
Using Diverse Cognitive Mechanisms for Action Modeling

John E. Laird (laird@umich.edu)
Joseph Z. Xu (jzxu@umich.edu)

Samuel Wintermute (swinterm@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract
Predicting the results of one’s own actions is a powerful
cognitive capability that can aid in determining which action to
take in a given situation. In this paper, we describe a task-
independent framework based on the Soar cognitive architecture
in which rules, episodic memory, semantic memory, mental
imagery, and task decomposition are available for predicting an
action’s consequences. We include results from two domains
and make predictions for human behavior based on these results.

Keywords: Action modeling; prediction; cognitive architecture

Introduction
When faced with a decision between alternative actions, an
intelligent agent may have sufficient knowledge to
immediately determine which choice is best. However, in
situations where directly available knowledge is insufficient
or in conflict, an agent can often use predictions of how its
actions will change the environment to make its decision.
We call the knowledge used to make such a prediction an
action model. Using this approach to make a decision
typically involves the following steps:
1. Choose one of the alternative actions to evaluate.
2. Create an internal representation of the situation.
3. Apply the action model to the internal representation to

generate a prediction.
4. Repeat for all other actions.
5. Choose the action that leads to the best predicted state.
This approach to decision making is ubiquitous in humans
(de Groot, 1965; Newell & Simon, 1972) and has been used
throughout artificial intelligence (AI) systems, where the
agent internally simulates multiple steps into the future. A
critical ingredient in this process is the action model: the
means by which the results of actions are predicted. Action
modeling is important because it allows an agent to move
beyond reactive behavior – an agent can plan and deliberate
about the implications of its actions before choosing one.

Historically, AI systems have used rule-like structures as
action models, such as STRIPS operators (Fikes & Nilsson,
1972). Cognitive science research has addressed action
modeling, but it has typically been isolated within specific
cognitive processes, such as mental imagery (Johnson,
2000; Wintermute & Laird, 2009) or episodic memory
(Atance & O’Neill 2005, Schacter & Addis 2007).

Rather than focus on one particular approach to action
modeling, we investigate the problem in general. We
propose that different combinations of memory and
processing systems can be used for action modeling, and
that domain characteristics and the agent’s knowledge

determine which mechanisms are used for a specific task.
The mechanisms we propose include rule-based procedural
knowledge, episodic knowledge, semantic knowledge,
mental imagery, action decomposition, and arbitrary
combinations thereof. These mechanisms vary along many
dimensions including generality, reportability, learnability,
computational expense, and the types of problems where
they are appropriate. Forbus & Gentner (1997) have
previously posited a similar diversity of processing to
support mental models, although they did not focus on
detailed architectural mechanisms as we do here.

Included in our work is task-independent knowledge that
dynamically combines these mechanisms, implemented
within Soar (Laird, 2008). Soar has the requisite
representational capabilities to support the diverse forms of
memories, processing units and knowledge required for
action modeling. In the next section, we give an overview of
Soar and our approach to using action models in support of
decision making. This is followed by descriptions of the
different forms of action modeling, with demonstration of
them on a simple blocks world task. We then demonstrate
them together on a simple board game, and analyze their
relationship to human behavior.

Framework for Action Modeling in Soar
Figure 1 shows the structure of Soar, including its long-term
and short-term memories and processing components.
Working memory is a shared, symbolic memory that
maintains the agent’s primary representation of the current
situation. Long-term symbolic memories hold procedural,
semantic, and episodic knowledge, which are retrieved
based on either the total contents of working memory (for

+

Figure 1: Structure of Soar

Semantic

Visual LT Memory

Body

Symbolic Long-Term Memories
Procedural

Symbolic Short-Term Memory D
ecision

Procedure

Chunking

Episodic

A
pp

ra
isa

l
D

et
ec

to
r

Reinforcement
Learning

Perception Action Mental Imagery

Perceptual STM

Semantic
Learning

Episodic
Learning

procedural) or cue structures created in working memory
(for episodic and semantic). Soar has a non-symbolic,
spatially-based perceptual short-term memory (STM) from
which symbolic information can be extracted into working
memory. This memory is the medium of mental imagery.

Behavior in Soar is driven by rules stored in procedural
memory. Rules that successfully match the contents of
working memory fire in parallel. Operators are the locus of
sequential behavior in Soar and only a single operator can
be selected at a time.1

If there is insufficient knowledge to select or apply an
operator, an impasse arises, and a substate is created. Within
the substate, operators can be proposed, selected, and
applied to resolve the impasse. A side effect of resolving an
impasse in a substate is that Soar builds a rule that
summarizes the processing in the substate. This process is
called chunking. The learned rule fires in similar situations
so that the same impasse is avoided in the future.

 Operators are implemented via rules
that propose, evaluate, and apply them. Rules that propose
and evaluate an operator create preferences, while rules that
apply an operator modify elements in working memory
when that operator is selected.

Conceptually, operators are either external, in that they
initiate action in the environment, or internal, in that they
change the internal state of an agent. Throughout this paper,
we call external operators actions, so that an action model
refers to an internal model of the changes that result from
the application of an external operator.

Figure 2 shows how action modeling arises in Soar. When
an agent is unable to make a decision using its directly
available knowledge, it internally simulates the effects of
proposed actions to aid in decision making. In this example,
the agent is attempting to create a stack of blocks, with A on
B, B on C, and C on the table. In the upper left corner of the
figure, the agent’s state is shown, with the lower half
corresponding to a representation of the problem state as it
might be in the agent’s perceptual short-term memory. The
top half of the state shows the symbolic relations that the
agent extracts from perception, and it is these relations that

1 Operators in Soar correspond most closely to rules in ACT-R

(Anderson, 2007); however, operators in Soar provide a richer
representation for organizing action than do rules in ACT-R because of the
independent representations of knowledge (as rules) for proposing,
selecting, and executing the actions associated with an operator.

are available in working memory.
We assume the agent has sufficient knowledge to propose

the three legal actions for this state: move B onto C, move C
onto B, and move C onto the table. However, there are no
rules to create preferences, so an impasse arises (1), and
Soar automatically creates a substate (2).

To resolve this impasse, the agent tries out each proposed
action on a copy of the state and then evaluates the quality
of the result. Task-independent knowledge (TIK), encoded
as rules, carries out this strategy. The only additional task-
dependent knowledge required in this processing are action
models and state evaluations, both of which can use the
various forms of knowledge presented below.

As shown in Figure 2, following the impasse, operators
are selected (at random) to evaluate the actions. In the
example, move C to the table is evaluated first (3). In this
case, the agent does not have rules to evaluate this action
directly, and thus, another impasse arises. In the resulting
substate (4), the TIK copies the contents of the original task
state and uses a model of the action being evaluated to
predict the resulting state. Once this state is computed (5),
the agent must also have some knowledge (usually encoded
as rules) for evaluating it. In this case, we use an evaluation
that counts the number of blocks in their desired positions,
which assigns the state an evaluation of 1. The creation of
this evaluation terminates the evaluate operator, which is
followed by the selection of operators to evaluate the
remaining actions (6, 7). When all the evaluations are
computed, preferences are created for the actions, leading to
the selection of the action to move C to the table, and
resolving the first impasse. The action is then performed.
Chunking learns rules for evaluating each of the actions
(from the substates where the action modeling occurs), and
for creating the preferences based on those evaluations.

Different Forms of Action Modeling
In this section, we describe how action modeling can be
implemented using different processing and memory
systems, with the blocks world serving as an example.

Procedural Knowledge
The most direct way to encode an action model in Soar is as
rules. These rules test features of the state, features of the
selected action, and that the state is an internal copy of the
task state. They modify the internal copy in the same way
the external action would modify the real state. For complex
actions, the model can be implemented with multiple rules
that fire in parallel and/or in sequence.

Episodic Memory
Soar has an episodic memory that automatically stores
“snapshots” of working memory over time (Nuxoll & Laird,
2007). Soar’s episodic memory is an idealization of human
episodic memory, and emphasizes basic functionality, such
as efficient storage and associative retrieval of temporally
organized episodes. For action modeling, episodic memory
requires that the agent has a previous experience when the
action being considered was applied in the environment.

evaluate(move(B, C))

(on A Table)
(on B Table)

(on C A)

(on A Table)
(on B Table)

(on C A)

(on A Table)
(on B Table)
(on C Table)

prefer move(C, Table) move(C, Table)
move(C, B)
move(B, C)

evaluate(move(C, Table)) evaluate(move(C, B))

move(C, Table)

evaluation = 1

C
B A

2

1

3

4

Figure 2: Soar processing using an action model.

5

6 7

The agent can then use its memory of that experience to
make a prediction as to what will happen when the operator
is applied to a similar situation (Xu & Laird, 2010).

When episodic memory is used, the behavior of the agent
is as follows. The first time the agent gets to the point where
the action is selected in Figure 2, an impasse would arise
because there is no rule to apply the action. In the resulting
substate (not shown in Figure 2), the TIK for using episodic
memory selects an operator which creates a cue consisting
of the task state with the action selected, in an attempt to
retrieve a similar previous episode. Once the cue is created,
the episodic memory system retrieves the most recent, best
match to the cue and reconstructs it in working memory. If
no match is found, then this approach to action modeling
fails, and the agent must either try other methods, or assign
a default evaluation value to the action being evaluated.
Chunking does not create rules to summarize processing in
substates where episodic memory retrieval failed.

If the retrieval is successful, the agent then retrieves the
following episode. The agent continues retrieving
subsequent episodes until it finds one where the action is no
longer selected, which indicates the action has terminated.
The agent then compares the task state in that episode to the
current task state and modifies the internal copy of the task
state to reflect any changes. Chunking creates a rule that
summarizes the processing, so that in the future, the
retrievals are not required.

Figures 3 and 4 compare results for using the rule-based
versus the episode-based approaches to action modeling.
Both figures show the progression of performance across
four identical trials of the blocks world problem described
above, and both use log scales for the y-axis. Figure 3
shows the number of external actions that the agent takes to
solve the problem, while Figure 4 shows the number of
decisions (processing cycles in Soar). These results are not
intended to precisely model human behavior (for example,
we are not including time for perception or motor actions);
however the comparisons should be meaningful in
predicting qualitative differences across methods and trials.

In Figure 3, the top line shows the average performance
of an agent using episode-based action modeling where
episodes are not learned, so that a random selection is
always made. The next line shows the performance when

episodes are being learned. Initially there are no relevant
episodes, so the selections are random, but with experience,
the episodes accumulate and the agent’s performance
improves as it is able to correctly predict future states and
select the correct action, until finally it achieves optimal
performance. Even the first trial gets some improvement
from learned episodes. The bottom line shows the
performance with the rule-based action model, which
always makes the correct predictions.

Figure 4 shows the performance in terms of decisions, not
just external actions. The top line corresponds to the steps
required when episodes are not learned. The next line shows
the performance as episodes are learned. The dashed line
that starts at the same point for trial 1 shows that when
chunking is used with episodic memory, it eliminates the
need for episodic retrievals over time as the agent learns
action models based on rules that replace those based on
episodic memory. The agent eventually learns rules that
choose actions directly, eliminating the need for action
models. Thus, there is a combined gain with episodic
memory improving solution quality, and chunking
improving the efficiency of the problem solving process.
Note that external actions take orders of magnitude more
time to execute than internal reasoning steps, so the
differences are more pronounced in real environments.

The next line shows the performance for the rule-based
action model without chunking, which serves as the optimal
base line for action modeling. The final line shows the
impact of using chunking with the rule-based action model,
where after one trial, rules are learned that eliminate the
need for the action model. As these figures show, in only a
few trials, the combination of episodic memory and
chunking converts an agent with little task knowledge into
one that solves the problem in few actions (due to episodic
memory-based action modeling), while eliminating the need
for purely internal decisions (due to chunking).

Semantic Knowledge
Whereas episodic memory is based on specific experiences,
semantic memory consists of decontextualized facts – such
as knowledge about objects and their structure, independent
of when they were experienced. This makes semantic
knowledge more difficult to learn than episodic knowledge,

1

10

100

1000

10000

1 2 3 4

Episodic Memory Action Model

Rule-based Action Model

Episodic Retrieval Failure

1

10

100

1000

10000

1 2 3 4

Episodic Memory Action Model

Episodic Retrieval Failure

Episodic Mem. w/ chunking

Rule-based Action Model

Rule-based w/ chunking

Figure 3: External actions taken across multiple trials. Figure 4: Total decisions taken across multiple trials.

but more useful across a variety of tasks. Soar as yet does
not have a theory of how semantic memories are
automatically learned, and instead Soar agents must
deliberately store semantic data they encounter.

The use of semantic memory for action modeling is
analogous to the use of episodic memory – when there is no
action model encoded as rules, an impasse arises, and in the
resulting substate, an operator is selected which queries
semantic memory to retrieve knowledge that can aid in
predicting the result of applying that action. Semantic
memory covers a broad range of knowledge, and one can
imagine many ways it can aid in action modeling. For
example, the fact boiling kettles are hot can be useful when
predicting the consequence of touching one. Here, we use
declarative instructions that specify how to modify the
internal task state to model the action.

To use semantic memory, the agent selects an internal
operator that initiates a retrieval for instructions related to
the action being evaluated. If the relevant instructions are
retrieved, TIK selects the “interpret” operator, whose
purpose is to apply the instructions to the copy of the task
state. The interpret operator is not implemented directly in
rules, but leads to a substate where operators are selected
and applied for each of the instructions. The processing in
the substate allows for arbitrarily complex implementations
of instructions, and is similar in spirit to how declarative
instructions are used in ACT-R (Anderson 2007; Best &
Lebiere 2003); however, in those cases the instructions are
interpreted to control the execution of a task, while here
they are used to model the execution of an action.

The format of declarative instructions is like that of an
imperative programming language or a recipe. We have
developed task-independent declarative representations for
common control flow instructions and state modifications.
In the blocks world example, instructions specify additions
and deletions of predicates. The rules that interpret those
instructions assume a specific representation of predicates in
working memory. Figure 5 shows the instructions for
moving a block. When using semantic memory, the number
of decisions decreases after one trial, as chunking creates
action model and action selection rules.

Mental Imagery
Mental imagery involves the maintenance of a separate
memory structure grounded in perception, which represents
objects and their spatial properties. While the contents of the
memory is mostly created bottom-up from perception, an
agent can create new “imagined” structures and manipulate
them by operations such as translation, rotation, and scaling,
as well as simulate complex motions, such as the path of a
car (Wintermute, 2009). The agent can extract spatial
predicates from perceptual memory, such as the relative
positions of objects and whether they collide. When applied

to perceived structures, this can be used to create the initial
symbolic representation of the problem. When applied to
imagined structures, symbolic consequences of actions can
be predicted. The use of mental imagery for action modeling
is restricted to actions that involve spatial motion, or actions
that can be mapped onto such motion.

As in the use of episodic and semantic memory, mental
imagery is employed when there are no rules for an action
model, and an impasse arises. Mental imagery takes
advantage of the spatial representation and maps the action
to be modeled onto imagery operations. Making the
connection between the action and mental imagery
operations can involve accessing knowledge in semantic
memory, or such knowledge can be encoded in rules. In our
example, the agent knows that to move a block, it should
imagine it centered on top of the destination block. Once the
perceptual memory has changed, relevant predicates can be
extracted, creating a symbolic description of the situation
that serves as the resulting state.

Mental imagery involves processing that cannot be
analyzed by chunking because the results of the processing
are not uniquely determined by the symbolic structures
available in working memory. Therefore, chunking does not
create rules that summarize mental imagery processing. This
is similar to ACT-R avoiding rule compilation for
processing over external interactions (Anderson, 2007).

Although not as general as the other methods, mental
imagery has wide applicability because of the ubiquity of
spatial problems. Imagery-based action models are effective
in a range of problems, from simple tasks in the blocks
world (Wintermute & Laird, 2009) to complex tasks such as
path planning for cars (Wintermute, 2009).

Action Decomposition
The final alternative approach is to model an action by
decomposing it into simpler actions that can be modeled
using any of the approaches described above. In Soar,
hierarchical operator decomposition is ubiquitous, and arises
when complex operators are selected, and then implemented
in substates by simpler operators. In the blocks world
example, when move-block is selected, it can be
decomposed into pickup-block and put-down-block actions.
When these actions are selected, any of the previous
methods can be used as models for them, including further
decomposition. One typical use of action decomposition is
to take an action that involves complex spatial interactions
and decompose it into simpler parts until those parts can be
mapped onto imagery operations. Chunking will create rules
for the action model of a complex operator as long as mental
imagery was not used in any substate processing.

A Policy for Controlling Action Modeling Approaches
We have presented these action modeling approaches as
alternatives, with no attention to when each would be used
in an integrated agent. Inherent to Soar is that it uses rules
for action modeling if they are available. That is the default
behavior and it is not under control of the agent. When rules
are not available, an impasse arises, and in the ensuing

Figure 5: Instructions encoded in semantic memory.

Move-block(blk, dest):
 1. Del-predicate ontop(blk, x) ∀ x ≠ dest
 2. Add-predicate ontop(blk, dest)

substate, operators are proposed for the alternative methods,
as well as any operators that decompose the selected action.
This structure introduces an extra level of deliberation,
which adds flexibility at minimal cost to the agent (the
results in Figure 4 are without this additional layer).
Although it may be possible for an agent to learn when best
to use each method, that could be a difficult learning
problem and we leave it to future research. As an
alternative, we encoded a simple ordering preference for
these approaches in the TIK and use this method in the
board game demonstration below.

Integrated Demonstration
To provide additional illustration of how these approaches
work, both independently and in unison, we present an agent
that plays a simple board game, shown in Figure 5. In this
game, the agent must slide the hexagonal marker on the left
along the directional paths to numbered nodes until it gets to
the end (node 10). As the marker slides along a path, it may
touch one of three different objects, labeled X, Y, and $. If
the marker hits an object, the agent gets points. The agent
has semantic knowledge that the $ is worth 20 points, but
does not initially know the values of the other objects (X is
worth 10 points and Y is worth 5). The goal is to get to the
end with the highest possible score, which is achieved via
path A, C, F, H, I, K. We assume that the agent can sense
the marker position, the paths, and the objects, but it does
not a priori know whether the marker will hit a nearby
object as it slides along a path.

To perform the task, the marker starts at position 1, and
the agent is faced with making a decision to take path A or
B. To make this decision, the agent will attempt to predict
the result of each move. At this point, the agent does not
have any action model rules, nor does it have any episodes
or relevant information in semantic memory. However, it
can use mental imagery to imagine moving the marker along
each of the paths. Mental imagery predicts that if it moves
along A, it will intersect with object X, while for B, it will
intersect with Y. In both cases, it does not know how
encountering those objects will affect its score, so it chooses
at random. We assume it picks path B. It executes that
action, encountering Y and getting 5 points.

Once at 3, the agent picks path D to get to 4. Here, the
decision is between going along path E or F. This time, after
it uses mental imagery to detect that it will encounter object
Y, it then uses episodic memory to recall that the last time it
encountered object Y it received 5 points. When it considers

path F, it uses imagery to predict it will encounter object $,
and then semantic memory to predict that it will receive 20
points. Based on these evaluations, it chooses path F. It
receives 20 points, moves to 6 and then 7. At this point, it
uses a combination of mental imagery and episodic memory
to predict the result of moving to 8 (10 points). In imagining
moving to 9, imagery shows that it will not encounter Y, so
it will get a score of 0. It selects moving to 8, and then
finishing by moving to 10, getting a total score of 35.

The next time the agent plays the game, it uses episodic
memory to predict the results of the paths it took the first
time (B, F, I). Since it has no episodic memories of moving
on paths A, E, and J, and cannot chunk over imagery action
models, it must continue to use imagery for those paths.2

Figure 7 shows the progression of how the agent’s
decisions are distributed across using imagery versus
episodic memory over multiple trials. The highest line
shows the total number of internal reasoning steps. The
bottom two lines are the number of decisions that involve
imagery and episodic memory operations. In the first trial,
imagery dominates as the agent has no prior experiences it
can draw on. In the second run, the agent must still use
imagery for those cases where it has not taken a path, but it
uses episodic memory for those cases where it had prior
experiences. Although not evident in the graph, chunking
replaces the use of semantic memory with a rule. For the
third run, chunking decreases the total number of steps by
eliminating the use of episodic memory. In the final trial,
some imagery is still required for those paths the agent
never actually tried, and episodic memory is no longer used
as it has been replaced by rules learned through chunking.

Thus, in its second attempt, it will use imagery and episodic
memory to predict a 10 score for A, while it will use only
episodic to predict a score of 5 for B. Similar use of imagery
and episodic memory will be used at nodes 4 and 7. As a
result, the optimal path is taken, resulting in a score of 40.

Predictions
From these examples and an understanding of the

approach, we can make some predictions about the behavior

2 Soar’s episodic memory does not capture subgoal processing, so the

agent has no episodic memories of previous predictions. Otherwise, these
steps could also be removed.

0

50

100

150

200

250

1 2 3 4

total decisions

imagery decisions

epmem decisions

1

3

5

6 9

8 2

4 7 10

A

B

C

D

E

F H

G I

J

K

L

X X Y

Y

Y

$

Figure 6: Board game task performed by agent.

Figure 7: Agent performance over multiple trials.

of an agent with the capabilities we described.
In a spatial environment, an agent initially relies on

mental imagery for action modeling (and semantic
knowledge if it is available). As the agent gains experience,
it switches to using episodic memory when possible. With
further experience, rules learned via chunking replace
episodic memory, and eventually rules are learned that
choose actions directly, eliminating action modeling.

Concurrent with learning, the agent’s ability to report on
its internal reasoning should change, as different structures
become available in working memory (which is the basis for
our predictions about reporting). Initially, for spatial
problems, the agent can report imagining spatial situations,
which then transitions to reports of using episodic memory
(things it “remembers”). When using semantic memory, it
can report on the instructions and facts it is using (things it
“knows”). With practice, the agent loses the ability to report
on its reasoning as intermediate structures are no longer
generated in working memory and processing is done purely
with rules. The rules produce behavior without the creation
of a declarative trace that the agent can report.

As shown in Figure 7, our model predicts there are also
changes over time in terms of which mechanisms are used
in action modeling, and thus decision making. The obvious
prediction is that in humans the brain areas used for action
modeling, and thus decision making, will change based on
characteristics of the task (whether it is spatial or symbolic)
and a subject’s experience (whether it has access to relevant
semantic, episodic, or procedural knowledge).

Conclusions
The major claim of this paper is that intelligent agents,
including humans, have a variety of available mechanisms
that can be used to predict the results of their actions in
service of decision making. A related claim is that internal
prediction does not occur in any specific architectural
module, but results from a combination of characteristics of
the domain, the agent’s background knowledge, prior
experience, and the agent’s available memories and
processing elements. We have demonstrated two agents in
two domains using rules, episodic memory, semantic
memory, mental imagery, and action decomposition for
action modeling. Although the domains are simple, the
results predict significant changes in behavior as knowledge
accumulates in episodic memory and is compiled into rules.

Central to achieving these results are the various
memories and processing units in Soar as presented in
Figure 1, as well as the task-independent knowledge that
controls the use of these knowledge sources. A critical
component of Soar’s ability to support these methods is its
employment of impasses when knowledge is incomplete.
Impasses are critical for identifying when action modeling is
necessary (a tie among competing actions) and for invoking
alternative approaches when rule-based action modeling
knowledge is missing. In addition, substates provide the
representational structure needed to support retrieving and
combining knowledge without disrupting the state of the

problem being attempted. These components appear to be
missing, or at least difficult to achieve, in other
architectures, and it would be informative to attempt to
duplicate the qualitative structure achieved here in other
cognitive architectures.

Acknowledgment
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford University Press.
Atance, C. M., and O'Neill, D. K. (2005). The emergence of

episodic future thinking in humans. Learning and
Motivation 36(2): 126-144.

Best, B. J. and Lebiere, C. (2003). Teamwork,
Communication, and Planning in ACT-R Agents
Engaging in Urban Combat in Virtual Environments,
International Joint Conference on Artificial Intelligence.

de Groot, A. D. (1965). Thought and choice in chess. The
Hague: Mouton Publishers.

Fikes, R., and Nilsson, N. (1971). STRIPS: A new approach
in the application of theorem proving to problem solving.
Artificial Intelligence 2, 189-208.

Forbus, K. and Gentner, D. (1997). Qualitative mental
models: Simulations or memories? Proceedings of the
Eleventh International Workshop on Qualitative
Reasoning. Cortona, Italy.

Johnson, S. H. (2000). Thinking ahead: the case for motor
imagery in prospective judgements of prehension.
Cognition, 74(1), 33-70.

Laird, J. E. (2008). Extending the Soar Cognitive
Architecture. Proceedings of the First Conference on
Artificial General Intelligence.

Newell, A., and Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Nuxoll, A. M. and Laird, J. E. (2007). Extending Cognitive
Architecture with Episodic Memory. Proceedings of the
22nd National Conference on Artificial Intelligence.

Schacter, D. L, and Addis, D. R. (2007). The cognitive
neuroscience of constructive memory: remembering the
past and imagining the future. Philosophical Transactions
of the Royal Society of London. Series B, Biological
Sciences 362, no. 1481 (May 29): 773-786.

Wintermute, S. (2009). Integrating Reasoning and Action
through Simulation. Proceedings of the Second
Conference on Artificial General Intelligence.

Wintermute, S., and Laird, J. E. (2009). Imagery as
Compensation for an Imperfect Abstract Problem
Representation. Proceedings of the 31st Annual
Conference of the Cognitive Science Society.

Xu, J. Z. & Laird, J. E. (2010). Instance-Based Online
Learning of Deterministic Relational Action Models,
Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence.

	Using Diverse Cognitive Mechanisms for Action Modeling
	John E. Laird (laird@umich.edu)
	Joseph Z. Xu (jzxu@umich.edu)
	Samuel Wintermute (swinterm@umich.edu)
	University of Michigan, 2260 Hayward Street
	Ann Arbor, MI 48109-2121 USA
	Abstract
	Introduction
	Framework for Action Modeling in Soar
	Different Forms of Action Modeling
	Procedural Knowledge
	Episodic Memory
	Semantic Knowledge
	Mental Imagery
	Action Decomposition
	A Policy for Controlling Action Modeling Approaches

	Integrated Demonstration
	Predictions
	Conclusions
	Acknowledgment
	References

