
1

INCREMENTAL LEARNING OF PROCEDURAL PLANNING

KNOWLEDGE IN CHALLENGING ENVIRONMENTS

DOUGLAS J. PEARSON

ThreePenny Software, Seattle, WA

JOHN E. LAIRD

Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI

Abstract

Autonomous agents that learn about their environment can be divided into two broad classes. One class of existing
learners, reinforcement learners, typically employ weak learning methods to directly modify an agent’s execution
knowledge. These systems are robust in dynamic and complex environments but generally do not support planning
or the pursuit of multiple goals. In contrast, symbolic theory revision systems learn declarative planning knowledge
that allows them to pursue multiple goals in large state spaces, but these approaches are generally only applicable to
fully sensed, deterministic environments with no exogenous events. This research investigates the hypothesis that
by limiting an agent to procedural access to symbolic planning knowledge, the agent can combine the powerful,
knowledge intensive learning performance of the theory revision systems with the robust performance in complex
environments of the reinforcement learners. The system, IMPROV, uses an expressive knowledge representation so
that it can learn complex actions that produce conditional or sequential effects over time. By developing learning
methods that only require limited procedural access to the agent's knowledge, IMPROV's learning remains tractable
as the agent's knowledge is scaled to large problems. IMPROV learns to correct operator precondition and effect
knowledge in complex environments that include such properties as noise, multiple agents and time-critical tasks
and demonstrates a general learning method that can be easily strengthened through the addition of many different
kinds of knowledge.

Keywords:

Procedural Knowledge, Incremental Learning, Error Detection, Error Recovery, Planning, Symbolic, Operators,
Theory Revision, Machine Learning.

2

1 INTRODUCTION

Of all the capabilities that are integral to the success of human intelligence, perhaps two of the most

striking are our abilities to think and to learn. Thinking, as opposed to reacting, requires the ability to

construct and manipulate internal models, in other words, the ability to plan. Learning allows us to adapt

to changing environments and to incrementally improve our ability to perform tasks in a complex world.

This research investigates an approach to these central issues, how to combine planning and learning into

a single, generally intelligent agent that can function in complex and dynamic environments. In complex,

dynamic environments an agent's knowledge about the environment (its domain knowledge or domain

theory) will rarely be complete and correct. The agent cannot expect to have exhaustive knowledge to

guide its behavior in all possible situations except in the simplest domains. Additionally, changes in the

environment over the life of the agent can make any preprogrammed knowledge outdated and incorrect.

Thus, to succeed, an autonomous agent must have the ability to learn new domain knowledge and correct

errors in its existing knowledge.

Existing research on learning domain knowledge for planning and execution falls into two broad classes.

Agents in the first class, such as reinforcement learners (e.g. Q-Learning (Watkins&Dayan 1992),

Classifiers (Holland 1986), Backpropogation (Rumelhart et. al. 1986)) use weak inductive learning

methods to directly modify an agent's execution knowledge. This knowledge is generally represented

procedurally (e.g. in a neural net). By this we mean that the agent can execute the knowledge but is

limited in its ability to reason directly about its knowledge (e.g. to realize that a particular part of the state

space is not covered by the neural net). These systems are robust in dynamic and complex environments

but generally do not support planning or the pursuit of multiple goals. As a result they are usually only

applied to domains with small state and goal spaces. Also, they learn slowly as a result of their weak

methods. In contrast, the second category consists of symbolic theory revision systems (e.g. EITHER

(Ourston&Mooney 1990), EXPO (Gil 1992), OCCAM (Pazzani 1988)). These systems learn declarative

planning knowledge through stronger methods that explicitly reason to identify and correct errors in the

3

agent's domain knowledge. However, these more powerful systems are generally only applicable to

simpler agents where actions are assumed to produce immediate, deterministic effects in fully sensed

environments where there are no exogenous events.

This research explores learning procedural planning knowledge through deliberate reasoning about the

correctness of an agent's knowledge. The system, IMPROV (Pearson 1996, Pearson&Laird 1999), uses

an expressive knowledge representation so that it can learn complex actions that produce conditional or

sequential effects over time. By developing learning methods that only require limited procedural access

to the agent's knowledge, IMPROV's learning remains tractable as the agent's knowledge is scaled to

large problems. IMPROV learns to correct operator precondition and effect knowledge in complex

environments that include such properties as noise, multiple agents, irreversible actions and time-critical

tasks. Additionally, the deliberate reasoning about correctness leads to stronger, more directed learning

and allows other knowledge sources (e.g. causal theories) to be smoothly integrated into the learning. In

this way, IMPROV draws on the strengths of the existing classes of systems that learn domain

knowledge, combining the powerful learning of theory revision systems with the robust performance in

complex environments of reinforcement learners.

In addition to exploring the issues involved in building a system that learns procedural planning

knowledge, this research is also exploring two related questions. First, what are the constraints and

interactions between execution, planning and learning in an agent-based system? Many existing systems

that learn planning knowledge are not directly connected to an execution environment. Therefore they do

not address the question of when learning should occur or how training instances are generated. Often the

approach that is taken is to consider each phase of execution, planning and learning as being a distinct

module. There has been little work done on how these phases constrain each other and on integrating

them into a complete autonomous agent that learns on-line, while still functioning in the environment.

For example, time spent learning in a time-critical domain reduces the time available for planning and

execution; but without learning, a task may be impossible if the agent's knowledge is incomplete or

incorrect. One goal of this research is to better explore this interaction, outlining the constraints on

4

learning, planning and execution and presenting one approach to satisfying those constraints.

The second, related goal for this research is to develop a weak method for learning planning knowledge.

The goal here is to transfer the learner's bias from the structure of the system to the agent's knowledge.

Instead of encoding a strong learning bias within the system itself, the intention is to develop a method

that can be easily guided by additional agent knowledge. This allows the agent to flexibly use a range of

different kinds of knowledge, rather than being limited to knowledge in a single form. For example,

IMPROV defaults to using a weak method for credit assignment, based on differences between training

instances. Additional knowledge can be added (for instance by adding a causal theory or through

guidance from an instructor) to make the learning stronger and more directed.

IMPROV exists as both a theoretical system for the deliberate learning of procedural planning knowledge

and as a specific implementation of this theory within a particular cognitive architecture, Soar (Laird et.

al. 1987). In presenting a theoretical or functional description, as well as a specific implementation, the

intention is to help identify the contributions to other learning systems. For example, a Soar agent's

knowledge is encoded as production rules. In general, an IMPROV agent's knowledge representation

must support efficient associative retrieval and while production rules are one choice, other alternatives

(e.g. neural networks) would also be sufficient.

2 THE ENVIRONMENT AND PROCEDURAL KNOWLEDGE ACCESS

IMPROV is designed as a method for learning planning knowledge for autonomous agents. The learning

is constrained by the environments that we expect the agents to face. Each property of the environment

shown in Figure 1 constrains the design of the agent and IMPROV's learning method. The agent plans

(rather than just relying on an execution policy that covers all states) because the state and goal spaces

may be large and because planning knowledge is usually more general and can be used for many different

tasks. The agent is assumed to start with some initial, approximate domain knowledge that IMPROV

learns to extend and correct as the agent completes tasks in the external world.

As actions may produce complex effects, including sequential effects that occur over time, conditional

5

effects or iterative behavior, the agent requires an expressive knowledge representation for the effects of

actions. In making the representation expressive, there is a danger that the agent will become inefficient.

Figure 1 Environmental constraints on planning and learning

In many systems, the time to correct existing knowledge grows in proportion to the size of the agent's

planning knowledge. This is undesirable as the agent's performance slows as it learns more. One

approach to ensuring that performance does not degrade as the agent learns, is to limit the agent's access

to its knowledge. IMPROV's methods only require procedural access to the agent's knowledge; that is,

the planning knowledge can be executed but cannot be directly searched, examined or modified. As the

agent is unable to search or otherwise directly examining its knowledge, learning time is guaranteed to be

independent of the size of the knowledge base. This allows IMPROV to use a highly expressive

representation for its knowledge, because learning will not examine or otherwise analyze this

representation. The agent's knowledge is divided into operators, with preconditions and actions expressed

as sets of production rules. IMPROV uses a compact, intentional representation based on production

rules, to keep the space requirements of the agent's knowledge as low as possible. More extensional

representations, such as listing states (as in some reinforcement learning) or using sets of attribute-value

pairs to define regions of state space (popular in symbolic learning) would both require large amounts of

space to represent complex functions, such as for the inverse kinematics operator shown in Figure 2.

6

Figure 2 Complex planning knowledge

3 Related Work

To place IMPROV in relation to existing learners we will describe three dimensions, use them to classify

learning systems and demonstrate that there is a strong correspondence between these dimensions and the

ability of the learner to function in the environments outlined in Figure 1. The three dimensions are:

1. Time to access data encoded in the representation during learning

This is the cost to modify the agent’s domain knowledge during learning. It typically varies from:

 >= O(size of representation) to O(1)

The intuitive distinction is whether the agent can search or otherwise manipulate the entire

representation during learning. If so, we will refer to it as having declarative access to its

knowledge. Agents with only limited access to their knowledge, such as procedural access

where the agent can only execute the knowledge, will not have learning costs proportional to

the size of the representation. For example, a theory revision system that reasons directly

over the conditions in a STRIPS operator [Fikes and Nilsson, 1971] to determine if a condition

could be removed or generalized, will generally take time proportional to the number of conditions so

we could classify this as having declarative access to the representation.

2. Size of the representation

This is the amount of space required to describe the agent’s knowledge about the domain. Let’s

assume the state space can be divided into n regions for when a particular action should be chosen. In

representing these regions, the size of the representation in learning systems typically varies from:

 O(exponential(n)) to O(n) to O(log(n))

7

We will use the term extensional to refer to representations that list each state when an action can be

taken. These representations are proportional to the size of the state space and so grow exponentially

as the number of regions and the size of the space grows (e.g. methods based on propositional logics

or simple tables of values). In the middle of the range are semi-extensional representations, typically

based on a disjunctive normal form. These representations use a series of attribute-value conditions

to enumerate each region, but are still proportional to the number of regions. At the smallest end are

fully intentional representations that use an unrestricted function to represent when an action should

be selected, potentially leading to representations that are sublinear in their space requirements such

as the example shown in Figure 2. That is to say they require fewer terms in the function than there

are regions in the state space. In contrast, if all of the values for x, y, i and j which satisfied the

equations were enumerated by region, or worse by value, it should be clear that this might require a

lot of space.

3. Explicit reasoning about the agent’s knowledge

This dimension defines the degree to which the agent reasons about the correctness of its knowledge,

rather than just its task performance. This is a form of meta-level reasoning, as the agent reasons

about the underlying knowledge that leads to task performance, rather than just reasoning based on

task performance. We will use deliberate learner to refer to an agent that reasons about errors in its

knowledge and implicit learner to refer to agents that limit their reasoning to task performance.

Existing approaches generally fall into the categories summarized in Figure 3. Learning costs increase

up and to the right as the agent’s knowledge is scaled to larger problems. We feel IMPROV represents an

interesting part of the space to explore, using procedural access to a compact, intentional representation

while still supporting deliberate learning.

8

Figure 3 Classification of learning systems

3.1 Deliberate Learning of Declarative Representations

This section describes some representative examples of systems that learn by deliberately reasoning about

errors in the agent’s knowledge. These systems typically rely on full, declarative access to the agent’s

domain knowledge and typically represent that knowledge in a semi-extensional form as a list of

symbolic conditions for when to take an action. They are not generally applicable to the more

challenging environments of Figure 1. EXPO [Gil, 1993; Gil 1994], LIVE [Shen and Simon, 1989] and

OBSERVER [Wang 1995; Wang 1996] share a similar STRIPS-like representation. EXPO learns by

designing experiments to refine initially overgeneral preconditions. Errors are detected by explicit

monitoring of operator preconditions and actions. LIVE and OBSERVER learn by executing actions in

the environment and observing the changes in the state and rely on the assumption that changes in the

environment are due to deterministic actions of the agent. The STRIPS-like planning representation

allows these systems to reason in large state and goal space and deliberately use the planning knowledge

9

to guide future learning. However, the representation is not expressive enough to model complex actions

(such as ones that produce sequential effects) and learning time is proportional to the size of the operator

structures. Sensing is also assumed to be complete and noise free and changes in the environment are

assumed to be due only to the agent’s actions. EITHER [Ourston and Mooney, 1990], NEITHER [Baffes

and Mooney, 1993], FOIL [Quinlan, 1990] and FOCL [Pazzani et. al., 1991] learn Horn-clause

propositional logic and have similar strengths and weaknesses to the STRIPS based methods.

3.2 Implicit Learning of Intentional Representations

Learning is implicit when incorrect task performance is the focus, rather than incorrect knowledge. This

may prevent the learner from localizing the correction. For example, an agent that drives through a

corner too quickly may skid. The incorrect performance (the skid) leads to negative feedback and credit

assignment to each step in driving through the corner, including turning, braking etc. Eventually the

agent may drive more slowly, but this will never have been explicitly located as the cause of failure.

Classifiers [Holland, 1986; Booker et. al. 1989] represent domain knowledge as rules that can be

combined into chains to produce action in the world and are therefore intentional. Credit assignment is

through backward-chaining in the bucket brigade algorithm, reducing the strength of rules that do not lead

to success. The genetic algorithm used to create new rules requires declarative access to the rule base.

By fixing the size of that rule base performance remains constant over time, although this can lead to

other problems with over-training or task interference as previously valuable rules are discarded to make

room for currently useful ones. Neural networks trained using backpropogation [Rumelhart et. al. 1986]

or related temporal difference methods [Samuel 1959; Sutton 1988; Tesauro 1992] similarly assign credit

to all features present during a failure. Thus incorrect knowledge is only implicitly detected and removed

over many instances. These systems make few assumptions about their environment and do not model

the effects of the agent’s actions in the world. This makes them applicable to domains with limited

sensing, exogenous events and processes that change over time. The fixed size of the representation and

the incremental learning algorithms mean learning remains constant during the life of the agent. On the

10

downside, the lack of action models limit their ability to plan and they are generally only applicable to

static state-spaces due to the fixed nature of their representations. Also their implicit learning methods

generally require more training instances to reach a given level of performance than stronger, more

deliberate learners.

4 FRAMEWORK FOR ERROR CORRECTION

The main stages in correcting an agent's knowledge are:

1. Classification of errors: Determining the errors that can occur in an agent's knowledge and the range

of performance failures the knowledge errors can cause.

2. Detecting performance failures: Recognizing that a performance failure has occurred, either during

planning or during plan execution.

3. Solving the current problem: Deciding what is the correct course of action in the current situation.

This stage is often folded into the learning phase, where the approach is to learn and then replan.

4. Learning a general correction for the future: Generalizing from the current situation to correct the

agent's knowledge and avoid the error in the future. This learning can be further divided into 3

separate problems:

a. Credit assignment—Which operators are incorrect? Determining which operator, or operators,

have the incorrect knowledge that led to the performance failure.

b. Credit assignment—How are the operators incorrect? Having identified the incorrect operator,

or operators, the agent must decide how the knowledge about that operator is incorrect. For

example, which additional tests to add, to specialize the operator preconditions.

c. Changing the domain knowledge: Finally, the agent must modify its knowledge to avoid the error

in future. IMPROV's restriction to only executing its knowledge means that it must solve this

problem without directly modifying the existing, incorrect knowledge. This is achieved by

learning new knowledge that works together with the existing knowledge to correct the agent’s

decisions and generate the desired behavior.

11

5 CORRECTING OPERATOR PRECONDITIONS

5.1 Knowledge Representation

IMPROV represents the agent's domain knowledge as a hierarchy of operators. This hierarchy represents

the goal--subgoal structure that is common to many symbolic reasoning systems. IMPROV's hierarchy is

similar to standard top-down structured programming, with each layer of operators being analogous to a

layer of procedures. The distinction is that in IMPROV, the hierarchy is built dynamically using operator

precondition rules to determine which operators are included in a particular hierarchy. Control

knowledge is folded into the preconditions for an operator, so that for a given goal and state, only a single

operator should have its preconditions matched. High-level, abstract operators, are used to represent

goals that are achieved through plans. These high-level operators are implemented by a series of operators

that can themselves be sub-plans or traditional, motor-level operators that generate external behavior. An

example taken from a driving domain is shown in Figure 4(a) where the task is to correctly drive a car

through a busy intersection by braking, accelerating and changing gears at the appropriate times.

(a) During Execution (b) During Planning

Figure 4 Domain knowledge as an operator hierarchy

In this example, the Set-Speed 20 operator cannot be achieved directly, so it becomes a goal for the

agent with an implementation (or plan) to achieve it consisting of braking and changing gear. During

plan execution, the Brake and Shift-Down operators generate external behavior in the environment

(Figure 4(a)). During planning, the same operators are used and motor-level operators, such as the

Brake operator, are further expanded into a model of their expected effects, represented as a series of

12

primitive, single-effect operators (Figure 4(b)). In this example, the DSpeed operators indicate that the

rate of rate of deceleration will change as the agent brakes. These single-effect operators are not required

during plan execution, just during planning. Thus, operator actions consist of both execution knowledge

that generates external behavior and planning knowledge for internal simulations. Each operator has its

own preconditions, represented as a set of production rules for when to choose that operator. The

hierarchies each show a single expansion for a particular problem, in this case when the car is initially

traveling faster than 20mph. If the car was initially traveling at only 10mph, then the hierarchy

implementing Set-Speed 20 would include operators for pressing the accelerator, as the preconditions

for Accelerate would match instead.

5.2 Classification of Errors

IMPROV's operator based model for representing domain knowledge defines the scope of possible

knowledge errors. These are limited to:

1. Incorrect operator preconditions: These can be overgeneral, overspecific or a combination.

2. Incorrect operator effects: The agent's model for the effects of actions can include extra effects,

missing effects or a combination.

3. Completely missing operators

These errors are in the agent's knowledge about the processes of the domain. IMPROV does not correct

errors in the agent's sensed data about the domain, that is, its state knowledge or state representation.

IMPROV learns new domain knowledge and corrects errors in operator preconditions (overgeneral,

overspecific or a combination) or operator effects (extra effects, missing effects or a combination) but it

cannot learn completely new operators. In certain constrained environments and with a sufficiently

expressive state representation, IMPROV is guaranteed to converge to the correct operator knowledge

(Pearson 1996). Incorrect knowledge can lead to a range of performance failures, either during planning

or during execution. By defining the classes of knowledge level errors we can derive the performance

failures.

13

5.3 Detecting performance failures

To detect planning failures the agent requires extra knowledge about the planning process, beyond the

task knowledge required to solve a problem. For instance, if the agent is unable to build a plan to solve a

particular problem, it may just be that the problem cannot be solved rather than that the agent’s planning

knowledge is incorrect. Failures during execution can be detected by comparing the agent's planned

behavior to the agent's actual behavior in the environment during execution. Traditionally, this

comparison is made by explicitly monitoring each step of plan execution. The agent verifies that all of

the preconditions for the next operator in the plan are satisfied before execution and then verifies that all

of the expected effects have occurred. This form of explicit monitoring detects failures on the basis of the

agent's ability to predict changes in the environment. In stochastic environments, or environments with

multiple interacting agents or other external processes, accurate predictions may be impossible. IMPROV

takes an alternative, weaker approach to detecting execution failures, by determining when the agent is

unable to make progress towards its current goal. The agent may incorrectly predict environmental

changes but as long as those incorrect predictions do not prevent the agent from achieving its goals, no

failure is detected.

Figure 5 Inability to select an operator during execution signals an error

14

IMPROV detects a failure during plan execution if the agent reaches a state where it has conflicting

suggestions (or no suggestions) on which operator to select next. This approach meshes well with

IMPROV's distributed plan representation, where the plan is represented as a series of production rules

that reactively guide the choice of operators during execution, rather than as a single, monolithic plan

structure. Figure 5 shows an example of a plan to cross an intersection (represented as a set of rules).

During execution (rules that fire are shown with shading) the agent is unaware that it must change to a

lower gear, so the car stalls after Set-Speed 0. As a precondition for Set-Speed 30 is that the

engine is running, no operator's preconditions are matched and this is detected as an error. This approach

can be extended to detecting errors in the expected effects of operator actions, by representing the effects

of an operator as a sequence of more primitive operators and detecting an inability to select an operator at

the lower level (see Figure 4(b)). IMPROV's method for determining when an agent is still on the path to

the goal is augmented by a loop detection method based on recognizing when it returns to an earlier,

similar state, to ensure that it is making progress to that goal. This recognition is based on the features of

the environment that were relevant to the initial problem solving, so other irrelevant changes in the

environment are ignored in determining that the agent is stuck in a loop (Pearson 1996).

IMPROV's error detection method, as with the rest of its learning, is designed as a weak method. The

methods for detecting errors are general purpose methods that make few assumptions about the

environment or the agent's knowledge. It is important to realize that these weak methods can easily be

made stronger by the addition of domain specific knowledge. For example, an explicit theory of failure

states can be added to IMPROV to enhance its base error detection method. Knowledge can be added

easily as all of the agent's reasoning is represented as production rules within a general-purpose

architecture for intelligent reasoning.

5.4 Solving the current problem

IMPROV casts the task of correcting an agent's knowledge as two search problems. The first is a search

through the space of plans and the second is a search through the space of operator preconditions. During

15

the first search, plans are generated and executed in turn until the agent finds a plan that succeeds for the

current goal. The sequences of operators executed during the first search are used to train an inductive

learner, leading to the second search for correct operator preconditions (see Figure 6).

Figure 6 Summary of correction method

IMPROV builds plans through a state-space search technique called Uncertainty Bounded Iterative

Deepening (UBID) (Pearson 1996). This is similar to iterative deepening, but the depth of the search is

limited by an uncertainty measure, with each operator being assigned an uncertainty that reflects how

closely its preconditions match the current state. This leads to a deeper search in areas of the search space

that have earlier proved useful to the agent. Plans are represented procedurally, as a collection of rules to

reactively guide the agent at each state during plan execution (see Figure 5).

16

IMPROV searches for alternative plans, Pi, in decreasing order of similarity to the original, incorrect plan.

As each plan is generated, IMPROV temporarily assumes that the agent's planning knowledge about the

effects of the operators in the plan is correct. It simulates the sequence of operators to determine the

outcome of the plan, allowing IMPROV to reject plans that it believes lead to failure. Each plan that

reaches the goal in the internal simulation is executed in the world, until the agent finds a plan that

succeeds. If a correct plan cannot be found, IMPROV proceeds to try to find a correction within the

actions of the operators.

The agent's actions may be irreversible (for example, moving a chess piece during a game). In this case,

the search for correct behavior will be spread across multiple problem solving episodes (multiple games

of chess). IMPROV recalls previous failures and previous attempted corrections when it returns to a

context similar to where the original failure occurred (Pearson 1996). This allows it to search across

multiple, temporally disjoint, problems. As each plan is executed, IMPROV records the sequence of

states (Sij), operators (Oij) and the outcome of the plan (success or failure recorded in Ri). IMPROV uses

these records as positive and negative training instances for the inductive learner, once a successful plan

has been found.

5.5 Learning a general correction for the future

IMPROV delays learning until a successful plan has been discovered, which allows it to use the

comparisons between the successful plan and the unsuccessful attempts to improve credit assignment

during learning. IMPROV's delayed learning also helps it avoid incorrect early learning. This can be

particularly harmful to an active learner (one which is learning while it performs tasks in the

environment) because early learning influences the later instances the agent will see. For example, a

driver that learns to stop for every bus, rather than just school buses, will avoid passing buses and so may

take a long time to discover that its original learning was overgeneral.

17

1. Credit assignment—Which operators are incorrect?

IMPROV's approach to determining the operators that caused a failure is to compare the successful

plan to the original, incorrect plan, and use the differences to determine the operators that are in error.

For each state in the successful plan, IMPROV determines which operator would have been chosen

using the original, possibly incorrect, planning knowledge applied to that state. This original operator

is compared to the operator used in the successful plan. Figure 7 shows an example where the agent

is unaware that it must change gear before stopping the car or it will stall.

Figure 7 Differences between plans used for credit assignment

 By comparing the successful plan to the incorrect plan, IMPROV concludes that the preconditions

for Change-Gear should be generalized (so that operator will be chosen in the future), while the

preconditions of Set-Speed 0 should be specialized (so it is only chosen once the agent has

changed gear). This approach can more accurately locate the incorrect operator than existing

incremental approaches because IMPROV has access to more information in the form of the

successful plan. Traditional approaches that only consider a single incorrect plan during learning are

forced to rely on a fixed bias. For example, temporal difference methods assign most blame to the

final step of a plan (Set-Speed 0). It is very difficult for such a system to discover that the true

18

correction is earlier in the plan, while still maintaining the final Set-Speed 0 operator, which is

required in any successful plan.

2. Credit assignment—How are the operators incorrect?

Having determined which operators are incorrect, IMPROV must decide how to specialize or

generalize the agent's precondition knowledge. IMPROV achieves this by inductively learning the

correct operator precondition knowledge. The inductive, symbolic category learner, SCA2 (Miller

1991, Miller 1993, Pearson 1996), is trained on each instance of an operator succeeding or failing, for

a particular state and goal (see Figure 6). IMPROV’s behavior is not tied to this choice of inductive

learner and an alternative category learner could have been used here.

SCA2 represents its classification knowledge as production rules. Initially these rules are very

general, testing only a few features from the training instances. As learning progresses more specific

rules are acquired that test more features. When making a prediction, SCA2 searches for the most

specific rule that matches the test instance. During training, a new rule is learned based on the most

specific match found plus one additional feature. The ability to select which features are really

relevant to the correctness of a plan determines the quality of the final learning (Pearson 1996).

IMPROV analyzes the set of training examples to determine which state features are most likely to

have caused the success or failure of the operator. IMPROV biases the induction towards features

that are present in positive instances, but missing or different in negative instances. No matter how

good the inductive learner is, there is insufficient information from just the initial negative instance to

determine the cause of the failure. IMPROV benefits by delaying its learning until it has found a

successful plan and therefore avoids making an incorrect early induction. As the induction is based

on a set of instances, we call this k-incremental learning. The k refers to the size of the set of

instances passed to the learner during training and the learning is still incremental as the set of

instances only increases until a successful plan is discovered. K will vary from problem to problem,

as k is the number of trials of an operator before a success is discovered. However, as the number of

19

instances considered during learning does not grow over the life of the agent, the learning is still

incremental. This weak inductive learning can also be made stronger by the addition of domain

specific heuristics.

SCA2’s inductive learning method leads to a number of compelling functional properties:

a. Learning is incremental

Instances are discarded after training, so the time to train on an instance is independent of the

total number of training instances presented to the learner.

b. Performance does not slow with learning

Because SCA2 searches its rule base from specific to general rules the time to make a

prediction remains constant or decreases over time because new rules are matched sooner in

the search. This is potentially offset by increasing match cost as the number of rules grows,

but our experiments with IMPROV have not shown any slow down as more rules are learned.

c. Expressive concepts can be represented

SCA2 can represent complex disjunctive and conjunctive categories by combining multiple

prediction rules each of which represents a section of the spaces of instances.

d. Additional knowledge can guide the learning

As SCA2 is fully encoded within a general problem solving architecture, arbitrary knowledge

and reasoning can be included in the critical feature selection step (see Figure 21).

e. Tolerant of noise

Incorrect prediction rules (based on noisy training instances) can be overridden by learning

more specific rules that mask the earlier general rules giving SCA2 a degree of tolerance for

noise. This tolerance is evaluated and described in more detail in other work (Pearson 1996).

3. Changing the domain knowledge

IMPROV's procedural access to the agent's domain knowledge means the agent cannot directly

examine and modify the incorrect knowledge. Instead of searching its rule-base for the incorrect

knowledge (a potentially expensive process), IMPROV learns additional rules that correct the

20

decision about which operator to select (see Figure 6). Operator preconditions are specialized by

learning rules that indicate the operator should not be chosen. Preconditions are generalized by

learning additional rules for when the operator should be selected.

The preconditions of an operator determine whether it is included in a particular operator hierarchy.

An operator can be added to the hierarchy by generalizing its preconditions, or an operator can be

removed by specializing its preconditions.

(a) Initial Theory (b) Final Theory

Figure 8 Correcting preconditions for Shift-Up and Shift-Down

For example, the agent's initial knowledge in Figure 8(a) is incorrect as the Shift-Up operator is

included in the implementation (or plan) to achieve Set-Speed 20. The correct operator, Shift-

Down, is included in the final hierarchy (Figure 8(b)), by generalizing its preconditions so that it is

chosen when decelerating to 20mph. At the same time, the incorrect Shift-Up operator is removed by

specializing its preconditions so that it is not chosen when decelerating. Examples of rules that might be

learned to produce these changes are shown in Figure 9.

(a) Generalizing Shift-Down (b) Specializing Shift-Up

Figure 9 New rules added to correct existing precondition knowledge

21

6 CORRECTING OPERATOR EFFECTS

IMPROV corrects the planning knowledge that models the effects of external actions. The corrected

planning knowledge is then used for subsequent planning and to learn and correct execution knowledge,

as shown in Figure 10. Thus, the task for IMPROV is to learn the correct operator effects.

Figure 10 Correcting external behavior by correcting planning knowledge

IMPROV corrects planning knowledge for the effects of operators by correcting the preconditions of a

sequence of more primitive operators at the next lower level of the operator hierarchy. To see how

operator preconditions can be used to correct operator effects, consider the example shown in Figure 11.

 (a) Initial Theory (b) Final Theory

Figure 11 Correcting preconditions for DSpeed -4 and DSpeed -6

In this example, the agent's initial knowledge models the effects of pressing the brake pedal as producing

a faster initial rate of deceleration than actually occurs (-4 rather than -6). To learn the correct effects,

22

IMPROV specializes the preconditions of DSpeed -6 and generalizes the preconditions of DSpeed-4.

This is completely analogous to the earlier example (Figure 8), with the correction being applied to a

different level in the operator hierarchy. It's important to realize that the lowest level of operators only

represent planning knowledge; the agent's external actions are the same in both cases, which is to press

the brake pedal when the Brake operator is chosen. By changing the sequence of single-effect operators

that are chosen in implementing Brake during planning, the agent's model for the effects of braking are

changed, so that the agent expects braking to occur more slowly. Then, when the agent replans, it will

select the Brake operator earlier, as it expects slower braking. This approach allows IMPROV to

represent and learn complex models of sequential or conditional effects that occur over time. For

example, IMPROV can learn the multiple, dynamic effects of braking shown in Figure 12.

Figure 12 Correct model for effects of braking

This figure shows the rate of deceleration (DSpeed) and pressure on the brake pedal (Brake-

Pressure) over time, in response to a single external action (to press the brake pedal). IMPROV

models this sequence of effects as a series of single-effect operators and learns the correct preconditions

for those operators. Figure 13 shows the operator hierarchy after learning (T operators indicate when

time advances).

23

Figure 13 IMPROV's final representation for the effects of braking

Existing systems that learn the effects of operator actions are unable to represent or learn this type of

sequential effect. IMPROV's approach to learning operator effects, by correcting precondition knowledge

at a lower level, is guaranteed to terminate at the single-effect level. This is because single-effect

operators only manipulate a single symbol (e.g. DSpeed) and therefore the knowledge about the effects

of these operators is guaranteed to be correct. The question is whether or not to include one of these

operators in the effects of a motor-level operator, rather than changing the effects modeled by the single-

effect operators; a decision which is based on the precondition knowledge of the DSpeed operators.

24

7 EVALUATION

We have evaluated IMPROV on two test domains: a simulated robotic manipulation task and a simulated

car driving domain (see Figure 14).

Figure 14 Robotic and Driving Domains

The task in the robot domain is to align blocks on tables. The blocks have different characteristics and the

agent must learn which of the blocks can be successfully moved. The robot can move around the room

and has a single gripper. The task in the driving domain is to successfully cross an intersection. There

are other cars and pedestrians in the environment and processes (such as traffic lights) which change

independently of the agent’s actions. The agent must learn the correct procedure for crossing the

intersection. For example, the agent should stop for red lights or police cars. The agent starts with

sufficient initial knowledge to build a plan that it believes will succeed. This knowledge ensures that the

agent is not performing a blind search, either for a correct plan or for the correct operator knowledge. In

both cases, the search is usefully biased by the agent’s initial knowledge. The experiments were not

designed to compare IMPROV's learning rate or accuracy to that of other systems, but rather to evaluate

the scope of IMPROV's learning and demonstrate its ability to learn in environments with a wide range of

25

challenging properties. The key point to take from each experiment is the demonstration that IMPROV

could perform in a particular type of environment, while using a deliberate, knowledge intensive and yet

efficient learning method. Figure 15 shows an example of a learning experiment.

Figure 15 Example domain knowledge in driving domain experiment

The attributes considered during learning are shown on the left, along with the range of values each

attribute can take. Next is shown part of the initial knowledge given to the agent (i.e. that the set-

speed 30 operator should be chosen when the distance is close and the road-sign is a traffic signal).

Finally, an example of a target theory is shown in the third column. In this experiment, the agent must

learn three exception cases to the initial theory's general rules. The target operator preconditions consist

of 3 disjunctive terms, each containing two additional conjunctive terms that are missing in the initial

knowledge (the term distance(close) is already present). This example is labeled as +3x2. The +

indicates that the initial theory is overgeneral and must add three disjunctive terms (each of two

conjuncts) to reach the target theory. Overspecific initial theories are the converse, for example -3x2

would mean the agent started with the target theory shown and had to learn the initial theory. The robot

domain contains a similar number of attributes and has test cases formulated in the same manner. Each

experiment reflects the average results from 10 runs and each test case is designed so that the agent's

26

initial, incorrect knowledge will lead to a failure if the agent does not learn. This makes it easier to

identify the effect that learning is having on the agent's ability to perform the task. Without any learning,

every trial would lead to an error.

7.1 Coverage of Classes of Errors

IMPROV has been demonstrated correcting domain knowledge that initially included overgeneral and

overspecific operator preconditions, incomplete operator effects and extraneous operator effects.

IMPROV has not been tested on, and has no ability to learn, when there are completely missing operators.

Figure 16 shows an example of this behavior. The graph shows the cumulative number of errors made by

IMPROV over the course of 50 trials, for a range of target domain theories. The diagonal line is a

reference showing the number of errors that would occur without learning. This graph simply

demonstrates that IMPROV can correct overgeneral and overspecific initial theories and quickly

converges to a reasonable approximation of the correct theory, resulting in few total errors.

Figure 16 Recovering from Overgeneral and Overspecific Theories

27

7.2 Large state spaces

The state space for the driving domain exceeds a billion distinct states, with certain parts of the state (the

other agents) being added and removed to produce dynamic changes to the representation. Neither of the

goal spaces is particularly large, but the robot domain allows for in excess of 100 different goal states.

Each domain includes many conditional actions and a number of sequential effects that occur over time as

a result of a single external action. We tested IMPROV on tasks with disjunctive preconditions which

occur when actions can apply in a range of disjoint states. Figure 17 shows the cumulative errors made

as IMPROV learns to correct domain knowledge that includes an increasing number of missing

disjunctive terms. Disjunctive preconditions can present difficulties for some existing learning methods

and this graph shows that while learning is more difficult as the number of disjuncts increases, IMPROV

quickly converges towards the correct knowledge.

Figure 17 Learning disjunctive precondition knowledge

28

7.3 Environmental complexities

The driving domain included multiple agents and other external processes that change the environment

asynchronously and without action by the agent. This domain also contains actions that cannot be

reversed, requiring the agent to learn across multiple training episodes. The agent was only provided

limited sensing of the environment, with noise being added to its inputs and delays in the feedback that an

action would lead to success or failure. Additionally, the underlying physics of the domain could be

modified after training IMPROV for a period in the environment. An example of this is when braking

takes more time as tires wear out or when part of a robot starts to malfunction. Figure 18 shows an

example where the environment changes after 50 trials. The unexpected change causes the agent to make

more errors, but it then adjusts to the new theory. The baseline theory shows the behavior when the target

theory remains constant.

Figure 18 Learning as the target knowledge changes over time

29

7.4 Constraints on the agent

The driving domain requires the agent to act within a fixed time limit as the environment is changing

asynchronously. The agent always had a fixed amount of time for processing. This time was sufficient to

solve the problems as long as the agent did not become slower as a result of learning. Figure 19 shows

the CPU time per trial while IMPROV is performing on the previous evolving domain problem (Figure

18). The first spike includes the time for the agent to build an initial plan. Later spikes occur when a

correction had to be made to the agent’s domain knowledge. The time spent on each correction remains

constant or decreases as the agent learns and the theory becomes more complex. This is in contrast to

many symbolic machine learning algorithms which become slower as the theory they are learning grows

more complex. This result helps to support the hypothesis that limiting an agent to procedural access to

its knowledge leads to an efficient correction method.

Figure 19 CPU time per trial as the agent learns

30

7.5 K-Incremental learning

IMPROV’s ability to accurately assign credit for successes and failures during learning is improved by

delaying learning until a successful plan has been found. Figure 20 demonstrates the benefit of using

(a) Driving domain (b) Robot domain

Figure 20 Comparison of k-incremental learning to pure incremental

this deliberate, analytic k-incremental approach over a pure incremental learner. IMPROV was modified

to train immediately after seeing each individual instance, rather than waiting and training on a set of

instances; thereby simulating a pure incremental system. The difference in the resulting error rates is

substantial, confirming that the accuracy of the learning benefits from delaying learning until credit can

be assigned more accurately.

7.6 Knowledge directed learning

IMPROV represents a weak, general purpose method for learning planning knowledge in a range of

challenging environments. IMPROV’s symbolic knowledge representation in a general purpose

architecture simplifies the addition of extra knowledge to guide learning. The additional knowledge

could either come from adding new procedurally accessed rules or from an unstructured source, such as

an instructor. In Pearson and Huffman, 1995 we showed how instructions presented in English could be

used to guide learning (e.g. “Think about your speed” could be used to guide the inductive learning

phase). Knowledge can be added to guide IMPROV’s error detection, replanning and learning phases.

31

Error detection was improved by adding an early indication that an action was about to lead to failure.

For example, in the driving domain this could be an instructor who shouts “Look Out!” prior to the

failure. Replanning was improved by adding knowledge that selecting speed 0 was functionally different

than selecting other speeds (Figure 21(a)). Inductive learning was improved by biasing the learner

towards aspects of the domain that are particularly relevant (e.g. the state of the traffic light when driving)

(Figure 21(b)). This is a much simpler task than correctly specifying the agent’s behavior in the

environment, which is to say that knowing that traffic lights are important is much easier than knowing

how to cross a busy intersection.

(a) Guiding replanning (b) Guiding induction

Figure 21 Benefits of adding knowledge to IMPROV

The important point in these experiments is not the degree of improvement in the agent’s performance,

which is naturally a function of the quality of the additional knowledge. Instead, the important point is

that additional knowledge can be easily added to produce this improvement in performance, turning a

general learning method into a strong learner and showing that limited procedural access to a compact,

intentional representation can still support strong deliberate learning while allowing the agent to function

in complex environments.

32

REFERENCES

BAFFES, P. and MOONEY R., 1993. Symbolic revision of theories with m-of-n rules. In Proceedings

of the International Join Conference on Artificial Intelligence, page 1135-1140, 1993.

BOOKER, L.B., GOLDBERG, D.E., HOLLAND, J.H., 1989. Classifier systems and genetic algorithms.

Artificial Intelligence, 40:234-282, 1989.

FIKES, R.E. and NILSSON, N., 1971. STRIPS: A new approach to the application of theorem proving to

problem solving. Artificial Intelligence, 2:189-208, 1971.

GIL, Y., 1992. Acquiring Domain Knowledge for Planning by Experimentation. Ph.D. Thesis, Carnegie

Mellon University, 1992.

GIL, Y., 1993. Efficient domain-independent experimentation. In Proceedings of the International

Conference on Machine Learning, page 128-134. 1993.

GIL, Y., 1994. Learning by experimentation: Incremental refinement of incomplete planning domains.

In Proceedings of the International Conference on Machine Learning, paeg 87-95. 1994.

HOLLAND, J.H, 1986. Escaping brittleness: The possibilities of general-purpose learning algorithms

applied to parallel rule-based systems. In Machine Learning: An artificial intelligence approach, volume

II. Morgan Kaufmann, 1986.

LAIRD, J.E., NEWELL A., ROSENBLOOM P.S., 1987. Soar: An architecture for general intelligence.

Artificial Intelligence, 33(1):1-64, 1987.

MACLIN, R., and SHAVLIK, J.W., 1996. Creating advice-taking reinforcement learners. Machine

Learning, 22:251-282, 1996.

MILLER, C.M., 1991. A constraint-motivated model of concept formation. In The Thirteenth Annual

Conference of the Cognitive Science Society, page 827-831, 1991.

MILLER, C.M., 1993. A model of concept acquisition in the context of a unified theory of cognition.

Ph.D. Thesis, The University of Michigan, 1993.

33

MUGGLETON, S., and FENG, C., 1992. Efficient induction of logic programs. In Inductive Logic

Programming. Academic Press, New York, NY 1992.

OURSTON, D., and MOONEY, R.J., 1990. Changing the rules: A comprehensive approach to theory

refinement. In Proceedings of the National Conference on Artificial Intelligence, page 815-820, 1990.

PAZZANI, M.J., 1988. Integrated learning with incorrect and incomplete theories. In Proceedings of the

International Machine Learning Conference, page 291-297, 1988.

PAZZANI, M.J., BRUNCK, C.A., SILVERSTEIN, G., 1991. A knowledge-intensive approach to

learning relational concepts. In Proceedings of the Eighth International Workshop on Machine Learning,

page 432-436, 1991.

PEARSON, D.J., and HUFFMAN, S.B., 1995. Combining learning from instruction with recovery from

incorrect knowledge. In Machine Learning Conference Workshop on Agents that learn from other agents,

1995. Available from www.sunnyhome.org/pubs/mlw95.html.

PEARSON, D.J., and LAIRD, J.E., 1999. Toward incremental knowledge correction for agents in

complex environments. In Machine Intelligence, volume 15. Oxford University Press, 1999.

PEARSON, D.J., 1996. Learning Procedural Planning Knowledge in Complex Environments. Ph.D.

Thesis. University of Michigan, 1996.

QUINLAN, J.R., 1986. Induction of decision trees. Machine Learning, 1:81-106, 1986.

QUINLAN, J.R., 1990. Learning logical definitions from relations. Machine Learning, 5(3):239-266,

1990.

RUMELHART, D.E., HINTON, G.E., WILLIAMS, R.J., 1986. Learning internal representations by

error propogation. In Parallel Distributed Processing, volume 1. MIT Press, Cambridge, MA, 1986.

SAMUEL, A.L., 1959. Some studies in machine learning using the game of checkers. IBM Journal on

Research and Development, 3:210-229, 1959.

SHEN, W., and SIMON, H.A., 1989. Rule creation and rule learning through environmental exploration.

In Proceedings of the International Joint Conference on Artificial Intelligence, page 675-680, 1989.

34

SUTTON, R.S., 1988. Learning to predict by the methods of temporal differences. Machine Learning,

3:9-44, 1988.

TESAURO, G., 1992. Temporal difference learning of backgammon strategy. In Proceedings of the

Ninth International Conference on Machine Intelligence, page 451-457, 1992.

WANG, X., 1995. Learning by observation and practice: An incremental approach for planning operator

acquisition. In Proceedings of the Twelth International Conference on Machine Learning, page 549-557,

1995.

WANG, X., 1996. Learning Planning Operators by Observation and Practice. Ph.D. Thesis, Carnegie

Mellon University, 1996.

WATKINS, C.J.C.H., Learning from delayed rewards. Ph.D. Thesis. University of Cambridge, England,

1989.

WATKINS, C.J.C.H & DAYAN, P. 1992. Technical note: Q-learning. Machine Learning, 8:279-292,

1992.

35

Table of Figures

Figure 1 Environmental constraints on planning and learning ... 5
Figure 2 Complex planning knowledge.. 6
Figure 3 Classification of learning systems .. 8
Figure 4 Domain knowledge as an operator hierarchy ... 11
Figure 5 Inability to select an operator during execution signals an error.................................... 13
Figure 6 Searching for a correct plan.. 15
Figure 7 Differences between plans used for credit assignment... 17
Figure 8 Correcting preconditions for Shift-Up and Shift-Down... 20
Figure 9 New rules added to correct existing precondition knowledge.. 20
Figure 10 Correcting external behavior by correcting planning knowledge 21
Figure 11 Correcting preconditions for DSpeed -4 and DSpeed -6.. 21
Figure 12 Correct model for effects of braking .. 22
Figure 13 IMPROV's final representation for the effects of braking ... 23
Figure 14 Robotic and Driving Domains.. 24
Figure 15 Example domain knowledge in driving domain experiment.. 25
Figure 16 Recovering from Overgeneral and Overspecific Theories... 26
Figure 17 Learning disjunctive precondition knowledge ... 27
Figure 18 Learning as the target knowledge changes over time... 28
Figure 19 CPU time per trial as the agent learns .. 29
Figure 20 Comparison of k-incremental learning to pure incremental... 30
Figure 21 Benefits of adding knowledge to IMPROV ... 31

