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Abstract 
This paper represents a first step in attempting to engage the 
research community in discussions about evaluation of 
human-level intelligent systems. First, we discuss the 
challenges of evaluating human-level intelligent systems. 
Second, we explore the different types of claims that are 
made about HLI systems, which are the basis for 
confirmatory evaluations. Finally, we briefly discuss a range 
of experimental designs that support the evaluation of 
claims.  

Introduction 
One of the original goals of Artificial Intelligence (AI) was 
to create systems that had general intelligence, able to 
approach the breadth and depth of human-level intelligence 
(HLI). In the last five years, there has been a renewed 
interest in this pursuit with a significant increase in 
research in cognitive architectures and general intelligence 
as indicated by the first conference on Artificial General 
Intelligence. Although there is significant enthusiasm and 
activity, to date, evaluation of HLI systems has been weak, 
with few comparisons or evaluations of specific claims, 
making it difficult to determine when progress has been 
made. Moreover, shared evaluation procedures, testbeds, 
and infrastructure are missing. Establishing these elements 
could bring together the existing community and attract 
additional researchers interested in HLI who are currently 
inhibited by the difficulty of breaking into the field.  
 
To confront the issue of evaluation, the first in a series of 
workshops was held in October 2008 at the University of 
Michigan, to discuss issues related to evaluation and 
comparison of human-level intelligent systems. This paper 
is a summarization of some of the discussions and 
conclusions of that workshop. The emphasis of the 
workshop was to explore issues related to the evaluation of 
HLI, but to stop short of making proposals for specific 
evaluation methodologies or testbeds. That is our ultimate 
goal and it will be pursued at future workshops. In this first 
workshop, we explored the challenges in HLI evaluation, 
the claims that are typically made about HLI, and how 
those claims can be evaluated.1 

                                                           1For an in depth and more complete discussion of evaluation of AI 
systems in general, see Cohen (1995). 

 

Challenges in Evaluating HLI Systems 

Defining the goal for HLI 
One of the first steps in determining how to evaluate 
research in a field is to develop a crisp definition its goals, 
and if possible, what the requirements are for achieving 
those goals. Legg and Hutter (2007) review a wide variety 
of informal and formal definitions and tests of intelligence. 
Unfortunately, none of these definitions provide practical 
guidance in how to evaluate and compare the current state 
of the art in HLI systems. 
 
Over fifty years ago, Turing (1950) tried to finesse the 
issue of defining HLI by creating a test that involved 
comparison to human behavior, the Turing Test. In this 
test, no analysis of the components of intelligence was 
necessary; the only question was whether or not a system 
behaved in a way that was indistinguishable from humans. 
Although widely known and popular with the press, the 
Turing Test has failed as a scientific tool because of its 
many flaws: it is informal, imprecise, and is not designed 
for easy replication. Moreover, it tests only a subset of 
characteristics normally associated with intelligence, and it 
does not have a set of incremental challenges that can pull 
science forward (Cohen, 2005). As a result, none of the 
major research projects pursuing HLI use the Turing Test 
as an evaluation tool, and none of the major competitors in 
the Loebner Prize (an annual competition based on the 
Turing Test) appear to be pursuing HLI.  
 
One alternative to the Turing Test is the approach taken in 
cognitive modeling, where researchers attempt to develop 
computational models that think and learn similar to 
humans. In cognitive modeling, the goal is not only to 
build intelligent systems, but also to better understand 
human intelligence from a computational perspective. For 
this goal, matching the details of human performance in 
terms of reaction times, error rates, and similar metrics is 
an appropriate approach to evaluation. In contrast, the goal 
of HLI research is to create systems, possibly inspired by 
humans, but using that as a tactic instead of a necessity. 
Thus, HLI is not defined in terms of matching human 



reaction times, error rates, or exact responses, but instead, 
the goal is to build computer systems that exhibit the full 
range of the cognitive capabilities we find in humans.  

Primacy of Generality 
One of the defining characteristics of HLI is that there is 
no single domain or task that defines it. Instead, it involves 
the ability to pursue tasks across a broad range of domains, 
in complex physical and social environments. An HLI 
system needs broad competence. It needs to successfully 
work on a wide variety of problems, using different types 
of knowledge and learning in different situations, but it 
does not need to generate optimal behavior; in fact, the 
expectation is it rarely will. This will have a significant 
impact on evaluation, as defining and evaluating broad 
competency is more difficult than evaluating narrow 
optimality. 
 
Another aspect of generality is that, within the context of a 
domain, an HLI system can perform a variety of related 
tasks. For example, a system that has a degree of 
competence in chess should be able to play chess, teach 
chess, provide commentary for a chess game, or even 
develop and play variants of chess (such as Kriegspeil 
chess). Thus, evaluation should not be limited to a single 
task within a domain.  

Integrated Structure of HLI Systems 
Much of the success of AI has been not only in single 
tasks, but also in specific cognitive capabilities, such as 
planning, language understanding, specific types of 
reasoning, or learning. To achieve HLI, it is widely 
accepted that a system must integrate many capabilities to 
create coherent end-to-end behavior, with non-trivial 
interactions between the capabilities. Not only is this 
challenging from the standpoint of research and 
development, but it complicates evaluation because it is 
often difficult to identify which aspects of a system are 
responsible for specific aspects of behavior.  
 
A further complication is that many HLI systems are 
developed not by integrating separate implementations of 
the cognitive capabilities listed earlier, but instead by 
further decomposing functionality into more primitive 
structures and process, such as short-term and long-term 
memories, primitive decision making and learning, 
representations of knowledge, and interfaces between 
components, such as shown in Figure 1. In this approach, 
higher-level cognitive capabilities, such as language 
processing or planning are implemented in a fixed 
substrate, differing in knowledge, but not in primitive 
structures and processes. This is the cognitive architecture 
approach to HLI development (Langley, Laird, & Rogers, 
in press), exemplified by Soar (Laird, 2008) and ICARUS 
(Langley & Choi, 2006). 
 

This issue is clear in research on cognitive architectures 
because they make the following distinctions: 
• The architecture: the fixed structure that is shared across 

all higher-level cognitive capabilities and tasks. 
• The initial knowledge/content that is encoded in the 

architecture to achieve capabilities and support the 
pursuit of a range of tasks. 

• The knowledge/content that is learned through 
experience. 

 
For any HLI system, it is often difficult to disentangle the 
contributions of the fixed processes and primitives of the 
systems to the system’s behavior from any initial, domain-
specific content and the learned knowledge, further 
complicating evaluation. There is a concern that when 
evaluating an agent’s performance, the quality of behavior 
can be more a reflection of clever engineering of the 
content than properties of the HLI systems itself. Thus, an 
important aspect of evaluation for HLI is to recognize the 
role of a prior content in task performance and attempt to 
control for such differences in represented knowledge. 

Long-term Existence 
Although not a major problem in today’s implementations, 
which typically focus on tasks of relatively short duration, 
HLI inherently involves long-term learning and long-term 
existence. It is one thing to evaluate behavior that is 
produced over seconds and minutes – it is possible to run 
many different scenarios, testing for the effects of 
variation. When a trial involves cumulative behavior over 
days, weeks, or months, such evaluation becomes 
extremely challenging due to the temporal extents of the 
experiments, and the fact that behavior becomes more and 
more a function of experience.  

Claims about HLI 
We are primarily interested in constructive approaches to 
HLI; thus, our claims are related to the functionality of our 
systems, and not their psychological or neurological 
realism. Achieving such realism is an important scientific 
goal, but one of the primary claims made by many 
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Figure 1: Structure of a Notional HLI System.



practitioners in HLI is that it can be achieved without an 
exact reimplementation of the human mind and/or brain. 
 
A major step in empirical evaluation is to consider the 
claims we want or expect to make about the systems we 
develop. Only by knowing these claims can we define 
appropriate experiments that test those claims and let us 
determine what we need to measure in those experiments. 
An explicit claim (hypothesis) is usually about the 
relationship between some characteristic of a HLI system 
and its behavior. To test the hypothesis, a manipulation 
experiment can be performed in which the characteristic 
(the independent factor) is varied and changes in behavior 
along some dimensions (dependent variables) are 
measured. Many of the difficulties described earlier arise 
because of the types of claims that we as researchers are 
attempting to make in the pursuit of HLI. 

HLI System Claims 
There are varieties of claims that can be made about HLI at 
the systems level. We highlight four types of claims below: 
 
1. A computer system (HLI1) can achieve some type of 

behavior or cognitive capability related to HLI. There 
are many examples of this type of claim from the early 
history of cognitive architectures. For example, 
cognitive architectures were used to illustrate 
capabilities such as associative retrieval and learning, 
improvements in performance with experience, and the 
“emergence” of so-called high-level capabilities, such as 
planning or natural-language comprehension, from the 
primitives of the architecture. Such a claim is invariably 
a sufficiency claim, where the structure of the agent is 
not claimed to be the only way of achieving the desired 
behavior (a necessity claim). These claims are generally 
made within the context of some class of environments, 
tasks, and an agent’s ability to interact with its 
environment. A few cases where necessity claims have 
been made about the general properties of architectures 
such as Newell and Simon’s (1976) symbol system 
hypothesis. 

2. A modification of a system (HLI1′) leads to expanding 
the set of problems the system can solve or improving 
behavior along some dimension related to HLI across a 
range of tasks (see section on dependent variables for a 
discussion of metrics related to behavior). For example, 
the progression from version 7 of Soar to version 8 led 
to improvements in system robustness and learning 
capability in Soar (Wray & Laird, 2003). This is 
probably the most common claim, as it is part of the 
standard practice of systematically improving and 
extending the capabilities of an HLI system.  

3. One system (HLI1) differs from another system (HLI2) 
in the set of problems that can be solved or in its 
performance. This claim usually involves comparing 
two systems and is currently less common, as it involves 
creating two separate systems and applying them to 
similar tasks. Once notable example of systematic 

comparison was the Agent Modeling and Behavior 
Representation (AMBR) program, sponsored by the Air 
Force Research Laboratory (Gluck & Pew, 2005). 
AMBR compared four different architectures on a few 
tasks in a single task domain. One lesson of AMBR is 
the importance and difficulty of controlling for a priori 
content, as suggested previously. The HLI community is 
capable of descriptive and analytical comparisons of 
architectures (e.g., see Jones & Wray, 2006) but 
empirical comparison of architectures and HLI systems 
(as opposed to example instances in single task 
domains) is currently infeasible. 

4. One system (HLI1) has behavior similar along some 
relevant dimension to human behavior (H1). This is a 
special case of 3 above, where human behavior provides 
the target metric and the emphasis is usually on 
similarity. Even though we are concentrating on the 
functionality of HLI systems, humans often provide the 
best yardstick for comparison. However, even in the 
cognitive modeling community, evaluation is typically 
focused on model evaluation rather than evaluation of 
the underlying system. Anderson and Lebiere (2003) 
offer suggestions for more systematic evaluation of the 
paradigm supporting task models, which may also 
provide a framework for a near-term, descriptive 
approach to HLI evaluation. 

 
There will often be a hierarchy of claims. Stronger claims 
are usually reserved for general properties of the 
architecture, such as that symbol systems are necessary in 
order to achieve general competence. Claims about the 
general properties of a specific component in relation to 
achieving competency will usually be weaker sufficiency 
claims. One can also make claims about specific 
algorithms and data structures, such as that the RETE 
algorithm achieves nearly constant match time even as the 
number of rules grows (Doorenbos, 1994).  

Independent Variables 
Central to claims are that there is some relationship among 
different variables, in particular that varying the 
independent variables leads to changes in the dependent 
variables. In HLI systems, the independent variables often 
fall in three classes: 
• Components of the overall system: As components or 

modules are added, removed, or modified, it is claimed 
that there will be changes in behavior. With these types 
of independent variables, there often is not an ordering – 
these are categorical and not numeric, so that results are 
not summarized on a graph in which the values of the 
dependent variables can be connected with lines.  

• Amount of knowledge: Knowledge is varied to 
determine how effectively the system can use or process 
knowledge to guide its behavior. One challenge is to 
compare knowledge across systems, given their different 
representations. However, within a given architecture, it 
is usually easy to measure the impact of knowledge by 



comparing behavior with and without specific 
knowledge elements. 

• System parameters: Many systems have parameters that 
affect their behavior, such as the learning rate in a 
reinforcement learning agent. This leads to parametric 
studies that involve systematic variation of system 
parameters. The current state-of-art in computational 
cognitive modeling provides examples of how much 
parametric exploration is possible and offers glimpses 
into how those explorations can inform one’s evaluation 
of contributions to overall behavior. 

 
In addition to changes in the HLI systems, many claims 
concern how changes in the environment or task influence 
the behavior of an HLI system. For such claims, the 
independent variables are properties of the environment 
and task. These are often more difficult to vary 
systematically.  
 
Examples of environmental independent variables include: 
• Experience in an environment: For claims related to 

efficacy of learning, independent variables can be the 
amount of experience, the time existing in the 
environment, and related properties. 

• Complexity of the environment: Analysis of how a 
system responds as one changes the number of objects, 
their relations and properties, and the types of 
interactions between objects. 

• Accessibility of the environment: The kinds of 
information can be known/perceived at any time. 

• Indeterminacy in environmental interaction: The ease of 
unambiguously sensing and acting in the environment. 

• Dynamics of the environment: How different aspects of 
the environment change independently of the HLI 
system and how fast the environment changes relative to 
the basic processing rate of the system. 

 
Examples of task-related independent variables include: 
• Whether the task requires satisficing vs. optimizing. 

Given the competing constraints on HLI systems, often 
the goal is to satisfice.  

• Complexity of the task: How many goals/subgoals must 
be achieved? What interdependences are there between 
goals?  

• Length of existence: How long does the system behave in 
the environment in ways that put significant stress on its 
ability to respond quickly to environmental dynamics? 

Dependent Variables: Metrics 
Dependent variables allow measurement of properties of 
behavior relevant to evaluating claims. These metrics can 
be either quantitative or qualitative, and we evaluations 
will often involve multiple metrics.  
 
We do not consider properties of theories of HLI, such as 
parsimony, because they relate to claims about theories as 
opposed to properties of the HLI system.  
 

Our analysis of metrics is split into two parts. The first 
addresses concrete metrics that directly measure some 
aspect of behavior, such as solution quality, while the 
second will address metrics that cover abstract properties 
of HLI systems that cannot be measured directly, such as 
robustness and flexibility.  

Concrete metrics: 
• Performance includes measures such as solution time, 

quality of solution, and whether or not a solution is 
found. These are the standard metrics used in evaluating 
AI systems. One must careful when using CPU time 
because of variation in the underlying hardware. Usually 
solution time will be in some hardware independent 
measure (such as nodes expanded in a search) that can 
then be mapped to specific hardware.  

• Scalability involves change in some performance 
variable as problem complexity changes. Scalability is an 
important metric for HLI systems because of the need for 
large bodies of knowledge acquired through long-term 
learning. Other scalability issues can arise from 
interacting with complex environments where the 
number of relevant objects varies. 

 
Evaluating only concrete metrics of behavior poses the 
danger of driving research toward engineering 
optimizations. Behavioral evaluations should include both 
a notion of behavior (e.g., learning optimization) and what 
goes in (level of programming, research, etc.). Current 
practice is usually just to measure behavior. However, a 
general claim is that an HLI approach should decrease the 
amount of re-engineering (what goes in) required for a 
task. Thus, there are other metrics that are typically  
independent variables (varied during testing to determine 
their effect on performance and scalability) but that can 
become dependent variables if the experiment is set up to 
determine when a certain level of performance is achieved. 
For example, one could measure how much knowledge or 
training is required to achieve a certain level of 
performance or how much additional knowledge and 
training (or re-engineering of the architecture) is required 
to perform on a new task, a property termed incrementality 
(Wray & Lebiere, 2007).  

Abstract metrics 
Concrete metrics have the advantage that they are usually 
easy to measure; however, many of the claims about HLI 
systems are not directly grounded in concrete metrics such 
as performance measures or scalability. Usually claims 
concern more abstract properties, such as generality, 
expressiveness, and robustness. Abstract metrics are often 
properties that involve integration of multiple properties 
across multiple trials and even across multiple tasks and 
domains. One challenge is to determine how to ground 
these abstract metrics in measurable properties of HLI 
systems’ behavior. 



• Task and Domain Generality: How well does a system 
(or architecture) support behavior across a wide range of 
tasks and domains? Concerns about task and domain 
generality are one of the primary factors that distinguish 
research in HLI from much of the other research in AI. 
This requires measures of diversity of tasks and domains, 
which are currently lacking. Given the primacy of 
generality, it is not surprising that many other abstract 
metrics address aspects of behavior and system 
construction that are related to generality.  

• Expressivity: What kinds or range of knowledge can an 
HLI system accept and use to influence behavior? This 
relates to generality because restrictions on 
expressiveness can, in turn, restrict whether a system can 
successfully pursue a task in a domain. For example, 
systems that only support propositional representations 
will have difficulty reasoning about problems that are 
inherently relational.  

• Robustness: How does speed or quality of solutions 
change as a task is perturbed or some knowledge is 
removed or added? One can also measure robustness of 
an architecture – how behavior changes as an aspect of 
the architecture is degraded – but this is rarely considered 
an important feature of HLI systems. Instead, the interest 
lies in how well the system can respond to partial or 
incomplete knowledge, incorrect knowledge, and 
changes in a task that require some mapping of existing 
knowledge to a novel situation.  

• Instructability: How well can a system accept 
knowledge from another agent? Instructability 
emphasizes acquiring new skills and knowledge, as well 
as acquiring new tasks. Finer-grain measures of 
instructability include the language needed for 
instruction, the breadth of behavior that can be taught, 
and the types of interactions supported, such as whether 
the instructor is in control, whether the agent is in 
control, or whether dynamic passing of control occurs 
during instruction.  

• Taskability: To what extent can a system accept and/or 
generate, understand, and start on a new task? Taskability 
is related to instructability, but focuses working on new 
tasks. Humans are inherently taskable and retaskable, 
being able to attempt new tasks without requiring a 
external programmer that understands its internal 
representations. Humans also generate new tasks on their 
own. In contrast, most current systems only pursue the 
tasks and subtasks with which they were originally 
programmed and cannot dynamically extend the tasks 
they pursue.  

• Explainability: Can the system explain what it has 
learned or experienced, or why it is carrying out some 
behavior? Humans do not have “complete” explanability 
– the ability to provide justifications for all decisions 
leading up to external behavior – so this capability is a 
matter of degree. 

Conclusion 
It is obvious that developing human-level intelligence is a 
huge challenge. However, important parts of that scientific 
and engineering enterprise are the methods and practices 
for evaluating the systems as they are developed. In this 
paper, we present some of the primary challenges that arise 
in evaluation that distinguish it from research on more 
specialized aspects of artificial intelligence. We also 
attempt to characterize the types of scientific claims that 
arise in research on HLI, distinguishing different classes of 
claims that can be made at the system level, and then 
further analyzing the independent and dependent variables 
of those claims.  
 
Having clear, explicit claims has always been a critical part 
of scientific progress, and we encourage researchers to be 
more explicit in the claims of the theories and systems they 
develop. This not only helps ourselves in designing 
appropriate experiments, it also makes it much easier for 
other researchers to evaluate the contribution of a piece of 
work. In addition to being specific about claims, the field 
also needs shared notions of methodologies and metrics 
associated with evaluating those claims.  The abstract 
metrics enumerated here suggest some ways in which HLI 
researchers can begin to better distinguish these systems 
from more traditional AI systems.  However, much work 
remains to identify methods for measuring and evaluating 
these capabilities. 
 
The next step for this effort is to explore tasks and 
environments that can be shared across the community. 
Given the broad goals of HLI research, we need multiple 
testbeds that support environments in which many tasks 
can be pursued, and which include tools for performing 
experimentation and evaluation. Working on common 
problems will simplify cross-system evaluation and 
collaboration, both important steps toward developing 
human-level intelligence.  
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