, immediate sensory data is insufficient for 

decision making. Enriching the state with information about 

previous actions or previous situations can disambiguate 

between situations that would otherwise appear identical, 

which makes it possible not only to make correct decisions 

but also to learn the correct decision. Moreover, knowledge 

of the past can replace the need for unrealistic sensors, such 

as knowing the exact location in a maze.  

Using historical information as part of the state 

representation poses some challenges. For the tasks we 

describe here, we use a simplified version of history – a 

sequence of prior actions. This leaves open the length of 

sequence, and how to model the relation between similar 

sequences to achieve proper level of generalization and 

specialization during learning. We demonstrate how these 

issues can be addressed in Soar-RL (Nason, & Laird, 2005) 

by proposing a simple model on an animal based 

experiment. We analyze the task and compare results to a 

recent ACT-R model (Fu & Anderson 2006). 

The T Maze Task  

The task we will explore is the T maze task of Tolman and 

Honzik (Tolman & Hoznik 1930) in which a rat is put at the 

start location and it is rewarded if it gets to the end location. 

As shown in Figure 1, the T maze contains 14 numbered 

blinds (dead-ends), each corresponds to a binary choice 

point (the task is designed to prohibit the rats from going 

back at T-junctions). Whenever the rat turns into a dead-

end, that is considered an error. In such a maze, there are 

few if any salient features. Rats are able to maintain a sense 

of direction, so that would provide the ability to create for 

different classes of T’s. The only other salient features 

appear to be a history of the rat’s behavior – that is the 

sequence of turns it made before coming to a T at which it 

must make a decision.  

 
 

Figure 1. T maze used in Tolman and Honzik (1930) 

 
To cast this as a problem conducive to reinforcement 
learning, we use the same conventions as a recent ACT-R 
model on this task (Fu & Anderson 2006). Moving into 
dead-ends and turning back results in immediate negative 
reward, while reaching the final goal results in positive 
reward. Figure 2 shows a picture of the actual environment, 
where the maze is embedded in a grid world and the subject 
moves one unit at a time. Dark boxes represent penalties, 
and the light box represents the final reward. 



 
 

Figure 2. T-maze model 

Qualitative Analysis of Task Constraints 

Given the dearth of features in the environment, the only 

external features available to the rat are its prior moves. 

Thus, we assume the representation of the state includes a 

sequence of previous moves. The moves could be encoded 

relative to the current heading: left, right, forward, 

backward; however, as pointed out in (Fu & Anderson 

2006), the rats have strong directional bias, and thus we 

assume they have knowledge of absolute direction and have 

available the absolute directions of their movement To 

describe the model, we use north, east, south and west as 

labels for these directions. For example, at choice point 6, 

the state includes the sequence of [east, north, west, …] 

ordered left-to-right by recency, so that the first item in the 

sequence is the current direction.  

Figure 3 shows the relationships among the choice points 

associated with each numbered dead-end based on the 

sequence representation described earlier. Choice points that 

are grouped together have the same previous input sequence 

and face with the same set of choices. Within the same 

group, points are further divided based on what is the 

correct choice. Decision points, for which moving north (2, 

4, 6) or moving west (3, 11) are correct, are colored in light 

number with dark background; other points are colored in 

dark number with light background. Points in the same 

group but with different color are competing points in that 

learning to reduce the error for one type of points will 

simultaneously increase the error for the other type of 

points. Interference is most intense for the most general 

level (Seq 0), and disappears at the most specific level (Seq 

4), where the correct decision can be learned for each choice 

point. The tree structure in Figure 3 therefore captures all 

such constraints in the task model. 

 

 
Figure 3. Relations among choice points 

 

Our hypothesis is that choice points with similar state 

representations (in this case the sequence of prior moves) 

will appear similar to the rat and it will learn to make the 

same decisions in those states. Choice points with different 

correct directions but similar state representations will 

interfere with each other during learning. According to 

Figure 3, if the agent makes decision based on Seq 0, for 

example, it will tend to move south more than north and east 

more than west at each choice point where those options are 

available, since south and east correspond to the correct 

choice for the majority of the choice points within each 

group (4 south vs. 3 north and 5 east vs. 2 west). At Seq 4 

(the most specific level), all choice points are completely 

discriminated and the correct decision can be made at each 

choice point.  

Our assumption is that sequences of prior actions are 

maintained and available for decision making. Figure 3 

provides the information necessary to determine what 

impact each sequence can have on learning. Relying solely 

on sequences of length 0, a rat should tend to make more 

errors at points 2, 4, 6, 3, and 11. Relying solely on 

sequences of length 1, point 4 should involve less error than 

point 2 and 6, since point 4 is discriminated from majority 

of conflicting points (especially the strongest point 14) but 

only interfere with point 12. Point 4 will be correctly 

learned at the next specificity level, while point 2 and 6 are 

still confused with point 8. Point 3 will involve more errors 

than point 11 since it is not discriminated from point 7 until 

sequence length of 4.  

One important property of most approaches to learning 

these discriminations is that learning is quicker for more 

general levels because they are exposed to more examples. 

For example, there are 4 different rules (different 

combinations of states and legal actions) at the level of seq 

0, each of them will receive a quarter of the total training 

instances, while at the most specific level of Seq 4, there are 



28 different rules, each of them only receives less than 4% 

of total training instances. This suggest there is an 

advantage to including selection knowledge based on all 

levels of the sequences so that some rough knowledge can 

come into play early, but more and more specific knowledge 

is learned over time. No deliberate mechanism is required to 

achieve this effect.  

These conclusions are largely consistent with the 

experimental data from the T-maze task as shown in Figure 

4. 

 

 
Figure 4. Percentage error in Honznik (1930) 

Soar Reinforcement Learning Model 

As mentioned above, our hypothesis is that the model 

must consider the spectrum of specificity levels of the state 

representations and that these will influence learning and 

behavior. In Soar, this effect can be readily modeled 

because Soar allows knowledge for selection of an action to 

be encoded in multiple rules that fire together in parallel, 

each providing its own prediction of the expected utility of 

the operator. The expected utilities for the same operator are 

combined, producing a single, joint expected probability. 

Thus, when making a decision, rules match and fire for each 

of the levels, for each of the possible actions. Thus, we can 

capture all of the levels of specificity in Figure 3. Once a 

decision is made, all the rules that contributed to the 

selected action update their expected utility values.  

The effect is that general rules will have the most 

influence for decisions at novel situations where specific 

rule hasn’t been learned yet. In these situations, the expected 

values created by the specific rules will be relatively weak 

with values still close to the initial value of 0. As learning 

progresses, more and more of the specific rules will have 

sufficient examples so that their learning stabilizes and their 

values, combined with corresponding general rules, reflect 

the expected utility of those situations.  

Soar-RL 

Soar reinforcement learning implements the general 

temporal-difference learning. The learned policy is 

represented as a Q value function as in standard Q learning. 

A Q value reflects the utility of taking a particular action in 

a particular state. In Soar-RL, a Q value is associated with 

each state-action pair represented as a Soar RL production 

rule. The update function in the case of multiple rules firing 

is as the following. A temporal difference is computed 

based on the sum of Q values for all rules that match the 

current condition, and is evenly distributed to update each 

rule. Since more general reinforcement learning rules fire 

more often, and a specific rule will always fire with the 

same general rule (there is a strict hierarchy in this task), the 

result is that the general rule quickly learns generalized Q 

value with relatively fewer trainings, while specific rules 

will fine tune the total Q value for specific situations and 

stabilize after receiving more training examples. Without 

general rules, the model has to directly learn the specific 

rules without useful initial bias in novel situations where 

more general rule could have helped. Without specific rules, 

on the other hand, it cannot learn the precise policy. 

 The probability of making a particular choice is 

calculated based on the Boltzmann distribution (equation 1). 

In the binary choice case of this task model, it can be 

rewritten as equation 2, therefore the probability of making 

the wrong choice Pwrong is a monotonic function of the Q 

value difference quantity Q(s, awrong) – Q(s, acorrect). Here the 

Q value represented as a function of a state-action pair, 

where awrong stands for the wrong action and acorrect stands for 

the correct action. 
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Figure 5. Effects of reinforcement learning rules with 

state representation at different specificity levels 

 

Figure 5 plots the Q value difference = Q(s, awrong) – Q(s, 

acorrect) at each choice point for reinforcement learning rules 

with different specificity level (from Seq 0 to Seq 4). The Q 

values are learned separately and each is an average from 10 

independent simulations for 17 trials. These Q value 

difference curves show the convergences trends for rules at 

different specificity level. The plot qualitatively illustrates 

how rules at each specificity level will affect the relative 

error rate shown in Figure 4. The initial error rate 

distribution should be similar to the curve Seq 0, but as 

more and more specific decisions are learned it eventually 

converges to the curve of Seq 4, the most specific level, as 

explained in the analysis presented in the previous section. 

The plot can be viewed approximately as a contour of Q 

value difference updating dynamics, since when all levels of 

rules are used in Soar, the total Q value difference will 

gradually converge following the path which is consistent 

with our empirical results (data not shown). One specific 

interpretation from Figure 5 is that initial error for point 4 is 

relatively higher than point 3, but it learns faster and results 

in lower total error rate. Qualitatively, the average Q value 

difference across all specificity levels, which is shown as a 

bold curve in Figure 5 approximates the relative total error 

rates for each dead-end. This can be confirmed by 

comparing with Figure 4. 

Figure 5 only shows the qualitatively analysis based on 

separate simulations of each individual level. It is more 

informative to examine the combined Q value difference of 

all rules during learning. 

 

 
(a) 

  
(b) 

Figure 6. Change of combined Q value difference during 
learning.  

 
The numbers in Figure 6 refer to trials, with 20 trial 

intervals. For example, the curve with 1 represents the Q 

value difference after trial 1, 3 represents after 21 trials. 

There are totally 81 trials shown in the plot to demonstrate 

the Q value dynamics, although the actual rat experiment 

only takes 17 trials. (a) is learning with only the most 

general rules and the most specific rules. (b) is learning with 

all levels of rules. One of the main differences between (a) 

and (b) is point 3 is learned relatively slowly when using all 

levels of rules. The dynamics of learning is consistent with 

Figure 5 and the above analysis. 

Results 

 



Figure 7 compares observed data with prediction using all 

4 levels of rules. The parameters are penalty for turning 

back -20, reward for reaching the goal +100, learning rate 

0.1, linear discount of 10, on-policy learning with 

Boltzmann exploration temperature 3. Linear discount is 

used because it gives better results than standard 

exponential discount. Figure 5 and Figure 6 are generated 

using standard exponential discount and they are for 

illustration purposes. The most important parameter is the 

learning rate, and the results are not very sensitive to other 

parameters. 

 

  
Figure 7. Soar model prediction 

Comparison with ACT-R 

An ACT-R model (Fu & Anderson 2006) was developed 

to model the Tolman and Honzik (1930) experiment, relying 

on ACT-R’s native reinforcement learning component. In 

ACT-R, there are weights associated with rules. Learning 

adjusts those weights, which are used in selection. Each rule 

corresponds to one action and there is no explicit 

combination of values or joint updating of rules that are for 

the same action. The ACT-R model uses two sets of rules: a 

set of twenty-eight specific rules, two for each choice point; 

and a set of four general rules, one for each absolute 

direction. The specific rule set is equivalent to the level of 

seq. 4 (the model does not use sequences, assuming a rat 

knows its position in the maze), and the general rule set is 

equivalent to seq. 0 in Figure 3. 

 

  
(a) 

 

  
(b) 

Figure 8. (a) Prediction using ACT-R model.  
(b) Prediction using Soar model with equivalent rules. 

 

Figure 8 (a) shows the ACT-R prediction with only the 

most general rules and most specific rules, which is 

equivalent to using only Seq 0 and Seq 4 in the Soar model. 

Figure 8 (b) shows the prediction using Soar 0, 4 model, 

which is similar to the ACT-R model especially for blind 3. 

 
Table 1. Correlation Matrix comparing all models 

 

 Observed Soar0~4 Soar 0,4 ACT-R 

Observed - 0.92 0.90 0.86 

Soar 0~4 - - - 0.82 

Soar 0,4 - - - 0.94 

ACT-R - - - - 



 

Table 1 compares the correlations of the ACT-R model and 

Soar model. The Soar 0, 4 model predicts the ACT-R model 

very well (correlation 0.95), while Soar 0~4 model predicts 

the experimental data better (correlation 0.91) than the other 

models. The differences between the correlation coefficients 

are statistically significant. For 0.86 versus 0.91, the p value 

is < 0.001 assuming the original rat data and ACT-R data 

both have the same variance as our simulation data. This 

(weakly) suggests that the rats learn to make decisions using 

a history of prior decisions. 

 

Table 2. Correlation with partial observed data 

 

 Soar0~4 Soar 0,4 ACT-R  

Blinds 1~6 0.98 0.82 0.71 

Blinds 10~14 0.86 0.98 0.87 

 

Taking a closer look at the results, Soar 0~4 matches the 

blinds closer to the beginning much better while the Soar 

0,4 model matches well for those closer to the end. Table 2 

compares the correlation with partial experimental data. One 

hypothesis could be that when the rat is at the choice points 

close to the end, the general rules give good results, so that 

it less depends on lower level rules. While at the beginning, 

where the general rules give bad results, it also uses the 

more specific rules. This hypothesis suggests adjusting the 

weights of rules at different levels for different choice 

points, but that introduces more parameters and is probably 

beyond what can be confirmed from the available data. 
 

Table 3. Comparison between the models 

 Model Level Architectural Level 

Soar Use action history Parallel rule firing 

ACT-R No action history Single rule firing 

 

Table 3 compares the two levels of difference between the 

ACT-R model and our Soar model. Clearly the most 

important difference is our model’s learning over multiple 

sequences of past actions (the model level difference). It is 

reasonable to assume that representing that information in 

the state and increasing the number of rules in ACT-R 

would improve the ACT-R model’s match to the observed 

data, especially for the early choice points.  

A detailed comparison between reinforcement learning in 

ACT-R and Soar has already been made by Nason (Nason 

& Laird 2004). However, this task model highlights an 

important difference between the two approaches. In Soar, 

for a single decision, multiple reinforcement learning rules 

are allowed to contribute to the decision making and then 

are updated by learning. In ACT-R, although multiple rules 

contribute to making a decision through competition, only 

one is picked and updated. Soar speeds learning with 

multiple reinforcement learning rules in terms of requiring 

fewer external actions, although the asymptotic behavior of 

the two approaches should be similar. This architectural 

level difference is secondary for the results presented here – 

it is the action history representation (model level 

difference) that makes the qualitatively different predictions 

in our hypothesis. However, it may be worthwhile to 

explore the importance of this architectural level difference 

in other applications. 

Another difference is the reward discount functions used 

in Soar and ACT-R. The default option in Soar is to 

multiply future expected reward with a discount factor γ (0 

< γ <1) in the step-wise update function, which results in 

exponential decay of rewards. We experimented with linear 

discount (constant discount between steps) which generates 

slightly better results. The compared ACT-R model uses a 

hyperbolic discount function, which might help our model 

to make better predictions especially for those later choice 

points. In general, it’s flexible to experiment with different 

options in the Soar architecture. 

Discussions 

The major contributions of this paper are to examine the 

contribution of sequences of action histories, to decision-

making and learning. The second major contribution was to 

evaluate the approach to representation and updating of 

expected values in Soar-RL and discovering that they 

provide an accurate model of learning dynamics by having 

overlapping rules at different specificity levels. 

Functionally, learning progresses from generalize to 

specific. The ACT-R model provided a useful benchmark 

for comparison.  

We can also ask where our model falls short. Our model 

does not make a good prediction at blind 12. This could be 

due to experimental data noise, but it’s more likely that 

there is more structure in the task that is not captured by our 

model. One possibility can be that instead of always using 

absolute directions, the rats may actually use combinations 

of absolute and relative directions, such as turning left and 

right as the state encoding strategy. 
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