

A Soar-based Planning Agent for Gas-Turbine Engine Control and Health
Management

Paolo Gunetti*. Haydn Thompson**

*Department of Automatic Control and Systems Engineering, University of Sheffield; Mappin Street, S1 3JD, Sheffield, UK

(Tel:0044-(0)1142225633; e-mail: p.gunetti@sheffield.ac.uk).
** Department of Automatic Control and Systems Engineering, University of Sheffield; Mappin Street, S1 3JD, Sheffield, UK

(Tel:0044-(0)1142225649; e-mail: h.thompson@sheffield.ac.uk)

Abstract: Intelligent Agent technologies constitute an important stream of research in the Artificial
Intelligence community. Their characteristics make them suitable for a variety of applications. In this
paper, we investigate the use of Intelligent Agent technology in the field of Gas-Turbine Engine Control
and Health Management. We present and test a Planning agent, developed to choose and apply appropriate
investigative and reversionary action plans, which are useful to correctly assess and mitigate faults. The
agent is based on Soar technology and tests are performed using a previously developed Intelligent Agent
architecture. The Planning agent uses a simple FMECA database and results show it is capable of choosing
the correct action plans when presented with different failure cases.

1. INTRODUCTION

There is currently a considerable amount of research work
focused on the development of increasingly autonomous
UAV systems. The ultimate objective of this work is to
provide a UAV with sufficient decision-making skills so that
the operator will only need to assign a mission to it and the
UAV will be able to perform it entirely, without the need of
assistance from a pilot. Such capability can bring several
advantages: for example, this means that a single operator
can effectively control a team of UAVs being able to focus
on mission management rather than on normal piloting tasks.
Another example might be the case of personal UAVs for
soldiers, where increased autonomy means a significant
reduction in the skill level needed to pilot the UAV and a
reduction in the control equipment needed.

The challenges of autonomous UAV flight become
particularly difficult to tackle for civil applications. Civil
missions such as global monitoring of environment and
security, for example, can only be achieved if UAVs are able
to fly seamlessly amongst other air traffic within national or
international airspace (UAV Task Force, 2004). Furthermore,
this capability has to be proven and certified, and this means
that the UAV control system has to satisfy the very strict
requirements typical of civil aeronautical regulations, such as
the DO-178B standard (RTCA, 1992) for software
development.

In order to open up opportunities for safe and routine use of
UAVs in non-segregated air space by addressing specific
regulatory and technological issues, ASTRAEA
(Autonomous Systems Technology Related Airbone
Evaluation and Assessment) was launched in 2006 as a key
element of the National Aerospace Technology Strategy.
ASTRAEA is a £32 million civil programme led by an

industrial consortium incorporating Agent Oriented Software,
BAE Systems, EADS, Flight Refuelling, QinetiQ, Rolls-
Royce and Thales UK, working with leading academics and
supported by investment from the DTI, Welsh Assembly
Government, Scottish Enterprise and regional development
agencies covering the North West, South East and South
West of England.

The programme has been split into several sub-projects, each
addressing the challenges of autonomy at different levels or
for different sub-systems. In this light, Rolls-Royce and the
Rolls-Royce University Technology Centre (UTC) in Control
& Systems Engineering at the University of Sheffield are
working cooperatively to develop technologies which will
address the UAV autonomy issues related to propulsion and
power generation systems (and particularly Gas-Turbine
Engines). The objective is to improve the Diagnostic and
Prognostic capabilities of the Full Authority Digital Engine
Controller (FADEC), and to develop a computer system able
to replicate typical pilot reactions to fault occurrence.

2. INTELLIGENT AGENT TECHNOLOGY

One of the main advances in computer science and artificial
intelligence during the last two decades has been the
introduction of the concept of Intelligent Agent (IA).
Intelligent agents are a new paradigm in the development of
software applications (Jennings et al, 1998) and are designed
to address the need for flexible and autonomous computer
systems.

This technology is still at quite an early stage; it has been
exploited thoroughly in certain areas of application (like
internet search engines), but its use in other areas of software
engineering is restricted at best. In fact, even agreement on
the definition of IA is not universally accepted among

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2200 10.3182/20080706-5-KR-1001.1012

computer scientists. A popular definition, which we take as
our own point of view, is that “an Agent is a computer
system situated in some environment, and that is capable of
autonomous action in this environment in order to meet its
design objectives” (Wooldridge, 1999). Furthermore, we can
say that an Intelligent Agent is one that is capable of flexible
autonomous action, where flexible implies reactivity (ability
to understand the environment and react to its changes), pro-
activeness (goal-oriented behaviour) and social ability
(ability to interact with other agents).

These characteristics mean that IAs are potentially a very
good solution for the development of complex intelligent
systems, which often must be able to replicate the reasoning
process of a human being under severe real-time constraints.
Computer systems are obviously able to react much faster
than the human brain in simple and predictable situations, but
the ability of the human brain to confront unexpected
situations, change its decisions after a re-assessment, perform
abstract reasoning and learn from experience remains
unchallenged. IAs constitute a possible approach to narrow
this gap, with the ultimate objective of building computer
systems combining the fast reaction times of modern
hardware with the skills typical of human reasoning.

Even though consistent advances have been made in the
recent years, expertise in designing and building agent
applications is still underdeveloped. There are several support
tools for building IA applications but often they are over-
specific and addressing only a restricted range of problems.
We can identify two main trends in the development of IA
tools: on one side there are “strong AI” systems, which
represent the computerization of cognitive modelling
theories; on the other side, certain IA tools are just an
expansion of object-oriented programming languages (such
as Java), introducing Agent classes so that IA concepts can be
applied. Both types of approach have their advantages and
disadvantages, and these must be carefully evaluated when
selecting what tool should be used in a particular research
project.

During this project, two IA tools were identified and
assessed, one for each of the categories above mentioned; the
first one is JACK™, which is an agent-oriented expansion of
Java; the second one is Soar, which is instead built around a
specific cognitive architecture. A final decision was made to
choose Soar as our main IA development tool. This was
mainly due to two reasons: firstly, because this allows us to
explore the potential of cognitive modelling tools for control
applications, and secondly because of issues regarding the
certification possibilities of Java-based software. In fact,
Java-based platforms for Safety-Critical systems such as the
PERC platform from Aonix are now available, but the
integration with Java-based IA tools is likely to prove
difficult.

Soar provides a robust architecture for building complex
human behaviour models and intelligent systems that use
large amounts of knowledge (Soar Technology Inc., 2002).
At a high level of abstraction, it uses a standard information
processing model including a processor, memory store, and
peripheral components for interaction with the outside world.

At a low level of abstraction, Soar uses a Perceive-Decide-
Act cycle to sample the current state of the world, make
knowledge-rich decisions in the service of explicit goals, and
perform goal-directed actions to change the world in
intelligent ways. The distinguishing features of Soar are:
parallel and associative memory, belief maintenance,
preference-based deliberation, automatic sub-goaling, goal
decomposition and adaptation via generalization of
experience.

A Soar agent is based on its production rules; these represent
long-term knowledge and are practically the program code
for the agent. Production rules are in the form of if-then
statements, where an action is performed only if the
conditions are met. When the conditions of a production are
met, the production is said to fire; as Soar treats all
productions as being tested in parallel, several productions
can fire at once, and this can happen at different levels of
abstraction, giving the Soar agent natural pro-active
behaviour (the agent is inherently aware whether the
conditions to apply certain production rules are still valid).
Short-term knowledge is instead constituted by external
input, and appropriate functions must be developed to
interface the Soar agent with its environment.

We will now look at how the Soar tool can be used in the
field of Gas-Turbine Engine (GTE) Health Management. In
this case, we aim to develop a system able to correctly
manage the running operation of a GTE, both in a fault-less
and in a faulty condition. This system must optimize the
operation when no fault is detected, and apply appropriate
reversionary and investigative action plans when a fault has
occurred.

3. ENGINE HEALTH MANAGEMENT SYSTEM

In the last two decades, avionic systems have become more
and more important in an aircraft. The extraordinary
advances in electronics allowed the introduction of complex
control hardware for all the on-board systems. GTEs are not
an exception and the introduction of Full Authority Digital
Engine Controllers (FADEC) brings several benefits to their
operation (Harris et al, 2000):

• longer life guarantees;

• improved operability including fast handling capability
and minimum pilot intervention even after incidents;

• ease of maintenance due to the availability of
performance data and fault diagnostics

• increased integration with airframe systems;

• lower life cycle costs

Modern FADECs usually include Engine Health Monitoring
(EHM) capabilities; this means that the FADEC is connected
to a number of sensors and logs all data coming from these.
The FADEC can respond quickly to critical conditions such
as flameouts or stalls, but most of the EHM data is used only
for ground maintenance.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2201

With this work, we aim to use EHM data to adjust engine
behaviour during flight, so that the effects of a fault can be
mitigated. This is a complex task, requiring:

• correctly identifying a fault

• understanding the effects both at engine level and at
platform level

• devising appropriate reversionary action plans

Also, we aim to optimize engine operation in order to achieve
lower-priority objectives such as maximising engine life,
minimising fuel consumption and maximising engine
response. All of this has to be accomplished under severe
real-time constraints, as on-board hardware is usually
resource-constrained and the system has to continuously
monitor data from all sensors. Also, if the system is to be
given real autonomy, it becomes safety-critical, adding severe
requirements to ensure operability.

The approach we used is based on a distributed architecture.
The system consists of a general Intelligent Agent
architecture, which is needed to interface the different types
of technology used to provide the functionality. The use of
the IA paradigm allowed encapsulation of different functions
such as Fault Detection, Fault Isolation and Planning in
different agents. The agents can then interact through the
architecture, with the general behaviour of the system
emerging from their interoperation.

A key objective in assembling the agent architecture has been
the possibility to integrate different types of Intelligent
Systems technology. In fact, the various tasks that the system
has to perform are best obtained from a coherent mix of
diverse technologies. In particular, at present the following
technologies have been integrated in the architecture:

• Digital Signal Processing is used for Fault Detection

• Case-Based Reasoning (CBR) is used for Fault Isolation

• Fuzzy Logic is used to assess the effects of a fault at
platform level (where by platform we intend the platform
which is hosting the engine, e.g. the UAV)

• Intelligent Agent tools are used for reversionary action
Planning

In terms of data flow, the obvious start is the FADEC, which
collects engine sensor data; additional data is coming from
the platform (environmental and mission data). Raw sensor
data is digitally processed, partly by the FADEC and partly
by our system, in order to achieve Fault Detection.

Fault Isolation is accomplished using the Intelligent Fault
Isolation System (IFIS), which is a tool also developed at
Sheffield University (Mills et al, 2006). This system is based
on CBR technology and is designed to fuse data from
different sources, extracting “hidden information” already
present in this data but difficult to interpret without
contextualising the symptom using other sets of data not
directly related to it (i.e., data from an additional sensor
might confirm or discard the fault detected by a main sensor).

Output from IFIS is fed into Fuzzy-Logic-based algorithms
that evaluate the effects of a fault. Engine performance is
evaluated using a series of engine performance parameters. A
Fuzzy Inference System relates faults to a numerical
estimation of their effect, calculated in terms of a reduction to
these parameters. The criticality of a fault is also computed,
by assigning a criticality degree to each of the possible
effects to engine performance.

Finally, all of this data is used by the Planning agent to select
the correct reversionary action plans. The agent considers
both EHM data and situational awareness data, in order to
make contextual decisions: we do not want the system to
reduce thrust during take-off because it detected a minor
fault! In fact, the system is built to always operate under the
authorization limits provided by the platform, so this would
not be possible unless it is requested by the platform itself,
but it is also important to avoid requesting to the platform a
reduction in thrust when this is clearly not reasonable. The
Planning agent also serves as an intelligent thrust demand
optimization tool, which is useful during normal engine
running condition (no fault present). In this case, the system
can assume several different behaviours, such as maximising
engine life, minimising fuel consumption or maximising
engine response. The platform can impose a preferred
behaviour, but the decision on which is the best behaviour is
also influenced by EHM data.

We will now concentrate on describing the structure of the
Planning agent in Section 4, while Section 5 will present the
tests performed on the agent. The other aspects of the
architecture are described in more detail in a separate
publication (Gunetti et al, 2007).

4. THE PLANNING AGENT

Incorporating Soar technology with the Intelligent Agent
architecture involved realizing an appropriate interface. As
the architecture is built using Matlab/Simulink software, this
task meant writing an S-Function encapsulating the Soar
agents.

The S-Function is a custom-built Simulink block, which
incorporates the code for the Soar kernel to effectively run an
instance of Soar inside a Simulink model. The interface is
designed to be general, so that it can be re-used with
minimum changes. In fact, the user interface allows to freely
choose what production rules the agent should load, the agent
name and the port number (used, for example, to connect the
Soar Debugger tool). The Input/Output structures are instead
hard-coded, meaning that to change these it is necessary to
change the S-Function code and recompile it. The
Soar/Simulink is now being optimized and a basic version
should be included in the next main Soar release.

The S-Function encapsulates a single Soar agent with the
rules specified in a file. In order to build a Soar agent, one
must write these production rules in a text file (normally
using the VisualSoar IDE). To correctly write the rules, it is
imperative to carefully think about how to organize the
agent’s execution cycles. The Soar programmer must
understand how to divide the problems the agent must face

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2202

into different categories, and plan a priori the flow of the
decision process.

The Planning agent is a decision-maker, taking Fault
Diagnosis and situational awareness data as inputs and
outputting an optimized thrust demand together with
reversionary and investigative actions. The symptoms, faults
and reversionary actions which have been embedded in the
system and in the Planning agent are derived from a sample
Failure Mode, Effects and Criticality Analysis (FMECA)
database provided by Rolls-Royce, who are an industrial
partner in the project. It is important to stress that this work is
intended to demonstrate the potential for such technology;
therefore, the FMECA database is simplified but
representative of the problem domain. This allows focus to be
placed on working directly on the technology rather than on
the implementation of a detailed database. It is expected that
following the demonstration of the suitability of this
technology in the field of GTE Health Management, a larger
and more realistic database will be implemented. The Agent
architecture and Planning agent are built with this in mind, so
that implementation of a new database will be as seamless as
possible.

Technically speaking, the Soar Planning agent is built using
the abstraction of several levels of decision-making. Figure 1
shows the operator hierarchy adopted in the Planning agent.
The main organizational division is between the two cases of:

• No fault detected (running-normal)

• Fault-detected

Soar continuously checks input in order to find out whether a
fault is present. If no fault is detected, it enters the “Running-
Normal” state, whereas when a fault is present it switches to
the state of “Fault-detected”.

PLANNING

RUNNING-NORMAL FAULT-DETECTED
Thrust Base-Thrust

Generate DRAP

Assess DRAP
Generate Plans

Reversionary Actions

Investigative Actions

Figure 1 – Planning Agent organizational diagram

In the first case, the agent must only determine the thrust
level to be applied, within the limits provided by the
platform. The decision on thrust level is based on input
coming from the platform (mission phase advisory and
environmental condition) and from its own long-term
knowledge (for example, the agent can have long-term
knowledge of optimal thrust ranges). An interesting
possibility is using the Soar learning system (called
Chunking) to improve this aspect. The controller might
analyze sensor data and calculate what the optimal thrust
ranges are, then this could be “learnt” using the chunking
technique (which basically involves adding a new production

rule to the predetermined set). There is a drawback though; in
fact such a characteristic would drastically decrease the
predictability of the system, especially if new rules are to be
added automatically. This would certainly lead to
certification issues. For this reason, the learning capabilities
of Soar have not been used at this stage of the project.

As soon as a fault is detected, the agent enters the other main
state, which is the “Fault-Detected” state; in this situation the
agent goes through a series of tests in order to determine
appropriate action. At first, it calculates a “Base-thrust”,
which is basically repeating the same process of “Running-
Normal” but with (possibly) different parameters. This is
needed to have a starting point for the next operators. The
next decision phases are the ones during which a Draft
Reversionary Action Plan (DRAP) is generated and then
assessed against the action scope provided by the platform. If
the DRAP is found to be falling out-of-scope, additional
plans are generated, up to a number which is dependant on
fault-criticality. Finally, additional reversionary and
investigative action (such as requesting return to base or
running additional tests) are assessed and the agent evaluates
whether these are appropriate or not. When a complete plan is
ready, filled with all details about programmed reversionary
and investigative action, output is sent back to the agent
architecture, which verifies that the command is consistent
and then forwards it to the FADEC. In order to make it more
predictable, plan generation has been designed as a scheduled
activity; the generation of a plan will always go through the
same series of decisions, in the same order.

This main set of rules is complemented by additional
productions such as the state elaboration rules, which create
useful abstractions of input data, and the I/O management
rules, which organize I/O data and interface with the I/O
functions.

Having described the structure and organization of the
Planning agent, we now proceed to test it in a simulated
environment, based around the IA architecture and
complemented with a GTE model.

5. TESTS AND RESULTS

The Planning agent was tested in a series of simulations
where its behaviour under pre-determined conditions was
recorded. The tests saw the use of the entire agent
architecture with all the tools currently implemented; these
had to be complemented with a Fault Injection tool,
visualization tools and a GTE model which is used to verify
how the entire system behaves when controlled by the
Planning agent.

The sample FMECA database in this test is constituted by a
set of fourteen symptoms, which are mapped to six different
faults. Reversionary and Investigative actions are related
directly to the faults, but are also dependant on the current
situation (i.e. actions are contextualized, so, for example, the
system does not try to reduce thrust during take-off, even if
the occurrence of a fault would suggest it from the engine
point of view). The plans are devised in real-time, by
progressively assessing the need for actions. This is a major

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2203

difference compared to more conventional technologies,
employing traditional techniques such as look-up tables. With
these, the system always reacts in a pre-specified manner, and
each possible input configuration is directly mapped to an
appropriate reaction. With IAs, we instead generate a plan by
sequentially assessing the need for each action.

The testing methodology involved running simulations in a
Simulink environment, during which the entire architecture
was in execution with simulated input. The inputs were
mainly from the Fault Injection tool, but also from dedicated
Simulink blocks designed to simulate the presence of the
platform with its thrust requirements. A number of scenarios
were identified, consisting of different environmental
conditions and fault cases. Output from the Planning agent
was then compared with output from a more conventional
algorithm performing the same tasks and finally fed into the
engine model to determine the realistic effects of the agent’s
decisions. The conventional algorithm is based on look-up
tables derived from empirical data and the results of the
comparison are omitted due to space reasons.

We will now present part of the results of the tests; these are
obtained from a scenario where a standard flight condition is
seeded with different faults. The simulated platform is
requiring a thrust level within 40 to 60 percent of maximum
thrust, and these limits cannot be exceeded by the system
without authorization from the platform. Results show that
the system correctly identifies the faults and takes appropriate
reversionary and investigative actions. Results are shown in
three graphs, depicting several aspects of the agent’s
decisions.

Figure 2 – Reversionary action plans

Figure 2 shows what the reversionary actions are; these
practically consist of a reduction in thrust level, which is
always within the action scope provided by the platform. In
case the agent decides for a thrust level which is out of the
action scope, the selected level will be the closest one falling
within the scope. The platform is informed that the optimal
plan from the engine point of view is out-of-scope but

advisable in terms of engine performance and health. It is
important to understand here that our system plans thrust
levels and all actions in order to pursue the “best interest” for
the GTE; this may significantly differ from the requirements
of the platform, which obviously have a higher priority.

In the first graph we can notice the time plot for thrust
demand, while the second graph depicts when extreme
reversionary action is taken; in this case, for a very critical
fault the system advises the platform to return to the base as
soon as possible; this is the case when there can be no
guarantee that the engine can complete the mission.

Figure 3 – Investigative action plans

Figure 3 shows the possible Investigative actions and their
plots. The agent performs appropriate investigative action
only if this is not interfering with reversionary action.
Investigative actions include performing additional tests (BIT
check), performing a detailed vibration analysis and
signalling the necessity of maintenance when on-ground.

Figure 4 – Alternate out-of-scope plans

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2204

Finally, Figure 4 shows the alternate plans which are
generated by the agent. This happens only when the optimal
plan is not falling within the action scope. In this case, the
agent applies an immediate change of thrust falling within the
action scope, but also sends an advice message to the
platform to inform it that more drastic action is needed.
Depending on the criticality of the fault (which is numerically
estimated by previous algorithms), a different number of
plans is presented to the platform, with more critical faults
allowing a larger number of plans, up to a maximum of five
plans.

These results show that the Planning agent is capable of
applying appropriate Reversionary and Investigative action
plans when presented with different fault situations.
Comparison with results from conventional technologies
demonstrates that the Soar agent is able to give a similar level
of performance, if not better. We must consider here that the
implemented database is simpler than a realistic one.
Performance may vary consistently with a more realistic
database, but it is expected that it will still benefit from the
use of IAs.

The Planning agent also implements thrust optimization
capabilities which are very complex to recreate using
traditional techniques. These were very simple to model
using the Soar language, as Soar is very well suited to
performing symbolic reasoning tasks. In fact, as stated
before, the Soar learning capabilities make the development
of such an adaptive system much simpler when compared to
other technologies.

6. CONCLUSIONS

In this paper we have presented a novel approach to Gas-
Turbine Engine Control and Health Management. The
approach focuses on the use of the Intelligent Agent
paradigm to model the various software components of the
system. Several types of technology were integrated by
encapsulating them in Intelligent Agents, which formed a
distributed IA architecture.

The main function of the system was choosing appropriate
reversionary and investigative action plans. This was
performed by an agent built using the Soar IA tool. The paper
explains how the Soar agent is integrated with the rest of the
system, details the modelling logic behind the agent and
presents simulation tests.

Tests demonstrated that this approach is practicable; in fact,
the use of IA tools allowed not only the desired behaviour
from the system to be obtained, but also implementation of
more advanced features such as thrust optimization. From
this, we estimate that the characteristics of Soar make it
suitable to implement Adaptive Scheduling in the system.
This is a very complex feature which is part of the
requirements for the ASTRAEA project, and Soar technology
should allow this to be put it into practice with relative ease
compared to more conventional technologies.

Four prospective areas of research have been identified:

• Implementation of multiple agents;

• Implementation of a larger and more detailed behaviour
model;

• Experiments on real-time implementations of Soar

• Experiments on the use of Soar learning capabilities

Future work will address these issues, but will also be
dedicated to exploring the possibilities of using Soar agents
for general UAV control. In fact, a lot of the research work
done is meant to be easily portable to an autonomous UAV
control unit. It is felt that the potential of Soar agents for
high-level mission management is great, and our efforts will
look at a practical demonstration of this capability.

7. ACKNOWLEDGEMENT

The authors acknowledge the support of the DTI, the
ASTRAEA consortium and Rolls-Royce Plc in this work.

REFERENCES

Gunetti P., Mills A. and Thompson H., “A distributed Intelligent
Agent architecture for Gas-Turbine Engine Health Management”,
46th AIAA Aerospace Sciences Meeting and Exhibit, 7 – 10 January
2008, Reno, NV (to be published)

Harris P., Swain B., Webb K., “The Control and Monitoring System
for the Adour 900”, Aircraft Engineering and Aerospace
Technology, Volume 72, Number 6, 2000

Jennings N., Wooldridge M., “Applications of Intelligent Agents”,
in “Agent Technology: Foundation, Applications and Markets”,
Springer, 1998

Mills A., Tanner G., Thompson H. and Fleming P., “On-Wing
Decision Support for Aero-Engine Line Replaceable Unit Fault
Isolation”, International Symposium on Air Breathing Engines,
ISABE-2007-1290

Radio Technical Commission for Aeronautics (RTCA), “Software
Considerations in Airborne Systems and Equipment Certification”,
published by RTCA, Inc. 1992

Soar Technology Inc, “Soar – An overview”, © 2002

UAV Task Force, “The Joint JAA/EUROCONTROL Initiative on
UAVs”, UAV Task Force Final Report, 2004.

Wooldridge W., “Intelligent Agents”, in “Multi-Agent Systems: a
modern approach to distributed artificial intelligence”, the MIT
Press, 1999

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2205

