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ABSTRACT 

Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including 

communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the 

recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to 

develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training 

environments and interactive computer games. For development and testing in robotic virtual environments, Soar 

interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to 

Soar that add new memories and new non-symbolic reasoning to Soar’s original symbolic processing, which should 

significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, 

reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling 

of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system 

to tune its procedural knowledge – knowledge about how to do things. Mental imagery supports the use of diagrammatic 

and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems 

and the need for cognitive robotics to support dynamic instruction and taskability.  
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1. INTRODUCTION 

Concurrent with the continued progress in low-level perceptual and control systems for robotics has been progress in 

cognitive architecture
1
 – the fixed structures that support complex cognitive behavior. The time is now ripe to explore 

the merger of these fields into cognitive robotics
2, 3, 4, 5, 6, 7

, whose goal is to develop unmanned systems that not only 

have the ability to interact with physical environments, but also have the cognitive capabilities normally associated only 

with human behavior. For unmanned military systems, these capabilities include: 

1. Integrating perceptual and motor systems with cognition 

2. Encoding large bodies of knowledge about the world, including appropriate doctrine and tactics 

3. Reacting in real-time to unexpected changes in the environment 

4. Executing appropriate doctrine and tactics for the current mission and tactical situation 

5. Planning future behavior that is consistent with the current mission and established doctrine and tactics 

6. Replanning as the situation or mission changes 

7. Anticipating the actions of others 

8. Communicating and coordinating behavior with commanders and teammates, both robotic and human 

9. Adapting to the environment 

10. Learning new missions, doctrine, and tactics from human commanders 

 

Although one could attempt to develop cognitive robotic systems using standard programming languages, one is 

inevitably faced with the difficulty of how to represent, execute, and learn a wide variety of knowledge for many 

different tasks in a consistent and timely fashion. Approaches such as finite state machines and MDPs work well for 

specific tasks were there are limited and predictable numbers of features and thus not an overwhelming number of states; 

however, they do not scale to complex behaviors in open environments, or situations where all of the features of the task 

are not known ahead of time.  
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Although there are specialized architectures and algorithms that are appropriate for specific problems, what distinguishes 

general intelligent entities is their ability to solve not just a single problem using a specific method, but the ability to 

pursue a wide variety of goals embedded in many different problem spaces and to use their knowledge in many ways – 

to assess the current situation in the environment, to react to changes in the environment, to deliberately select actions in 

order to pursue goals, to plan future actions, to reflect on past behavior in order to improve future performance, and to 

adapt to regularities in the environment. Cognitive architectures attempt to provide the primitive computational resources 

for developing intelligent systems – the primitive memories, processing units, representations, and interfaces from which 

more advanced cognitive capabilities are constructed. Some of them are also designed so that they meet the constraints 

of real-time behavior, and scale to large knowledge bases without losing reactivity. Thus, the same architecture is used 

across all tasks. Domain knowledge is used to specialize behavior to specific tasks and missions so that a single agent, 

encoded with knowledge for many domains, can pursue a variety of tasks and missions, and with learning, it can 

dynamically extend the tasks it performs. Each new task or domain does not require starting from scratch – task 

knowledge must be added, but the basic structure and general knowledge is shared across all tasks. An architecture also 

provides the focal point for integration of research on perception, control, motor systems and cognition, which includes 

the cognitive capabilities needed to generate basic doctrinally and tactically appropriate behavior. Research into more 

advanced capabilities, such as coordination, metacognition, and advanced learning mechanisms builds on those core 

capabilities.  

 

4D/RCS
8
 is one example of a middle ground between cognitive architecture and robot control systems, as it provides a 

framework for the development of large scale, hierarchically organized doctrine and tactical knowledge. However, to 

date it has not tackled many of the additional capabilities, such as learning, that has become a hallmark of the cognitive 

architecture approach.  

 

Our approach to cognitive robotics is grounded in over twenty-five years of research on cognitive architecture in which 

we have developed the Soar cognitive architecture
9
. The Soar cognitive architecture is unique in that it is industrially 

robust and it has been used for building complex, knowledge-intensive agents, including controlling real-time simulated 

fixed-wing and rotary-wing aircraft
10

, natural language processing
11

, modeling air traffic controllers
12

, and modeling 

adversaries in urban combat controlling characters in virtual environments
13

. For example, TacAir-Soar
10

 models human 

tactical behaviors across a wide-spectrum of USAF missions, generating behavior in real-time, flying missions in 

coordination with both humans and synthetic agents. In addition, Soar matches the basic structure of human cognition, 

which is important when supporting human-robot interaction. By “thinking the way people think,” Soar makes it easy for 

people to build internal models of its operation and predict its behavior, critical for effective human-robot interaction.  

 

Many years ago, we made a foray into cognitive robotics and interfaced Soar to simple robots
14, 15

. Although we 

demonstrated that Soar could support many of the cognitive aspects required for cognitive robotics, it was clear that the 

next important steps had to be in improved perception systems. This led to us abandoning robotics and instead 

interfacing Soar to complex simulation environments
10, 16, 17

. Much has changed in the ensuing years, including advances 

in perception and control, but also in cognitive architecture, and specifically Soar. Others have also explored integrated 

cognitive architectures with robotic systems, including ACT-R
4, 5, 6

, and earlier versions of Soar
2, 3, 11

. We have once 

again interfaced Soar to robotics, both simulated and real. Although it is early in our explorations, in this paper we layout 

what is currently possible and a vision for the future of cognitive robotics. We start with a brief overview of our current 

experimental robotic platform. The main body of the paper goes through the different components of Soar, illustrating 

how Soar supports the required cognitive capabilities in previous systems and in our current robot when appropriate. We 

conclude with a discussion of the future of cognitive robotics and the need to create robots that are dynamically taskable 

and instructable.  

 

2. ROBOTIC PLATFORM 

Our current work in robotics uses a custom small robotic platform called the “splinterbot” developed by Professor Edwin 

Olson
17

 as show in Figure 1. Splinterbot is a simple indoor battery-powered wheeled robot that can move forward, turn 

in place, or turn while moving. It has a SICK forward looking laser range finder. For development, we have run 

simulations of it in USARSIM, as well as a custom simulator developed for the robot (by Professor Olson). Our software 

is directly portable from the simulators to the robot. When controlling the robot, the Soar agent runs on a laptop that sits 

on the robot and interfaces through an Ethernet port. Soar receives the following input: current position, heading, and 



 

 
 

 

velocity based on odometery, which is accurate enough for indoor navigation within a small room; and range data from 

the SICK sensor binned into five arcs.  

 

 
Fig. 1. Splinterbot  

 

The current tasks that the agent performs are navigation based on waypoints (including planning and path following), 

dynamic obstacle avoidance, replanning when a path is blocked, station keeping, and communication with other robots 

about obstacles and unfriendly entities (these latter two are supported only in simulation as of now). At this point, this is 

not a sophisticated robotic system, but it provides a context in which we can describe how different cognitive capabilities 

can be supported by a cognitive architecture for a robot.  

3. BASICS OF THE SOAR COGNITIVE ARCHITECTURE 

 

In this section, we present the basics of the Soar architecture, illustrating its capabilities with previous Soar agents we 

have implemented in synthetic environments. All of these systems have to deal with uncertain and incomplete 

information, and dynamic environments. All the synthetic environments were developed by other organizations, and 

although they do not have all of the complexity of the real world, they are “real” environments in that they are used for 

actual applications, including training and entertainment. Figure 2 presents a structural view of Soar
8
 in terms of its 

primitive memories (square-edged modules), processes (round-edged modules), and their connections (arrows). Each of 

the processing modules can run asynchronously whenever data is available to process.  

 

Starting at the bottom of Figure 1, input comes in through the perception module and is held in the perceptual short-term 

memory. Symbolic structures are extracted from perceptual short-term memory and deposited in Soar’s working 

memory. Working memory acts as a global short-term memory, and it supports rich relational symbolic structures that 

can describe complex situations among multiple entities. Typically, this includes current mission information, choices of 

tactics, and general situational awareness for the robot. The contents of working memory cue the retrieval of knowledge 

from Soar’s three independent long-term memories.  

 

Procedural memory contains Soar's knowledge, encoded as if-then rules, of how to directly select and perform actions, 

and more details are provided below, in Section 3.1. Soar's semantic memory stores general facts about the world, 

including facts and properties of objects, declarative descriptions of doctrine and tactics, etc. This is Soar’s permanent 

store of its global world model. As we develop robots that move beyond skill-based tasks such as navigation, to tasks 

that involve interacting with humans, semantic memory will become more important as a source of a broad range of 

knowledge. In order to access knowledge relevant to the current situation, Soar’s supports associative retrieval of data 

from semantic memory, and this scales to very large declarative stores. Although some knowledge will build up in this 

memory as new information is discovered, much of the knowledge can be pre-seeded (and shared across all robots) from 

existing knowledge bases. Soar also has an episodic memory that stores snapshots of the agent's experiences. This is 

what the agent remembers and provides an agent with the ability to reflect back on prior experiences and use them to 

guide future behavior and learning.  



 

 
 

 

Robot control architectures invariably make a distinction between their representation of the current situation and their 

procedural/control knowledge, although some approaches attempt to minimize the independent representation of the 

current situation
18

, much to their own peril. However, many robot architectures ignore semantic and episodic knowledge, 

or have only limited, task-dependent long-term declarative memories. Agents developed in these approaches are only in 

the “here and now” and do not have the sense of history made possible by these additional memories.  

 

There are purely functional reasons for multiple memories as well. If we did not decompose an agent’s knowledge into 

short-term and long-term memories, it would be nearly impossible to support efficient reasoning about the current 

situation, while at the same time supporting extremely large knowledge bases. Although it may appear that a robot needs 

only limited information about a few tactics, in the real world, a robot will need a wide range of knowledge. Our own 

experience with TacAir-Soar, a system that could execute U.S. tactical air missions, is that supporting large knowledge 

bases is critical, and different types of knowledge are needed. Procedural knowledge (shown on the left of Figure 2) 

directly determines the agent’s behavior – it is the knowledge of what to do in a give situation. Semantic knowledge 

includes facts about the world – what it “knows”, while episodic knowledge is an agent’s memory of its own experiences 

– what it “remembers”. Soar is designed to support efficient access to each of these memories so that as the system 

learns it can maintain reactivity. Soar scales to the large bodies of knowledge (including tactics, doctrine, and 

experience) required in real-world problems (which has yet to be demonstrated by competing cognitive architectures that 

have been mainly developed with the goal of detailed cognitive modeling, without the co-commitment to functionality in 

complex, knowledge-rich situations) and can be used in real-time on a wide variety of computer platforms (from iPods to 

workstations, including Macs, PCs, and Unix systems) and it easily interfaces to software systems, independent of their 

native language. 

 

3.1 Perception, mental imagery, and motor control 

The perceptual short-term memory supports both icon (pixel-level) and diagrammatic (geometric) spatial representations 

that are built up not only from perception, but also through Soar’s mental imagery module (center bottom of figure) that 

allows the system to overlay previous structures during spatial reasoning and planning. These spatial and visual depictive 

 

 

Symbolic Working Memory 

Fig. 2. Soar block diagram. 
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representations are critical for representing non-symbolic information, such as terrain, which aids the tactical reasoning 

facing a military robot
19, 20

. For example, Lathrop developed Soar agents that modeled the perceptual processing of 

robotic scouts participating in a security and reconnaissance mission
21

. In the scenario, robotic scout vehicles must 

cooperate to visually track an approaching enemy. In this scenario, a single enemy agent is observed by one vehicle, who 

communicates it to the other. Mental imagery allows the second agent to create an internal representation of the enemy 

vehicle, extend it with hypothetical information about possible additional vehicles (a single vehicle never travels alone), 

and then use non-symbolic processing to imagine possible route for these vehicles through the terrain. Finally, the agent 

can overlay its mental image with possible positions for itself to determine the best location and orientation for tracking 

the vehicles as they move through the terrain. This would be difficult to impossible to carry out in a purely symbolic 

representation, which has led many to incorporate map-based representations in their robotic systems. However, an 

important extension in our own work is that we have developed task-independent interfaces for interacting with the 

mental imagery system so that as the uses of mental imagery expand, there is no need to modify or extend its integration 

within the architecture. 

 

We have also extended the ability to incorporate imagery so that not only can complex actions be initiated through the 

motor system, but Soar also supports complex actions influencing mental imagery. For example, if the motor system can 

“imagine” its actions, the agent can simulate its behavior before actually executing it
22, 23

.This extends not to just simple 

translation and rotation, but to arbitrary behavior, such as nonholonomic control of a car. We have used this approach to 

incorporate modern path planning algorithms, such as RRT, into Soar. The modular design of Soar makes it easy to 

change the high-level control knowledge (in procedural memory) to support different planning algorithms, while also 

supporting independent changes to the low-level controllers, to support using those algorithms on vehicles with different 

control systems.  

 

3.2 Control of Sequential Behavior 

Deliberate sequential behavior arises in Soar through context-dependent retrievals from procedural memory of 

operators. Operators are the primitive acts of the system and can either change working memory (internal reasoning), 

initiate retrieval from other long-term memories (deliberate retrieval), initiate action in the world (motor behavior), or 

initiate changes to the perceptual short-term memory (mental imagery). It is through operators that deliberate behavior 

arises. However, operators themselves are not primitive structures. Instead, an operator is decomposed into situation-

specific rules for when to propose the operator (the situation is such that an action should be considered), evaluate the 

operator (how good is the operator in this situation and how does the operator compare to alternatives), and apply the 

operator (what changes should be made to the current situation – including motor actions). This approach supports 

flexible, robust behavior, where knowledge to propose an operator can be quite general, whereas evaluation knowledge 

can be very specific, taking into account perceptual data, and relevant information retrieved from long-term memory. 

This approach proved to be very successful for encoding not only what behavior is possible in a situation, but also which 

behavior is appropriate for the current tactic and mission being executed, as well as which behaviors are doctrinally 

correct. Thus, an agent in Soar may be in exactly the same physical situation at different times, but generate completely 

different behavior depending on its mission, tactics, and doctrine. This context-dependent behavior is possible in Soar 

because a combination of specific and general rules can be used for selection and application of operators, in contrast to 

finite state machines where all possible situations must be enumerated. This process is also more than fast enough to 

respond to changes in the environment. The basic loop of receiving input, making a decision, and taking an action occurs 

in ~100 microseconds on standard hardware.  

 

3.2 Hierarchical Behavior 

Although, one can think of a mission as consisting of a long series of actions, for most behaviors, it is more appropriate 

to think of them as a hierarchy of more and more abstract actions. For a simple mission that involves moving from one 

place to another, the most abstract action could be to execute the mission, the next to go to some location, and below that 

to go to an intermediate waypoint, which is further decomposed into commands for moving forward and turning. Soar 

directly supports the encoding and execution of such hierarchical structures. This is accomplished by allowing the 

selection of abstract operators. Figure 3 shows such a structure for an intercept by a tactical aircraft (taken from TacAir-

Soar). When the “intercept” operator is selected, a new goal is automatically generated to apply the operator because it is 

too complex to implement directly as a primitive motor action. Once a new goal is created, additional operators are 

proposed for implementing intercept, such as “Achieve proximity to the aircraft”, “Search for the aircraft”, or “Employ 



 

 
 

 

weapons against the aircraft”. The knowledge as to when to select these operators encodes the appropriate doctrine and 

tactics, which is further refined as an operator is selected and decomposed. When a primitive operator is selected, rules 

create appropriate commands for the motor system such as “Select a missile to fire”, “Push the fire button”, and “Set the 

aircraft to fly a particular heading.” This decomposition process is dynamic, in that it depends on the specific situation – 

so that as the world changes, different operators can be selected at any level of the hierarchy. This supports not just 

reactive behavior, but reactive behavior modulated by goals.  

This same approach is used in our physical robot to represent knowledge for executing its missions, although to date the 

missions and associated behaviors are much simpler. However, based on our previous work with TacAir-Soar, the 

structure is there to support the extremely complex hierarchical behavior necessary to encode a wide range of doctrine 

and tactics. 

 

Within this approach, coordination is just another way of pursuing tactical and strategic goals and is part of the 

knowledge that encodes the appropriate doctrine and tactics. For example, the “scram” action above is selected when 

another plane is about to take a shot at an enemy and has communicated that the agent might be in harm’s way – so the 

agent must quickly maneuver to get out of the way. More complex coordination, such as flying in formation, is similarly 

reflected as the fly-wing mission, with communication with other agents being primitive actions that are executed in 

subgoals.  

 

Although dynamic hierarchical decomposition is important for encoding structured knowledge, such as the goals and 

subgoals that make up the current mission, there are often multiple goals that need to be pursued that do not map directly 

onto a hierarchical decomposition. For example, if the robot notices a new entity via perception, it needs to identify it 

and possibly communicate information about it, while still executing its current mission. To support this behavior, Soar 

also rapidly switches to a new higher-priority operator, executes it and then returns to the mission execution. Soar is 

designed so that goal hierarchies such as the one shown in Figure 3 are re-entrant, meaning there is sufficient 

information stored in working memory so that the complete hierarchy will be regenerated if it is ever interpreted. In the 

limit, Soar can switch between tasks as necessary to respond to the multiple goals it is pursuing.  
 

 

Fig. 3. TacAir-Soar operator hierarchy. 



 

 
 

 

3.3 Planning 

Another issue that arises in trying to create flexible systems is how to handle incomplete or uncertain knowledge, such as 

when there are multiple paths a robot could take, multiple tactics it could use, or different actions it could employ to 

execute a tactic. In these cases, the ability to plan ahead and discover the possible interactions and implications of the 

alternative actions is critical. This occurs in Soar automatically, not just in path or action planning, but across all 

operators/goals that arise whenever there is uncertainty as to what action to take. In these situations, Soar automatically 

generates a subgoal in which the Soar agent reasons about the alternates, possibly planning ahead to discover which 

course of action is best given the current situation and the agent’s mission and available knowledge. The planning is not 

closed off to one type of behavior, but is open so that for example, when the agent is facing a tough decision, it might 

realize that it can communicate with a human or another robot to aid in making the decision, or if isolated, plan out its 

behavior on its own. The plans that it develops are conditional on the current situation, so that if things do not play out as 

expected, the agent will either take an obvious course of action, or it will replan. In addition, the planning and replanning 

can be sensitive to time so that if ever it is better to take some action than plan, that will also happen. 

 

Planning combines with the hierarchical structures described above, so that the agent can plan at any level of the goal 

hierarchy. Moreover, if the execution of a level of the hierarchy is routine, internal modeling of the actions required to 

carry out a goal are skipped. As an example, Figure 4 shows a 2D projection of a plan generated by a Soar agent in the 

3D Urban Combat Testbed (UCT), which is a military simulation of small arms combat built on top of Quake 3. On the 

right of Figure 4 is a depiction of the internal map built up by a Soar agent and the path it traversed in going from the left 

of the diagram to the right. The large rectangular regions in the middle of the map are buildings that cannot be traversed. 

To move through the environment, the agent must issue commands that are at the same level of motor commands in a 

robot: turning and moving forward. However, these commands are suboperators of goals to move from region to region. 

When planning, executing these primitive operators is avoided by including procedural knowledge that “teleports” the 

agent from region to region when the move-to-region operator is selected. This greatly speeds planning by concentrating 

search where there is uncertainty.  

 

Given the dynamics of the world, an agent must be able to handle situations when its plans fail. In Figure 3, the agent 

first searches its internal map and comes up with a plan to go across the top of the map. However when it reaches region 

200, it finds that its path is unexpectedly blocked. At this point, the agent automatically abandons that path because its 

assumptions about the availability of a path from region 200 to 202 are violated. It once again faces uncertainty and 

replans. It then follows the new plan, which takes it around the building before it eventually achieves its goal. This same 

behavior is performed by our Soar robotic agent, although for much smaller areas (because of limits on our laboratory 

space) and using a graph-based representation of space instead of the region based used in UCT).  

 

 

  
 

Fig. 4. Results from learning via RL and chunking in Soar (right) in an exploration and navigation task implemented in the 

Urban Combat Testbed. The values in the graph are the number of areas visited when exploring the map to get from a 

start location to a goal location. 
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3.5 Learning: Chunking & Reinforcement Learning 

Soar has two learning mechanisms associated with procedural memory: chunking, which compiles the problem solving 

in subgoals, and reinforcement learning, which tunes the actions of rules that evaluate operators. Chunking continually 

improves the reactivity of Soar agents by replacing any deliberation in subgoals with reactive selection and execution of 

operators, while reinforcement learning improves the quality of behavior by tuning the decision making in response to an 

agent’s experience. With chunking, the internal search carried out to find a path is captured as rules, so that in the future, 

if the same search or a subset is required, rules will directly make the correct decision without search. Moreover, the 

learned rules are sufficiently specific so that if knowledge about the structure of the environment changes, such as a 

connection between areas is closed off, the chunks will not match, and replanning will occur. Chunking occurs in 

parallel with problem solving so that the rules it learns are immediately available.  

 

Reinforcement learning (RL) emphasizes learning functions that associate situations with potential reward based on 

statistical regularities that arise in an environment in relation to an entity’s actions and the rewards it receives from the 

environment. Within a cognitive architecture, reinforcement learning provides a means for learning control knowledge 

from experience, specifically statistical correlations related to expected reward. Although analytic learning mechanisms 

such as Soar’s chunking can also learn control knowledge, they require an internal model of the environment, which RL 

does not. Reinforcement learning has been extensively studied in the last fifteen years, but research has focused on 

environments where the available tasks, actions, rewards, and features of the environment are known when the agent is 

constructed. In contrast, our work in RL extends its application to autonomous entities that pursue many different tasks, 

many whose details are not known at design time. Moreover, by pursing RL in the context of Soar, this research can 

explore the integration of RL with the other components of Soar. For example, in Soar, RL applies across all goals and 

subgoals, automatically providing an architecture for hierarchical reinforcement learning
25

. 

 

 

Fig. 4 illustrates an example from an exploration problem in a UCT. In this example, a Soar agent uses RL and chunking 

to learn control strategies for searching for the goal across multiple trials. The graph shows the number of areas visited 

by the agent with and without learning. The RL agent quickly learns to outperform an agent without RL. One of the 

advantages of RL in this situation is that the agent developer did not have to encode the control rules and the agent 

learned those control policies.  

 

3.5 Learning: Episodic Memory 

 

Episodic memory contains memories of what was experienced in the past. Prior episodes can be recalled to answer 

questions about the past, to aid in decision making through predicting the outcome of possible courses of action based on 

the past, possibly by creating an internal model of the entity and its environment based on observations of past outcomes, 

or to help keep track progress on long-term goals. Important for the work proposed here, the episodic history can also be 

used for deliberate reflection about past events that can improve behavior through other types of learning, such as 

reinforcement learning. In Soar, episodic memory includes specific instances of the structures that occur in working 

memory at the same time, as well as the ability to recall the “next” episode that occurred
26

. This provides the ability to 

remember the context of past experiences as well as memories of the ongoing experience, which can be used to predict 

what will happen in similar situations in the future. One advantage of episodic memory is that it is a low-cost, always 

available learning mechanism that records the complete experience of the robot, independent of the robot’s goal. For 

example, episodic memory saves away memories of the objects that the robot encounters, and if in the future the robot 

needs some object, such as a tool, it can retrieve from episodic memory where it encountered that tool, and retrieve it.  

 

Although reinforcement learning provides an incremental approach for learning from success and failure, episodic 

memory provides a more direct path to learn from successes and failures by providing the ability to recall when possible 

actions either succeeded or failed in similar situations. Figure 5 illustrates the results from a game-world in which 

simulated tanks fight against one another. In this case, an agent with episodic memory (EM) is pitted against an agent 

with a hand-coded knowledge-engineered control policy. The figure shows, on average, how the EM agent performs 

against the hand-coded agent. Initially, the agent lacks knowledge about the specific tactics useful in this domain, and 

performs poorly. However, using EM and some general knowledge that the agent should pursue actions that result in 

success and avoids ones that do not, the agent EM learned to beat the fixed-policy controller after about 20 games. The 

learning gave the agent effective “dodge” and “move and fire” tactics without any explicit user programming. 



 

 
 

 

 

4. DISCUSSION 

The purpose of bringing ideas from cognitive architecture together with robotics systems is to expand the cognitive 

capabilities of today and tomorrow’s unmanned systems. Five years ago, it would have been difficult, if not impossible 

to predict that we would be using thousands of tele-operated robots for IED disposal. It is probably also impossible to 

predict what role unmanned systems will play in the military in the next 5-10 years. What we can predict is that the types 

missions for unmanned systems will explode and change as both the capabilities of unmanned systems improve and as 

the mission of the military changes. The future demands that our research focus on developing flexible unmanned 

systems that can learn to perform missions that the original developers never imagined.  

 

To support this, we need to: 

1. Develop core cognitive capabilities that will be important no matter how we will use unmanned systems. 

2. Develop capabilities that are critical to exploring the space of possible uses. Capabilities that make it easy to 

experiment with different missions, different goals, different ways of using unmanned systems. 

3. Develop capabilities that make it possible for an unmanned system to be quickly retasked to new missions and 

new uses in the field, and that allow it to adapt quickly to its new missions and role.  

 

Both 2 and 3 will put a premium on many types of learning and instruction, where a human cannot only quickly direct an 

unmanned system through short commands or gestures, but can communicate complex new behaviors – new missions, 

new doctrine, and new tactics, through techniques such as learning by demonstration and learning by instruction using 

language
27,

 
28

. It will also put a premium on the robot’s ability to communicate and explain to a human its understanding 

of newly acquired knowledge and missions, not just through verbal communications but also through visual 

presentations and simulations. Moreover, inherent to this approach is that it will be necessary to develop techniques to 

ensure the correctness of its instructions and its interpretation of them. It will also have to have failsafe mechanisms that 

ensure that instructions cannot conflict with the robot’s core doctrine
29

. These are huge challenges, but need to be 

pursued.  
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Fig. 5. Agent performance learning from past successes and failures 
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