
Mach Learn

DOI 10.1007/s10994-006-7734-8

Learning goal hierarchies from structured observations
and expert annotations

Tolga Könik · John E. Laird

Received: 12 April 2005 / Revised: 3 December 2005 / Accepted: 11 February 2006 / Published online:
17 May 2006
Springer Science + Business Media, LLC 2006

Abstract We describe a relational learning by observation framework that automatically

creates cognitive agent programs that model expert task performance in complex dynamic

domains. Our framework uses observed behavior and goal annotations of an expert as the

primary input, interprets them in the context of background knowledge, and returns an agent

program that behaves similar to the expert. We map the problem of creating an agent program

on to multiple learning problems that can be represented in a “supervised concept learning”

setting. The acquired procedural knowledge is partitioned into a hierarchy of goals and

represented with first order rules. Using an inductive logic programming (ILP) learning

component allows our framework to naturally combine structured behavior observations,

parametric and hierarchical goal annotations, and complex background knowledge. To deal

with the large domains we consider, we have developed an efficient mechanism for storing

and retrieving structured behavior data. We have tested our approach using artificially created

examples and behavior observation traces generated by AI agents. We evaluate the learned

rules by comparing them to hand-coded rules.

Keywords Relational learning by observation . Relational learning . Inductive logic

programming (ILP) . Behavioral cloning . Cognitive agent architectures

Editor: Rui Camacho

T. Könik (�)
Computational Learning Laboratory, Center for the Study of Language and Information,
Stanford University, Stanford, CA 94305, USA
e-mail: konik@stanford.edu

J. E. Laird
Artificial Intelligence Laboratory, Electrical Engineering and Computer Science Department,
University of Michigan, Ann Arbor, MI 48109, USA
e-mail: laird@umich.edu

Springer



Mach Learn

1. Introduction

Developing cognitive agents that behave “intelligently” in complex environments (i.e. large,

dynamic, nondeterministic, and with unobservable states) usually presumes costly agent-

programmer effort of acquiring knowledge from experts and encoding it into an executable

representation. In this paper, we explore the use of machine learning techniques to automate

this process. We present a learning by observation framework that automatically creates agent

programs using the data obtained by observing experts performing tasks as the primary input.

The ultimate goal of this line of research is to reduce the cost and expertise required to build

cognitive agents.

Learning to replicate behavior from only expert observations is sometimes called behav-
ioral cloning. Most behavioral cloning research to date has focused on learning sub-cognitive

skills in controlling a dynamic system such as pole balancing (Michie et al., 1990), control-

ling a simulated aircraft (Sammut et al., 1992; Michie and Camacho, 1992), or operating a

crane (Urbančič and Bratko, 1994). In contrast, our focus is capturing deliberate high-level

reasoning.

Behavioral cloning was originally formulated as a direct mapping from states to control

actions, which produces a reactive agent. Later, using goals was proposed to improved ro-

bustness of the learned agents. Camacho’s system (1998) induced controllers that had goal

parameters so that the execution system can use the same controllers under varying goal

settings. It did not however learn how to set the goal parameters. Bain and Sammut (1999)

discuss a two step approach where a goal model, a mapping from states to goal parameters,

and an effect model, a mapping from control actions to changes in the state, are separately

learned. The execution system selects control actions that will achieve the goal values by

interpreting the effect rules. Isaac and Sammut (2003) also present a two step approach where

an anticipatory level sets goal values and PID controllers at the lower level produce control

actions to reduce the error between the goal and state values. Šuc and Bratko (2000) describe

induction of constraints that model qualitative trajectories which the expert is trying to follow

to achieve goals. These constraints are used to guide the choice of the control actions.

As in the goal-directed behavioral cloning research described above, representing goals

explicitly is an important component of our approach for obtaining complex and flexible

agents, but the goals in our framework are used in a quite different way. In the systems

described above, the goals are desired values for some predefined parameters of a dynamic

system. For example, the learning-to-fly domain has goal parameters such as target turn-rate.

In contrast, the goals in our framework correspond to durative high-level internal states of

the expert indicating that a particular kind of behavior is desired. These goals maybe related

to a final state the expert wants to achieve, such as a go-to-room(r1) goal in a building

navigation domain; they may be about maintaining a condition such a maintain-altitude
goal in an airplane control domain; or they may simply represent the desire to exhibit a

complex behavior as in fly-in-a-circle goal. Unlike the above approaches, we don’t

assume pre−existing definitions for the goals. In contrast, the meaning of each goal in our

framework is discovered by learning under which circumstances the expert selects it as well

as learning the behaviors that become relevant once it is selected. The goals are hierarchically

organized so that the goals at the higher levels of the hierarchy correspond to more complex

behavior.

One of the key challenges of learning by observation is that the expert’s mental reasoning

is not directly available to the learner. To tackle this difficulty, we use additional informa-

tion sources such as background knowledge about the task and annotations of the observed

behavior that specify the expert’s goals. This additional input helps our learning system to

Springer



Mach Learn

model the reasoning of the expert. Our system first learns how the experts select goals based

on observed situations, background knowledge, and their active goals. Then it learns to select

actions that exhibit behavior consistent with the selected goals.

van Lent’s (2000) learning by observation framework also learns hierarchies of dura-

tive goals but its attribute-value based representation limits its ability to model the expert’s

reasoning. It would run into difficulties when structured properties of the environment are

relevant, for example if it has to make decisions involving multiple objects (i.e. two enemy

planes in a tactical air combat domain), if complex knowledge about the task (i.e. a building

map in a navigation domain) is important in choosing the right strategy, or if the decisions of

the expert must involve inference beyond the directly observed features of the external world

(i.e. choosing a door towards a room that is not directly observed). In addition, KnoMic uses

a simple single-pass specific-to-general learning approach that is not feasible with structured

behavior data in the complex domains we consider.

Our relational learning by observation framework proposes a natural solution for the

above limitations by using a first order language to uniformly represent information from

multiple sources. This allows the use of structured behavior observations represented as

temporally changing relational structures, parametric and hierarchical goal annotations,

and complex background knowledge. On the other hand, both the goal annotations and

the background knowledge are optional, but in their absence our framework will be re-

duced to behavioral cloning and the complexity of knowledge it can capture will be more

limited.

We reduce the “behave like an expert” learning problem, to a set of supervised learning

problems that can be framed in an Inductive Logic Programming (ILP) setting, where first

order rules can be learned from structured data. To be able to use ILP algorithms in the

large domains we consider, we devised an efficient mechanism to store and access structured

behavior data.

We use the general agent architecture Soar (Laird et al., 1987) as the execution system of

our target agent program. Soar uses a symbolic rule based representation that simplifies the

interaction with the ILP learning component. Although Soar influences how knowledge is

represented in our framework, we introduce the framework independent of Soar to make our

learning assumptions more explicit and to have results that are transferable to other agent

systems.

The paper is organized as follows. In Section 2, we analyze the context in which we

investigate learning by observation. In Section 3, we describe our learning by observation

framework. In Section 4, we present experimental results. In Section 5, we discuss related

work. Finally, we conclude with remarks about future directions in Section 6.

2. Design decisions

In this section, we list constraints we pose on the space of learning by observation systems

we explore. We hope that this will help to make our major design decisions and assumptions

more explicit (Fig. 1).

Available information sources

We assume that our system can use observation traces of experts’ task-performance behavior

consisting of the situations the experts encounter and the actions they execute (A1), obser-

vation traces of previously learned agents’ task-performance behavior (A2), and annotations

Springer



Mach Learn

Fig. 1 Our assumptions about the systems we investigate. A1–A4 describe the assumed problem, while
A5–A18 are additional constraints we pose on the solution space

indicating which goals are being pursued throughout an observed behavior (A3). The goal an-

notations contain only the names of the goals and their parameters (i.e. goto-door(d1)) and

do not describe their meanings. Instead, their meanings are learned through observation. The

behavior observations are interpreted in the context of hand-coded background knowledge

such as factual knowledge about the environment (i.e. map of a building) and task relevant

common sense knowledge (i.e. rooms are connected through doors) (A4).

The background knowledge is not necessarily obtained from the expert being modeled,

and does not need to correspond to the expert’s understanding and reasoning about the

world. The task of the learning system is not to exactly replicate the internal reasoning

process of the expert, but to create a model that exhibits similar behavior. Of course, the

parts of the background knowledge that resembles the expert’s internal knowledge may

be more useful during this process. Therefore, while the goal annotations of the behavior

observations must be obtained from the expert that exhibits them, a separate knowledge

engineer can encode the background knowledge. Although encoding commonsense back-

ground knowledge may be difficult, it may be shared in learning multiple tasks. Moreover,

existing general commonsense theories can be used if they are relevant in a domain. (i.e. a

qualitative spatial theory in a building navigation domain). Factual background knowledge

should be specific to an environment (i.e. the objects in a room), but that is typically easier to

encode.

Springer



Mach Learn

2.1. Representation of captured knowledge

We assume that the target agent program will have durative goals, which they achieve by

maintaining durative actions continuously in a real-time environment (A5). In planning liter-

ature the term goal is often used as a predefined condition that holds in desired end-states. The

goals in our framework have a more general meaning. They represent durative internal states

of an agent indicating that particular kinds of behaviors are appropriate. They can represent

intensions to achieve a particular condition, like in the planning sense, but they may be also

about maintaining a process, such as watching a television show. We assume that the goals

are structured in a hierarchy (A6) in order to represent complex behavior while keeping the

learning tasks more manageable. The goals and actions may contain both constant valued and

object valued parameters (A7) (i.e. fly-at-altitude (4000) in a flight simulator domain

or go-to-door(d1) in a building navigation domain). The parameters of a goal improve the

generality of the captured knowledge. The object-valued goal annotations also help the learn-

ing system by providing structured information about the internal reasoning of the expert. For

example when the expert annotates a behavior with the goal go-to-room(r1), by choosing

the room object r1, the expert points to information related to that room, such as where on the

map that room is or which items it contains. At the end of learning, the captured knowledge

is transformed to a program that can run in a rule based (A8) reactive agent architecture

(A9).

2.2. Learning algorithm

Since the domains we consider are rich in structure, the learning algorithm we use should

be able to generate hypotheses that can test structured conditions in a first order language

(A10). Therefore, we frame our problem in a general ILP setting, without necessarily com-

mitting to a particular ILP algorithm. Since experts may use implicit knowledge that cannot

be sensed from the environment directly, our learning algorithm should be able to use back-

ground knowledge that encodes factual or common sense knowledge (A11). Being able

to deal with complex background knowledge is one of the major advantages of ILP al-

gorithms over traditional feature-attribute based machine learning techniques. Moreover,

due to variables in relations, ILP algorithms are suitable to abstract the details of the spe-

cific examples (A12). For example, to learn the skills to move towards a door, our sys-

tem would not need to learn separate concepts specific to each door, requiring separate

set of examples. Instead, the general knowledge of how to move towards any door will be

learned using all of these examples. One implication is that we might require fewer ex-

pert behavior traces, probably the most costly resource in our problem. Finally, we need

learning algorithms that can deal with noise because the background theory used in learn-

ing will probably model the expert’s reasoning only approximately (A13). Moreover, it

is not realistic to assume that the expert’s behavior is always consistent with his/her goal

annotations.

2.3. Learning strategies and bias

We represent how the expert maintains the activity of a goal using multiple learned concepts

(A14). For example a goal may be represented by two concepts, one indicating when the goal

is selected and the other indicating when the goal is terminated. Alternatively, a concept may

represent the conditions that hold as long as a goal is active. Although these two schemes

could be converted to each other if the knowledge representation is rich enough, one of them

Springer



Mach Learn

might represent a particular goal in a more compact way, which could be learned easier and

with higher confidence.

The conditions in the learned rules will need to refer to current sensor values so that

the agent’s behavior can be conditional on changes in the environment (A15). To represent

internal knowledge and reasoning of the expert, the conditions in the hypothesis may refer

to relations that are defined in the background knowledge (A16), as well as active higher

level goals. For example when the open(Door) goal is learned in the context of a previously

selected goal drive(Car), which door should be opened depends on which car is being

driven; that is, it must be a door of that particular car (A17).

During performance, the expert may acquire beliefs based on his observations that may

persist even after the reasons for acquiring them are not observable. In general, it is difficult

to learn decision processes that are based on such beliefs because they will not be visible to

our system. Like Knomic (van Lent and Laird, 2001), we use a very limited form of beliefs

about the completed goals. Such beliefs can help the agent to maintain information about its

progress towards its goals. We assume that the agents can create internal belief structures

about the goals they have completed and use these facts in subsequent decision making (A18).

3. Relational learning by observation framework

Figure 2 depicts our relational learning by observation framework. Its execution cycle has

two modes. In the first mode, the expert generates behavior by selecting actions using a

behavior interface, leading to the creation of an initial, approximately correct agent program.

Fig. 2 Our relational learning by observation framework. In mode 1, the expert generates behavior. In mode 2,
the expert gives feedback on the behavior generated by a previously learned agent program

Springer



Mach Learn

In the second mode, a previously learned agent program generates behavior while the expert

is giving feedback, leading to the creation of an improved agent program.

The behavior generated in both modes is recorded as a behavior trace structure, which

contains the selected actions and a symbolic representation of the observed situations. In the

first mode, the expert annotates the behavior trace with the goals he/she has been pursuing. In

the second mode, the agent proposes similar goal annotations and the expert marks them as

accepted or rejected depending whether they are consistent with previously accepted goals

and behavior. The resulting annotated behavior traces are returned to a relational learning by

observation component that interprets them in the context of task and domain knowledge to

induce an agent program. The newly created agent program can generate further traces, until

the expert is satisfied with the performance of the agent program and the training is terminated.

At each cycle, a new agent program is learned from scratch but since more behavior traces

have been accumulated, a more accurate agent program is expected to be learned. At any

time during the agent program’s performance (mode 2), the expert can intervene and take

control (mode 1) to generate traces, such as when the agent program is performing poorly.

This can help focus the learning on those parts of the task where the agent program is most

lacking sufficient knowledge.

The annotated behavior traces, which are the primary input of the relational learning by

observation component, consist of (1) situations, temporally changing relational structures

symbolically representing the environment from the perspective of the agent exhibiting the

behavior, (2) action annotations, the names and parameters of selected actions that generate

the actual behavior, and (3) goal annotations that mark situations with the names and pa-

rameters of goals motivating the selected actions. Both the actions and goal annotations are

durative and may persist over consecutive situations. For example the expert may annotate

a list of situations as “In this time interval, I am pursuing the goal go-to-room(r1) and

to achieve that, I am pursuing the action move(forward)”. Moreover the action and goal

annotations are marked as “accepted” or “rejected”. While the expert generated actions and

goals are marked as accepted, the markers on the agent program generated actions and goals

are determined by the expert feedback. The output of the relational learning by observation

is an agent program that takes the perceived situations as input and returns a list of active

goals and actions at each situation.

The annotated behavior trace generated in each cycle is inserted into an episodic database
that efficiently stores and retrieves the observed behavior and the expert annotations. The

training set generator component maps the problem of “obtaining an agent program” to

multiple problems of learning decision concepts that can be represented in a “supervised

concept-learning” setting. The decision concepts include learning when the goal and ac-

tions should be selected, when they should be terminated, or when they should be inter-

rupted. For each decision concept, the training set generator creates positive and negative

examples using the annotated behavior traces stored in the episodic database. The concept

learner component uses an ILP algorithm that learns rules for each decision concept, us-

ing the examples in the training set and as background knowledge the hand-coded task

& domain theory and the annotated behavior traces. The agent generator component con-

verts the decision concept rules into an executable agent program for a particular agent

architecture.

We have partially implemented this framework to conduct the experiments reported in

Section 4. Although we have implemented the relational learning by observation compo-

nent to use behavior annotations with both correct and incorrect behavior, the rest of our

implementation works in the first mode of the execution cycle where only correct behavior

instances are used. Since we don’t want to assume an initial agent program, it is crucial to

Springer



Mach Learn

demonstrate some learning with correct behavior examples only. Therefore, in this paper we

mainly focus on the first execution mode of our framework. Our experiments indicate that

the first mode may be sufficient to capture behavior performance knowledge.

In our experiments, instead of human expert generated behavior, we use behavior of

hand-coded Soar agents. Cloning artificial agents is a cost-effective way to evaluate our

framework—it greatly simplifies data collection and it does not require us to build domain

specific components to track expert behavior and annotations. We built a general interface

that can extract behavior and goal annotations from Soar agents on any environment Soar has

been connected to. Of course learning from Soar agents does not guarantee learning from

human experts. We plan to address this issue in future research. Könik et al. (2005) describes a

preliminary implementation of a learning from diagrammatic behavior specifications system,

where a relational learning by observation component uses behavior scenarios interactively

specified by a human expert and an agent program using a graphical interface.

3.1. Target agent architecture and environments

We use the general agent architecture Soar (Laird et al., 1987) as the target performance

system for our learning framework and Soar influences how the knowledge in our system is

represented. Nevertheless, the knowledge we extract is independent of a particular architec-

ture and can be converted to be used in other execution systems. Using a general architecture

such as Soar allows us to benefit from architectural mechanisms during execution, while

keeping our framework domain independent. A general architecture also provides a frame-

work where learning by observation may be integrated with other learning strategies in future.

A long-term motivation is that Soar is one of the few candidates of unified cognitive archi-

tectures (Newell, 1990) and has been successful as the basis for developing knowledge-rich

agents for complex environments (Magerko et al., 2004; Wray et al., 2004; Jones et al.,

1999). One practical reason for this choice is that there exist interfaces between Soar and

these environments that can be reused in our system. Moreover, the hand-coded agents re-

quired significant human effort and they can form a basis of comparison for the agents we

create automatically.

In this paper we will use examples from “Haunt 2 game” (Magerko et al., 2004), which

is a 3-D first person perspective adventure game built using the Unreal game engine. This

environment has a large, structured state space consisting of objects that are interrelated

in a time-varying fashion, have unobservable features, require real time decisions, exist in

continuous space, and include external agents and events.

3.2. Representation of the environment: Situations

In complex domains, an agent (expert/agent program) may receive vast amounts of raw sen-

sory data and the low level motor interaction the agent has to control may be extremely

complicated. Since we focus more on the high-level reasoning of a cognitive agent than

low-level control, we assume that the agents interact with the environment using a behav-

ior interface that converts the raw data to a symbolic environmental representation (SER).

While the expert makes his/her decisions using a visualization of the raw data, the agent

program will make decisions with corresponding symbolic data. Moreover, both the ex-

pert and the agent program execute only symbolic actions provided by the behavior inter-

face, which is responsible for implementing these actions in the environment at the control

level.

Springer



Mach Learn

Fig. 3 A snapshot of the data maintained in the symbolic environmental representation (SER) in Haunt 2
domain. SER dynamically updates directly sensed relations and associates factual background knowledge
with the sensed objects

At any given moment, SER contains a set of facts that symbolically represent the state

of the environment as perceived from the expert’s perspective. Soar agents represent their

beliefs about the external world and internal state using a directed graph of binary predicates.

Adapting that style, we will assume that the environment representation maintained by SER

contains ground literals of the form p(a, b) where p is a relation between the objects in the

environment denoted by a and b in SER. In the Haunt domain, an example “snapshot” of this

time varying representation is depicted in Fig. 3. The sensors are represented with a binary

predicate where the first argument is a special symbol (i.e. agent) and the second argument is

the sensed value. The sensors can be constant-valued such as the x-coordinate(agent, 35)
or energy-level(agent, high) as well as object-valued such as current-room(agent,
r1). The object valued sensors can be used to represent structured relations among perceived

objects. For example, when a book on top of a desk enters the visual display of the expert,

the behavior interface builds the corresponding objects in SER and binds an “on” relation

between them. The behavior interface also has the responsibility of associating the directly

sensed features of the environment with background knowledge specific to particular objects

in the environment. For example in Fig. 3, we not only see that the agent is in the room r1,

but we also know that it can enter the room r2 by going through door d1. During the learning

phase both the observed dynamical features and specific background knowledge are used in

a uniform way.

3.3. Task performance knowledge: Goals and actions

We assume that the task-performance knowledge of the target agent program is decomposed

into a hierarchy of operators that represent both the goals that the agent pursues and the

actions that it takes to achieve these goals (Fig. 4). The primitive operators at the leaves

represent actions that the agent can execute on the environment and the remaining operators

represent the goals of the agent. With the operator hierarchy assumption, we decompose

the “learning an agent program” problem to multiple “learning to maintain the activity of

an operator” problems. The suboperators correspond to strategies that the agent can use as

part of pursuing the goal of the parent operator. The agent has to continuously maintain the

activity of these operators based on current sensors and internal knowledge. When the agent

selects an operator, it must also instantiate its parameters. It then executes the operator by

Springer



Mach Learn

Fig. 4 An operator hierarchy in a building navigation domain

selecting and executing suboperators. The real execution on the environment occurs when

actions, the lowest level operators, are selected. The names of the selected actions and

their parameters are sent to behavior interface, which applies them in the environment. The

actions are continuously applied on the environment as long as the agent keeps them active.

We assume that there may be at most one operator active at each level of the hierarchy, except

the lowest level operators representing the actions, which can be executed in parallel. This

assumption simplifies the learning task because the learner associates the observed behavior

only with the active operators and each operator is learned in the context of a single parent

operator. The operators at any level can be retracted in response to the perceived events, in

which case all of its suboperators are also retracted and another operator at the same level is

selected.

In this representation, information about how the operators are selected implies informa-

tion about how the operators are executed because execution of an operator at one level is

realized by selection of the suboperators at the lower level. The suboperators may be executed

in complex orderings to achieve the goal of the parent operator, depending on the observed

situations and internal knowledge. The real execution occurs with lowest level operators

representing SER actions such as go(forward) or turn(left).

For example in Fig. 4, assume that the agent decides to get an item i1 by selecting

get-item(Item) and instantiating Item = i1. If the agent is not in the same room with

i1, it selects the suboperator get-item-different-room(i1). Then the agent executes this

operator using its suboperators go-to-door and go-through-door. The operator go-to-
door is used to select and approach a door leading towards the item i1. When the agent is

close to that door, go-to-door is replaced with go-through-door, which moves the agent

to the next room. Once in the next room, the agent selects go-to-door again but this time

with a new door instantiation. This process continues until agent is in the same room with i1
and get-item-different-room is retracted with all of its suboperators and replaced with

get-item-in-room.

The initial knowledge that the system has about the operator annotations are the names

of the operators, the values of their arguments, pointers to their parent operator annotations,

and markers indicating whether they are accepted or rejected annotations. The final agent

obtained as the result of learning should have the capability of maintaining the activity of the

operators (i.e. selecting them with correct parameters, stopping them when they achieve their

goal, abandoning them in preference of other operators, etc.) and executing them (managing

the suboperators).

Springer



Mach Learn

3.4. Annotated behavior trace

While the expert or the agent program is performing a task, the symbolic state of the en-

vironment is recorded into a structure called a behavior trace. The symbolic representation

that SER maintains is sampled in small intervals, at consecutively enumerated time points si

called situations. We assume that the domain dependent sampling frequency is sufficiently

high so that no significant changes occur between two consecutive situations. We say that

the observed situation predicate p(si , a, b) holds if and only if p(a, b) was in SER at the

situation si .

If the environment contains static facts (i.e. rooms, doors, etc. . .) that do not change

over different situations, that information can be added to the beginning of the behavior

trace manually, even if the expert does not perceive them directly. This corresponds to the

assumption that the expert already knows about these facts and the learning system will

use this information as background knowledge as it creates the model of the expert. If p(x,

y) is such a static fact, we say that the assumed situation predicate p(si , x, y) is true for

any si .

In the first execution mode, the expert annotates the situations in his/her behavior with

the names of the operators and their parameter instantiations. A valid selection at a situation

that satisfies the semantics of the operator hierarchy must form a connected path of operators

starting from the root of the hierarchy (i.e. get-item, get-item-different-room, go-
to-door,. . . in Fig. 4). The action annotations can be recorded by SER automatically without

requiring any expert effort. Since the annotations are durative, the expert doesn’t have to

annotate each situation, instead, he/she can annotate only the situations where the annotations

change. In the second execution mode, the expert inspects the annotated behavior traces

proposed by the agent program and accepts or rejects the annotations.

For a set of consecutive situations R and an operator op(x) where x is an instantiated

operator parameter vector, if the expert annotates the situations in R with op(x), we say

accepted-annotation(R, op(x)) where R is called the annotation region. Similarly, we say

rejected-annotation(R, op(x)), if the expert has rejected the agent program’s annotation of R
with op(x).

3.5. Episodic database

In practice, it is inefficient to store the list of all predicates that hold at each situation

explicitly, especially in domains where sampling frequencies are high and there is much

sensory input. The episodic database efficiently stores and retrieves the information con-

tained in structured behavior traces and expert annotations. In each execution cycle, the

training set generator accesses the episodic database while creating positive and nega-

tive examples of the decision concepts to be learned. Similarly, the ILP component ac-

cesses it to check whether particular situation predicates in the background knowledge

hold in the behavior trace. Although the examples are generated only once for each con-

cept, the background situation predicates may be accessed many times during learning.

Typically, ILP systems consider many hypotheses before they return a final hypothesis

as the result of learning and each time a different hypothesis is considered, the validity

of background situation predicates that occur in the hypothesis must be tested. To make

learning practical in large domains, it is crucial that the episodic database is an efficient

structure.

Springer



Mach Learn

Fig. 5 Search for the query contains(s23, x1, Y) in the episodic database, which succeeds with Y = y1,
and Y = y2

We assume that for each situation predicate p, the arguments are classified as input or output

types. Many ILP systems already require a similar specification for background predicates.1

The episodic database receives situation predicate queries of the form p(s, x, y) where s is an

instantiated situation, x is an instantiated vector of input variables, y is a vector of instantiated

or not instantiated output variables. The result is a list of variable bindings for uninstantiated

variables satisfying the query.

In episodic database, each situation predicate is stored using multiple binary trees (Fig. 5)

that are indexed by the name of the predicate and input vector instantiation. The leaves

store the output values explicitly for each situation they change and the nodes form a binary

search tree to access these leaves efficiently. More formally, for each pair (p, x), where p is a

situation predicate and x is an instantiated input vector, the episodic database explicitly stores

the output values Ys , the set of all y vectors satisfying p(s, x, y) for each situation s, where Ys

has changed compared to previous situation. Moreover, for each (p, x), it contains a binary

search tree, where the nodes are these change situations and the leaves are the Ys vectors.

For example in Fig. 5, we have part of the structure that represents the observed instances of

contains(+Situation, +Room,−Item). This particular tree shows that room x1 does not

contain any objects in the initial situation. At situation s15, the item y1 appears in the room

x1. No changes occur until the situation s20 when a new item y2 is added to the room and

so on. For example, to answer the query contains(s23, x1, Item), first the correct index

tree associated with the pair (contains, x1) is located using a hash table, then by a binary

search, the last change before s23 is located. In this case, the last change occurs at s20 and

Item will be instantiated with y1 and y2.

In our system, static background knowledge is an important special case that is handled

very easily by the episodic database. These predicates are added to the behavior trace once

and then are never changed. The episodic database stores them very efficiently because their

index trees are reduced to single nodes. The expert annotation predicates are also stored in

episodic database by using the operator name as an input variable, and the operator arguments

as output variables.

The episodic database stores the behavior traces efficiently, unless there are multi-valued

predicates (multiple output instantiations at a situation) that change frequently or there are

predicates that have multiple mode definitions (input/output variable specifications) each

1 Arguments that are declared constants are treated as input in episodic database representation.

Springer



Mach Learn

requiring a separate set of index trees. In the domains we applied our system to, the first

problem is negligible and the second problem does not occur in the binary situation predicate

representation used by Soar.

Struyf et al. (2003) describe a general formalization for compactly representing ILP

background knowledge in domains that have redundancy between examples, such as in

the case of consecutive situations in our case. Their system would represent our situation

predicates by storing a list of added and deleted predicates between each pair of consec-

utive situations. In that representation, to test a particular situation predicate, the behav-

ior trace would have to be traced forward from the initial situation, completely generat-

ing all facts in all situations until the queried situation is reached. For an ILP system that

tests each rule over multiple examples, our approach would be more time efficient in do-

mains having many facts at each situation because we don’t need to generate complete

states and we don’t have to trace all situations. Instead, the episodic database makes bi-

nary tree searches only for the predicates that occur in the rule to be tested. In our learn-

ing by observation system, the gain from the episodic database is even more dramatic

because the examples of the learned concepts are sparsely distributed over the behavior

trace.

3.6. Decision concepts and generating examples

In Section 3.2, we discuss how the problem of “learning an agent program” is decom-

posed into multiple “learning to maintain the activity of an operator” problems. In this

section, we further decompose it into multiple “decision concept learning” problems that

can be framed in a supervised ILP learning setting. This decomposition allows the sys-

tem to learn each decision concept independently (such as when to select an operator and

when to terminate an operator). This approach is taken because the decision concepts are

often highly disjunctive—that is there are many reasons for selecting an operator and many

independent reasons for terminating an operator. After learning, the system can dynami-

cally combine decision concepts learned from different examples. If the decision concepts

were not learned independently, the system would have to explicitly learn every combi-

nation of decision concepts, requiring many more examples and leading to less robust

performance.

A decision concept of an operator op is a mapping from the internal state and external

perception of an agent to a “decision suggestion” about the activity of op. Figure 6 depicts

four decision concepts, selection-condition (when the operator should be selected if it

is not currently selected), overriding-selection-condition (when the operator should

be selected even if another operator is selected), maintenance-condition (what must be

true for the operator to be continued during its application), and termination-condition
(when the operator has completed and should be terminated). For each decision concept, we

must define how their examples should be constructed from the behavior traces and how they

are used during execution. In general, for a concept of kind con and an operator op(x), we

get a decision concept con(s, op(x)) where s is a situation and x a parameter vector of op.

For example if selection-condition(S, go-to-door(Door)) holds for a situation S =
s0 and door object Door=d0, it represents advice indicating that the agent should select the

operator go-to-door(d0) at situation s0. The goal of learning is to learn a first order concept

of form:

con (s, op (x)) ← P (s, x) (1)

Springer



Mach Learn

Fig. 6 The positive and negative example regions of different concepts. The horizontal dimension corresponds
to the change in situations over time. A, B, and P are the accepted annotation regions of the operators opA ,
opB , and their parent operator parent(opA). Positive and negative example regions are marked with “+” and
“−” symbols

where P is a condition that can match the situation predicates in the episodic database, or

hand-coded background predicates. The positive and negative examples of decision concepts

are ground terms of the form con(s0, op(x0)). The training set generator constructs these

examples using the accepted and rejected annotations provided by the expert and the ILP

component uses them in learning hypotheses of the form (1).

The examples of a concept are created from a set of situations S called positive (negative)
example regions such that for each s0∈S, con(s0, op(x0)) is a positive (negative) example.

Figure 6 depicts the positive and negative example regions of an operator opA, for differ-

ent kind of decision concepts. The horizontal dimension represents consecutive temporal

situations in the behavior trace and the boxes represent the accepted annotation regions P,

A, and B of three operators parent(opA), opA, and opB such that parent(opA) is the par-

ent operator of opA, and opB is an arbitrary selected operator that shares the same parent

with opA. According to our basic hierarchy assumption, for a given operator opA that is

not the top2 operator, there is a unique parent(opA). opB may be the same kind of operator

with opA, but it should have a different parameter instantiation. For example, the positive

example region of the selection condition of opA is where the expert has started pursuing

opA and its negative example region is where another operator is selected (Fig. 6(b)). If

we have opA=go-to-door(d1), A = s20 − s30, and B = s50 − s60, we could have the pos-

itive example selection−condition(s20, go-to-door(d1)) and the negative example

selection-condition(s50, go-to-door(d1)).

In general, the examples of decision concepts of an operator opA are selected only from

situations where there is the appropriate context in which to consider a decision about it. Since

the operator hierarchy dictates that parent(opA) must be active at any situation where opA is

active, all decision concept examples of opA are obtained only at situations where parent(opA)

is active. Similarly during the execution, the decision concepts of opA are considered only at

situations where parent(opA) is active.

Different concepts will have different suggestions about the activity of operators. For ex-

ample, a situation where termination-condition(opA) holds suggests that the agent has to

terminate opA, if opA is active and that opA should not be selected if it not active. selection-
condition(opA) would be useful to decide whether opA should be selected, if a previous

operator opB is already terminated (i.e. because of termination-condition(opB)). It would

not be very useful while an opB is still active because such situations are not considered as

2 The top level goal is an exception and has no parent goal. We assume that no decision concept needs to be
learned for it, because it is either determined externally or it is active throughout the lifetime of the agent.

Springer



Mach Learn

examples for selection-condition(opA). On the other hand, overriding-selection-
condition(A) indicates terminating opB and selecting opA, even during the situations where

opB is active since its negative examples are collected throughout a region where opB is active.

Neither selection-condition(opA) nor overriding-selection-condition(opA) makes

a suggestion while opA is active because their examples are not collected in such regions. Fi-

nally, like overriding-selection-condition(opA), maintenance-condition(opA) sug-

gests that opA should start even if another operator is still active. Unlike the other selec-

tion conditions, absence of maintenance-condition(opA) suggests that opA should not be

started at situations where it is not active, and that opA should be terminated, if it is active

since the positive examples of this concept are collected through all situations where opA is

active.

If our goal were programming an agent manually, having only a subset of these concepts

for each operator would be sufficient. For example, the rules in Soar version 7 are closer to

termination/selection conditions while the rules of Soar version 8 are closer to maintenance

conditions. However when learning, having a language with the flexibility to represent a

broader range of operator concept is advantageous because a particular operator may be

more compactly represented using a subset of concepts, making it easier to learn inductively.

In general, different decision concepts of an operator may have conflicting suggestions.

There are several possibilities for dealing with this problem. One can commit to a particular

priority between the decision concepts. For example KnoMic (van Lent and Laird, 2001)

learns only concepts similar to our selection and termination conditions. In execution, KnoMic

assumes that termination conditions have higher priority. Another alternative is to have a

dynamic conflict resolution strategy. For example, a second learning step could be used to

learn weights for each concept such that the learned weight vector best explains the behavior

traces. In this paper, we do not explore conflict resolution strategies but instead concentrate

on the question of whether the individual decision concepts can be learned using ILP.

The negative example regions in Figs. 6(b)–(d) implicitly assume that the selection of an

operator opA is undesirable when another operator opB is selected. This assumption does

not hold in domains where the desired agent behavior is non-deterministic, that is there

may be situations where the agent should select randomly among equally good alternatives.

In such domains, the negative examples of selection concepts should be treated weaker, as

preferences rather than completely accurate examples.

The parametric nature of our operators causes another difficulty in collecting negative

examples. The negative examples in Figs. 6(b)–(d) indicate when not to select an operator

opA, but our early experiments have shown that they may not give enough information

about which operator parameter instantiations would be incorrect at a situation where opA

has to be selected. To deal with this problem, we describe an additional negative example

generation scheme. For each positive example con(s0, op(x1)), we generate heuristic negative
examples of the form con(s0, op(x2)) using the same situation s0 but an operator parameter

vector x2, which was used in a different selection of the same operator (Fig. 7). Again,

while modeling nondeterministic behavior, these negative examples should be treated as

preferences; because a selection of op(x1) does not guarantee that another selection op(x2)

would be wrong. During learning with these examples, we search for compact hypotheses that

cover all positive examples while minimizing coverage of negative examples. This approach

is very similar to the positive-only learning strategy described by Muggleton (1995) except

that in their algorithm, the negative examples would be created by randomly choosing all

variables in the examples, including the situations. Compared to Muggleton’s approach, we

Springer



Mach Learn

Fig. 7 Heuristic negative examples are generated by changing the operator parameters of a positive example
to parameters observed in other situations for that operator

Fig. 8 Negative examples for selection-condition, extracted from a rejected annotation ¬A, where the expert
rejects the agent program’s annotation opA

use special properties of our situation based representation, to obtain more relevant negative

examples.

If data collected in the second execution cycle of our framework is available, where the

expert evaluates the agent’s generated behavior and annotations, we get an opportunity to

extract more reliable negative examples for the selection condition (Fig. 8). The regions

where the expert rejects the selection of an operator op(x1) at a situation s0, provide reliable

negative examples of selection-condition (s0, op(x1)). Nevertheless, to get to the second cycle,

we need our framework to be capable of learning in the first cycle an approximate agent that

can generate some behavior. Therefore, in the experiments in Section 4 we focus on learning

from expert generated behavior.

3.7. Learning concepts

The learning component of our framework uses an ILP algorithm, currently inverse entailment

(Muggleton, 1995), to learn a theory that represents decision concepts. The learning uses the

examples generated by the training set generator and the background knowledge consisting

of a hand-coded domain theory and the situation predicates stored in the episodic database.

This algorithm first generates a very specific rule, called the bottom clause, using a single

positive example. In the next step, rules consisting of substructures of this bottom clause

are generated in a heuristic search, where each one of these rules is tested for coverage of

positive and negative examples.

In our case, for a randomly selected positive example con(s0, op(x0)), the list of all facts

that hold in the situation s0 are collected. These facts may come not only from the episodic

database, but they can also be results of inferences made by the hand-coded background

theory. Next, each fact in the list is generalized by replacing all objects with variables to obtain

the bottom clause (Fig. 9). Note that we use Prolog syntax where the capitals are variables.

We chose semantically meaningful variable names for presentation purposes although the

actual algorithm generates random variable names.

Springer



Mach Learn

Fig. 9 The most specific (bottom) clause of the learned hypothesis

Fig. 10 A desired hypothesis for the selection condition of go-to-door operator

Figure 10 depicts a correct hypothesis that is learned with this process in the experiment

reported in Section 4.1. It reads as: “At any situation sectionS with an active high-level

operator get-item(Item), the operator go-to-door(Door) should be selected if Door can

be instantiated with the door on the shortest path from the current room to the room where

Item is in”.

Here, the learning system models the selection decision of go-to-door by checking the

high-level goals and retrieving relevant information (active-operator retrieves informa-

tion about the desired item), by using structured sensors (i.e. current-room), and domain

knowledge (i.e. contains, path).

The object valued parameters of the parent operator simplify the learning task, by providing

access to the more relevant parts of the background knowledge. For example in Fig. 10, the

conditions for selecting the correct door could be very complex and indirect if the parent

operator did not have the Item parameter that guides the search (i.e. the towards the room

that contains the item).

3.8. Agent generation for a particular agent architecture

At the end of each learning phase, the learned concepts must be compiled to an executable

program for the target agent architecture. In general, the conditions at the if-part of the

decision concepts must be “testable” by the agent program. The difficulty of this translation

depends on the mechanisms provided by a particular architecture. Since Soar automatically

provides mechanisms to maintain an operator hierarchy and since we represent the situations

similar to how Soar represents them, the translation to Soar rules is not difficult. The only

complication is that for each hand-coded background predicate, we must have corresponding

hand-coded implementations in the agent program. For example, while the active-operator
is a Prolog program that checks accepted-annotation predicate during learning, it should

have an agent architecture specific implementation to be used in execution that checks and

returns information about the active high-level operators.

Springer



Mach Learn

4. Experiments

We have conducted three experiments to evaluate the learnability of the decision concepts

using ILP. In the first two experiments, we generated artificial examples for an operator

selection concept in a building navigation problem. In the third experiment, we used be-

havior data generated by a Soar agent. Using behavior of hand-coded Soar agents to create

new “clone” agents allows us to easily experiment with and evaluate our framework, as

well as to compare the learned knowledge to the knowledge used in the original agents.

Since Soar agents already use hierarchical operators, it is easy to extract the required goal

annotations from them. While the intercepted environmental interaction is used to create

the behavior trace, the internal reasoning of the agents is only used to extract the goal

annotations.

Our implementation of the first mode of our learning by observation framework (Fig. 2),

intercepts the symbolic interaction of Soar agents with the environment, stores the interactions

in an episodic database, creates decision concept examples, and declarative bias (such as mode

definitions), and calls the ILP engine Aleph (Srinivasan, 2003) that we have embedded to our

system. We used Aleph in a setting where it implements inverse entailment (Muggleton, 1995)

with an A∗ heuristic similar to Progol (Muggleton, 1995), but we modified it to benefit from

the efficient mechanisms of the episodic database. We use a cost function that maximizes

the covered positive examples, while minimizing the covered negative examples and the

minimum number of literals that must be added to the current hypothesis to generate the

output variables.

4.1. Learning from artificially created examples

In our initial experiments we evaluated the learnability of a decision concept using examples

generated from a hand-coded rule representing that concept. At the end of learning, we

compared the learned concept to the original hand-coded concept.

As a test case, we chose the problem of learning the selection condition of go-to-
door(Door) operator when called as a suboperator of get-item(Item). A correct hypothesis

in this problem is depicted in Fig. 10. The goal is to learn to select a door such that it is on a

path towards a room that contains an item that the agent wants to get.

4.1.1. Learning from correct positive and negative examples

In our first experiment, we evaluated our system using artificially created correct positive

and negative examples generated from a correct hand-coded concept. In this experiment, we

artificially generated examples of that concept as well as situation and annotation predicates to

be used in background of learning. For each run of the experiment, we generated random map

structures consisting of rooms, doors, items, and relations between them such as connectivity

between two doors in neighboring rooms, or a path structure between doors, and rooms

(similar to Fig. 3). Then, we generated random situations by choosing different rooms for

the current-room sensor, and different items as the parameter of the parent goal annotation

get-item. Finally, by testing the correct hand-coded concept (Fig. 10) on random situations,

we generated correct positive and negative examples of the target concept.

For each run of the experiment, we generated a single map consisting of 6 rooms, 6 items

randomly placed in these rooms. Each map is created by first randomly connecting rooms

until there is a unique path between all rooms, and then by adding 3 or 12 extra connections

so that there are multiple ways to navigate between rooms and the learning problem is harder.

Springer



Mach Learn

Fig. 11 Accuracy distribution of the learned hypotheses with correct positive and negative examples

(We want to show that we can learn arbitrary choices if both are equally good.) We considered

5 different sizes for positive and negative examples set sizes and for each of 25 combinations,

we generated 20 training sets and ran the experiment 500 times in total. We completed each

run when the learned hypothesis covered all positive and no negative examples.

We evaluated the learned concepts by comparing their predictions to the predictions of

the hand-coded correct concept on 6 independently generated test maps. We measured the

accuracy of the learned hypothesis (as compared to the correct hypothesis) at all possible

situations on all test maps. For example, if in a situation (current-room, target item selection)

the correct concept satisfy the doors {d1, d2} indicating that either one of them are equally

good selections, and if the learned hypothesis satisfy the doors {d2, d3}, we calculate the

accuracy as 1/3, by dividing the size of the intersection of these sets to the size of their

union. We calculated the accuracy of each learned hypothesis by taking the average of

its accuracy over all situations on all test maps. Figure 11 depicts the distribution of the

accuracy of the learned hypotheses over the number of examples used in the training. Each

bar represent the average accuracy of the learned hypothesis over 20 experiments while the

distance between the error markers represent one standard deviation of the accuracy. The

accuracy may decrease due to insufficient number of negative or positive examples. We

observe that the accuracy increases with the number of examples until finally the learned

hypothesis is equivalent to the correct hypothesis in all 20 runs with sufficient number of

examples.

4.1.2. Learning from only positive examples

In our second experiment, we evaluated our system on the same learning problem but this time

we used only correct positive examples as the input. The learning system created negative

examples heuristically from the positive examples using the scheme depicted in Fig. 7. This

experiment provides a more realistic depiction of the first cycle of our framework where no

negative examples are available.

Beside the negative example selection scheme, we used a similar methodology to the

previous experiment to generate the data set and to evaluate the results, except this time,

since the correct hypothesis may cover some heuristically generated negative examples and

may not have a perfect coverage score, we restricted search to exclude hypotheses longer

Springer



Mach Learn

Fig. 12 Accuracy distribution of the hypothesis learned with correct positive and heuristic negative examples

than the correct concept and we terminated the search when the score of the considered

hypothesis reaches the score of the correct concept on the training set. Since this experiment

could potentially consider all possible hypotheses at that clause length and the durations can

be long, we simplified the learning problem, by forcing the addition of active-operator
literal to all rules; that is our system did not need to explicitly learn that checking the parent

goal annotation is useful. Forcing the inclusion of this condition is consistent with hand-coded

agents, where operator selections are usually conditional on the parent operator. Without this

simplification, we got similar results on a few cases we tested but the experiments took

considerably longer time.

We considered 5 different sizes for the positive and negative example sets and for each

of 25 combinations we generated 15 random maps (3, 12, or 24 extra connections, 6 rooms,

and 6 items) and ran the experiment 375 times in total.

The mean and the standard deviation of the learned concept accuracy are depicted in

Fig. 12. In this experiment, we used more examples than the previous one because the heuristic

negative example generation scheme can generate some incorrect negative examples. Again,

as the number of examples increase, the accuracy of the learned concepts increase steadily

reaching 100% accuracy in all experiments. Note that, 100% accuracy indicates equivalence

to the correct concept not perfect coverage of the training examples.

4.2. Learning from agent program generated behavior

In our final experiment, we have used the annotated behavior traces generated by a Soar agent

in Haunt domain. All behavior data is created using a single level map consisting of 13 fully

connected rooms that are marked with symbolic nodes to help the navigation of the agent.

There are nodes on both side the doors and at the corners of the rooms (Fig. 13).

The Soar agent controls a virtual character that has previously explored the level and built

up an internal map of the rooms and the location of items in the level. In our experiment, we

concentrated on the behavior it generates to retrieve items. The Soar agent randomly chooses

an item, and selects the goal go-to-room(Room) by instantiating Room with the room where

the item is in. It then uses go-to-node-in-room(Node) and go-to-node-next-room(Node)
operators to go towards Room. The agent selects go-to-node-in-room operator to move to

a node in front a door that leads towards Room. To go through the door, the agent chooses

go-to-node-next-room with a node on the other side of the door and moves towards it.

Springer



Mach Learn

Fig. 13 A level map in Haunt domain

These two operators are used in a loop until the agent is in the target room and the parent

operator go-to-room is retracted.

We have recorded several numerical sensors such as x-coordinate, object valued sensors

that point to nearby objects, monitor the last visited node, the nodes the agent can see, the

nodes in front of the agent, the nearest visible node, the current room, and the previous

room among others. The learning system used background knowledge about the locations

of nodes, rooms, doors, and their relation to each other. A typical situation contained over

2000 predicates and a typical bottom clause (generated to clause length 6) has over 1000

literals.

In this experiment, our goal is to learn the selection and termination conditions of go-to-
node-in-room in the context of a given go-to-room operator. We have collected 3 minutes

of behavior trace of the Soar agent (∼30000 situations), where the agent has changed 57

rooms.

In this problem, the termination concept of go-to-node-in-room is very simple and is

easily learned; it just checks that the agent is at the target node. We conducted systematic

experiments to evaluate whether the selection conditions of go-to-node-in-room can be

learned reliably using positive examples and heuristic negatives as depicted in Fig. 7. For 4

positive and 3 negative example set sizes, we ran the experiment 10 times. The distributions

of learned hypotheses are depicted in Fig. 14. Since the continuous nature of our domain

prohibits a complete accuracy analysis corresponding to what we conducted in the previous

two experiments, we have qualitatively classified the learned hypothesis. Once again, when

the number of examples is sufficiently high, the correct hypothesis (Fig. 15) is learned

consistently.

In this experiment, we have demonstrated that general correct concepts for selecting and

terminating operators can be learned in structured domains using only correct expert behavior.

Our experiment indicates that a combination of positive examples and inaccurate heuristic

negative examples may be sufficient to learn selection conditions, even in cases where the

target behavior is not deterministic.

Springer



Mach Learn

Fig. 14 The distribution of the learned concepts with real behavior trace data of a Soar agent

Fig. 15 The correct hypothesis learned with real behavior trace data of a Soar agent

5. Related work

Khardon (1999) studied learnability of action selection policies from observed behavior of

a planning system and demonstrated results on small planning problems. His framework

requires that goals are given to the learner in an explicit representation, while we try to

inductively learn the goals.

One alternative to our inductive approach to learning by observation is to use explanation-

based learning (EBL), where learning is a result of explaining few examples using a deductive

background knowledge theory (Mitchell et al., 1986; DeJong and Mooney, 1986; DeJong,

1993). For example, Segre’s ARMS system (1993) used EBL on expert behavior traces to

learn assembly plans for a simulated robot arm. Recently, learning by observation that uti-

lizes an EBL-like technique was used with the general agent architecture ICARUS (Salomaki

et al., 2005). This system represents the learned procedural knowledge in a skill hierarchy

(similar to our operator hierarchy) built through learning. Although this system doesn’t re-

quire expert goal annotations, it requires definitions of the goal conditions that hold when

the task is terminated, a causal action model, and a hierarchical theory of concepts rele-

vant for the task. Most EBL systems require background knowledge that can deductively

explain expert behavior, whereas in our inductive approach background knowledge is op-

tional and used to the extent it helps to find similarities between observed examples in the

behavior.

To learn procedural agent knowledge, there are at least two alternatives to learning by

observation. One approach is to learn how the agent actions change the perceived environment

Springer



Mach Learn

and then use that knowledge in a planning algorithm to execute behavior. TRAIL (Benson and

Nilsson, 1995) combines expert observations and experimentation to learn STRIPS like teleo-

operators using ILP. OBSERVER (Wang, 1996) uses expert observations to learn planning

operators in a rich representation (not framed in an ILP setting). Moyle (2003) describes

an ILP system that learns theories in event calculus, while Otero describes an ILP system

that learns effects in situation calculus (Otero, 2003). These systems could have difficulty

if changes caused by the actions are difficult to observe, possibly because the actions cause

delayed effects that are difficult to attribute to particular actions. In these cases, our approach

of trying to replicate expert decisions, without necessarily understanding what changes they

will cause, may be easier to learn.

Another alternative to learning by observation is to use reinforcement learning. Rela-

tional reinforcement learning (Džeroski et al., 2001) uses environmental reward to first learn

utility of actions in a particular state and then compiles them to an action selection policy.

Recently, Driessens and Džeroski (2002) combined expert behavior traces with the traces

obtained from experimentation on the environment. Expert guidance helps their system to

reach states that return reward more quickly. Unlike our framework, the actions the ex-

pert selects are not directly treated as correct decisions and the actions are not learned in

the context of goals. Instead, the values of the actions are propagated back from the goal

states that return reward. In complex domains with large state space and sparse reward, this

strategy of justifying actions in terms of future rewards maybe less effective than learn-

ing by observation. Moreover, replicating the problem solving style of an expert, even if

he/she makes sub-optimum decisions, is an important requirement for some applications

such as creating “believably human-like” artificial characters. Unlike learning by observa-

tion, none of the two approaches above are very suitable for that purpose, because their

decision evaluation criteria is not based on similarity to the expert but on the success in the

environment.

6. Conclusions and future work

We have described a framework to learn procedural knowledge from structured behavior

traces, hierarchical goal annotations parameterized with objects, and complex background

knowledge. We decomposed the “learning an agent program” problem into the problem of

learning individual goals and actions by assuming that they are represented with operators that

are arranged hierarchically. We operationalized learning to use these operators by defining

decision concepts that can be learned in a supervised learning setting. We have described an

episodic database formalism to compactly store structured behavior data, which was crucial

in testing our system in a large domain. We have partially implemented the first mode of our

framework, where the learning system uses only correct behavior data. We have conducted

three experiments to evaluate the learnability of individual decision concepts. In the first

experiment, we used a small data set of artificially created situations and demonstrated that

learning converges to the correct hypothesis with few correct positive and negative examples.

In the second experiment, we used a similar data set but this time instead of using correct

negative examples, we generated heuristic negative examples from correct positive examples.

Although the negative examples generated this way are inherently inaccurate, the learning

again converged to the correct hypothesis with an increasing number of examples. In the third

experiment, we used a large data set generated from the behavior of a hand-coded agent in a

complex domain. We again used correct positive examples and inaccurate heuristic negative

Springer



Mach Learn

examples and showed that the learning converges to the correct hypothesis with an increasing

number of examples, even though only correct agent behavior is used.

The behavior dataset used in our last experiment provides a challenging new testbed

for future ILP research. The search space is large, and feedback may be rare. Interested

researchers may obtain this dataset by contacting the first author. In general, learning from

structured data that changes over time is a rarely studied subject. Although we have used the

episodic database to efficiently represent and access the input data, we treated the situations

independently and used a generic ILP algorithm during learning. We believe that this kind of

relational data has special properties that can be exploited to improve learning. For example,

finding a generalization between two consecutive situations may be easier than finding a

generalization between independent situations because in the former case, we know which

objects correspond to each other.

A formal evaluation of our episodic database formalism is left for future work. We are

currently extending this formalism so that it not only compactly represents behavior data,

but also tests rules more efficiently by testing the rules on a range of situations at once.

We aim to implement the second execution cycle of our framework. We predict that the

behavior data obtained this way will provide valuable examples and improve the effectiveness

of learning. We also left the question of how the conflicting suggestions of different decision

concepts are resolved for future research. We believe that a secondary learning step can

address this issue.

Acknowledgments This work was partially supported by ONR contract N00014-03-10327.

References

Bain, M., & Sammut, C. (1999). A framework for behavioural cloning. In K. Furukawa, D. Michie, & S.
Muggleton (Eds.), Applied machine intelligence, machine intelligence, 15, Oxford University Press.

Benson, S., & Nilsson, N. (1995). Inductive learning of reactive action models. In A. Prieditis, & S. Russell
(Eds.), Machine learning: Proceedings of the twelfth international conference (pp. 47–54). San Francisco,
CA: Morgan Kaufmann.

Camacho, R. (1998). Inducing models of human control skills. In Machine Learning: ECML-98, 10th European
Conference on Machine (pp. 107–118). Germany: Springer.

DeJong, G. (ed.). (1993). Investigating Explanation-Based Learning. Boston: Kluwer.
DeJong, G., & Mooney, J. R. (1986). Explanation-based learning: An alternative view. Machine Learning,

1(2), 145–176.
Driessens, K., & Dzeroski, S. (2002). Integrating experimentation and guidance in relational reinforcement

learning. In C. Sammut, & C. Hoffmann (Eds.), Proceedings of the nineteenth international conference
on machine learning (pp. 115–122). San Francisco, CA: Morgan Kaufmann.

Džeroski, S., Raedt, L. D., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning,
43(1–2), 5–52.

Isaac, A., & Sammut, C. (2003). Goal-directed learning to fly. In T. Fawcett, & N. Mishra (Eds.), Proceedings
of the twentieth international conference. Menlo Park, CA: AAAI Press.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P. G., & Koss, F. V. (1999). Automated intelligent
pilots for combat flight simulation. AI Magazine, 20(1), 27–42.

Khardon, R. (1999). Learning to take actions. Machine Learning, 35(1), 57–90.
Könik, T., Pearson, D., & Laird, J. (2005). Learning through interactive behavior specifications. In G. D.

W. Aha, & G. Tecuci (Eds.), Mixed initiative problem-solving assistants: Papers from the 2005 fall
symposium, Tech. Report FS-05–07. Menlo Park, CA: AAAI Press.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: an architecture for general intelligence. Artificial
Intelligence, 33, 1–64.

Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., & Stokes, D. (2004). AI characters and directors for inter-
active computer games. In Proceedings of the sixteenth innovative applications of artificial intelligence
conference. Menlo Park, CA: AAAI.

Springer



Mach Learn

Michie, D., Bain, M., & Hayes-Michie, J. (1990). Cognitive models from subcognitive skills. In M. Grimble,
J. McGhee, & P. Mowforth (Eds.), Knowledge-based systems in industrial control. Stevenage: Peter
Peregrinus.

Michie, D., & Camacho, R. (1992). Building symbolic representations of intuitive real-time skills from per-
formance data. In Machine Intelligence 13 Workshop.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: a unifying
view. Machine Learning, 1(1), 47–80.

Moyle, S. (2003). Using theory completion to learn a robot navigation control program. In S. Matwin, &
C. Sammut (Eds.), Inductive logic programming, 12th international conference, revised papers, Lecture
notes in computer science, 2583 (pp. 182–197). Germany: Springer.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13, 245–286.
Newell, A. (1990). Unified theories of cognition. Harvard Univ. Press.
Otero, R. P. (2003). Induction of the effects of actions by monotonic methods. In T. Horváth (Eds.), Inductive

logic programming, 13th international conference, lecture notes in computer science, 2835 (pp. 299–310).
Germany: Springer.

Salomaki, B. Choi, D., Nejati, N., & Langley, P. (2005). Learning teleoreactive logic programs by observation.
In G.D.W. Aha, & G. Tecuci (Eds.), Mixed initiative problem-solving assistants: Papers from the 2005
fall symposium, Tech. Report FS-05–07. Menlo Park, CA: AAAI.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In D. Sleeman, & P. Edwards (Eds.),
Proceedings of the 9th international conference on machine learning (pp. 385–393). Morgan Kaufmann.

Segre, A. M. (1993). ARMS: Acquiring robotic assembly plans. In G. DeJong (Ed.), Investigating explanation-
based learning. Boston: Kluwer.

Srinivasan, A. (2003). The Aleph 5 Manual. http://web.comlab.ox.ac.uk/oucl/ research/areas/machlearn/
Aleph/.

Struyf, J., Ramon, J., & Blockeel, H. (2003). Compact representation of knowledge bases in ILP. In S. Matwin,
& C. Sammut (Eds.), Inductive logic programming, 12th international conference, revised papers, lecture
notes in computer science, 2583. Germany: Springer.

Šuc, D., & Bratko, I. (2000). Problem decomposition for behavioural cloning. In 11th European Conference
on Machine Learning, Lecture Notes in Computer Science, 1810 (pp. 382–391). Germany: Springer.

Urbančič, T., & Bratko, I. (1994). Reconstructing human skill with machine learning. In A.G. Cohn, (Eds.),
Proceedings of the 11th european conference on artificial intelligence (pp. 498–502). John Wiley and
Sons.

van Lent, M., & Laird, J. (2001). Learning procedural knowledge through observation. In Proceedings of the
International Conference on Knowledge Capture (pp. 179–186). New York: ACM Press.

van Lent, M. (2000). Learning task-Performance knowledge through observation, Ph.D. Thesis. Electrical
Eng. and Computer Science Dept, University of Michigan.

Wang, X. (1996). Learning planning operators by observation and practice. Ph.D. Thesis (Tech. Report CMU-
CS-96.154). Computer Science Department, Carnegie Mellon University.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot, A. (2004). Synthetic adversaries for urban combat
training. In Proceedings of the Sixteenth Innovative Applications of Artificial Intelligence Conference.
Menlo Park, CA: AAAI.

Springer


