Applying Primitive Elements Theory for Procedural Transfer in Soar

Bryan Stearns (stearns @umich.edu)
John Laird (laird @umich.edu)
Mazin Assanie (mazina@umich.edu)
University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

Abstract

Detailed transfer of procedural knowledge has been modeled in
Actransfer, an extension of ACT-R, by combining the primitive
memory operations of productions (PRIMs) with the architec-
ture’s procedural learning mechanism (Taatgen} |2013c)). This
work explores whether these same principles can be applied
to the Soar cognitive architecture, which uses different mod-
els of working memory and procedural learning. We confirm
that these principles can transfer to an unmodified version of
Soar. Our research contributes a novel model of skill learning
based upon a deeper level of primitive skill composition than
described in the PRIM model that is suitable for unbounded
working memory architectures, and which yields transfer pro-
files similar to those revealed in human studies.

Keywords: cognitive transfer; skill acquisition; cognitive
training; cognitive architecture; ACT-R; Soar.

Introduction

For decades, cognitive architectures (Newell, [1990) have
been proposed as unified theories for achieving the general
capabilities found in the human mind. Transfer of proce-
dural knowledge is one such capability (Taylor, Kuhlmann,
& Stonel, 2008)). The primitive elements theory of cogni-
tive skills, proposed by Niels Taatgen, has recently achieved
success in improved modeling of human transfer (Taatgen|
2013al[2013c)). Taatgen implemented his theory in a new cog-
nitive architecture, Actransfer, which extends the ACT-R cog-
nitive architecture (Anderson, 2007) to include this transfer
modeling. Taatgen noted that, while his implementation was
based upon ACT-R principles, the core ideas could be applied
to other theories of cognition (Taatgen, 2013b)). The work de-
scribed here pursues this line of research in the Soar cognitive
architecture (Laird, [2012), and briefly compares primitive el-
ements learning in Soar with that of Actransfer and humans
performing a common task.

A significant contribution of this work is that we extend
Taatgen’s theory to include a more general level of learn-
ing that supports unbounded, dynamic architectural memory
structures and that provides a deeper model of the nature of
skill composition.

The following sections first describe Actransfer and the un-
derlying PRIM model before introducing the PROP model,
the novel application of these ideas in Soar.

Background

The identical elements model of learning by Thorndike
(1922) states that transfer among tasks occurs only inasmuch
as there are identical cognitive elements shared in task repre-
sentation and execution. Singley and Anderson (1987) pro-
posed a more precise definition through the identical pro-

ductions model, in which complex cognition is controlled by
procedural knowledge represented as if-then production rules.
This representation allows transfer to the extent that different
tasks share identical productions.

Singley and Anderson (1985) evaluated the identical pro-
ductions model using ACT, a precursor to ACT-R. By com-
paring the model with human performance, they found that in
some cases it produced a fairly accurate relative prediction of
human data. In other cases, only half the transfer measured
in human participants was achieved, indicating that the model
was incomplete.

Primitive Elements Theory & PRIMs

Taatgen proposed the primitive elements theory (Taatgen,
2013c) as a modification of the identical productions model
of transfer. There are two aspects to the theory. First, prim-
itive elements of transfer are defined not as complete, task-
specific productions, but as the individual task-general mem-
ory operations used in productions, such as the general action
of copying a value from one memory slot to another. Sec-
ond, the theory outlines a model of human skill acquisition
and transfer based on hierarchically composing these primi-
tive operations through practice into task-specific rules, using
a procedural learning mechanism. Composed skills will share
identical elements if they employ similar memory operations.

Actransfer, the implementation of these ideas, was applied
to human transfer experiments (Chein & Morrison, 2010;
Eliol |1986; Singley & Anderson,|1987), achieving results that
both align with human data and provide deeper theoretical ex-
planations for transfer than earlier models.

Primitive elements theory implemented in Actransfer rep-
resents what Taatgen called the PRIMitive information pro-
cessing element (PRIM) model. In this model, PRIMs are
the fundamental, innate memory operations that can be com-
posed through practice into any skill. Compositions of PRIM
sequences are transferable when shared among rules.

’ Conditions ‘ Action ‘ Other ‘
Compare Equal Copy Load Task-Specifics
Compare Unequal
Empty
Nonempty

Table 1: The six types of PRIMs. Loading task-specifics is a PRIM
that loads values into memory slots for use by other operations.

(PRIM instruction-example
retrieval.slot2 <> goal.slot?2
retrieval.slot2 <> nil

==>
query.slotl := consts.slotl
query.slot2 := retrieval.slot2
action.slotl := consts.slot?2
action.slot2 := retrieval.slot?2

Figure 1: Example pseudo-code primitives of a rule with two com-
pare conditions and four copy actions. Slots are organized under
buffers such as retrieval or action.

Memory Operations

Actransfer working memory is composed of a set of buffers,
each having a fixed number of memory slots. All Actrans-
fer skills (rules) are represented as sequences of six types of
memory operations, the classes of PRIMs listed in
This restricted set of compare and copy actions was chosen
to reflect previous ACT-R work in basal ganglia modeling
(Stocco, Lebiere, & Anderson, [2010).

While there are six PRIM types, there can be many in-
stances of each corresponding to interactions among different
memory slots. This is analogous to how computer programs
use a finite set of register operations in an assembly language,
such as ADD or LOAD, but can apply these among regis-
ters in many ways. In while each action is a copy
operation, each is a different primitive because it copies us-
ing different slots. When Actransfer was configured with 31
working memory slots, this resulted in 1,693 PRIMs for the
combinations of these slots with each type of operation (Taat-
gen, 2013c). Different rules share PRIMs if the same slot
operations are used (regardless of the values in those slots).

Independence from values in memory slots makes a
PRIM task-general. Instead of using conditions such as
bufferl.slotl == "foo", the architecture preloads con-
stants into a reserved set of slots, effectively making the con-
dition bufferl.slotl == consts.slotl. Thus, a differ-
ent rule using different constants, such as bufferl.slotl
== "bar", still employs the same primitive. This generaliza-
tion allowed much of Taatgen’s novel transfer across tasks.

Procedural Learning

An Actransfer agent learns a skill by rehearsing it step-by-
step according to declarative knowledge recalled from long-
term memory. Practice is gradually converted into procedu-
ral knowledge. These declarative instructions describe rules
as sequences of PRIMs applied with specific constants, as
shown in the bottom row of When the agent lacks
applicable procedural knowledge, it recalls a list of instruc-
tions that describe a single rule, and then sequentially evalu-
ates each instructed condition and action.

Actransfer employs ACT-R’s procedure compilation sys-
tem to transform this practice into skill. Each PRIM instance
is implemented as an innate rule in procedural memory. Each

Single task-specific rule

Task-ger_lef‘él rule, used under instruction head

All actions combiried

Learning
with practice|

Initial AII conditions combined

Ins[:uctlo"s _@ _@ @

(M) >() O
N\ N\

Load specifics: Condition: Condition: Action: Action: Action: Action:
const1="sequence" retrieval.slot2 retrieval.slot2 Copy Copy Copy Copy
const2="Read: " not equal to is nonempty const1 to retrieval.slot2 to const2 retrieval.slot2

goal.slot2 query.slotl query.slot2 to action.slot1 to action.slot2

Figure 2: Hierarchical clustering of PRIMs, adapted from Taatgen
(2013c). Task-general conditions are shown in white, task-general
actions are in gray, and the instruction head, which includes load-
ing task-specific constants, is shown in red. All instructions begin
with loading task-specific constants into memory. ACT-R produc-
tion compilation combines repeated sequences of task-general con-
dition and action PRIMs, until finally merging with task-specific
constants, resulting in a single production. In this example, actions
form a query to retrieve the next item in a sequence from declarative
memory, while printing the current number to output.

Actransfer decision corresponds to firing a single rule. When-
ever two different rules are fired in consecutive decision cy-
cles, the architecture attempts to combine them into a new
rule that can perform the work of both in a single decision.
Such rules are not used initially the next time the same oper-
ations are practiced, but the more the original rules are prac-
ticed in sequence, the more likely it is that the combining rule
will be used in their place. Once this replacement occurs, the
new rule fires alongside other instructed rules, and the combi-
nation process repeats. As skills are practiced in this manner,
procedure compilation learns an effective binary hierarchical
clustering of skill elements, as shown in [Figure 2] Compiled
operations perform instructions in parallel rather than seri-
ally, decreasing execution time with practice and clustering.
The final step of learning incorporates any task-specific con-
stants into a single generated rule. With enough practice, all
instructions are converted into such procedural knowledge, so
that instruction recall becomes unnecessary.

Any intermediate compilations between the original PRIM
sequence and the complete task-specific rule can be used for
transfer, as the time to learn a new rule is less when por-
tions of its instructions have already been compiled. The
PRIM model thus predicts improved performance with re-
peated practice based both on incremental composition of op-
erations and on reuse of such compositions.

PROPs - Primitive Skill Elements in Soar

Soar’s working memory is not a fixed set of slots, but is an
unbounded directed cyclic semantic graph rooted in a state
ID, as in[Figure 3| with each possible attribute path through
the graph referencing a unique memory element. It would
seem impossible to use primitive elements in Soar, since an
unbounded set of memory locations would define infinitely
many PRIMs. The solution to applying these concepts to
Soar lies in recognizing that Soar’s information processing

retrieval

Figure 3: Example Soar working memory. Working memory is a
directed graph rooted in a single state ID (shown as S1). Nodes can
have any number of edges each pointing to a single value. Values
can be more IDs or literals such as numbers or strings.

also differs from that of Actransfer.

Operators

A Soar decision cycle corresponds to the selection of a sin-
gle operator, an architectural construct created, selected, and
applied by rules to guide decision making. Selection of a sin-
gle operator can involve firing several rules in parallel and/or
serial, and rules can use wildcard variables to match a poten-
tially dynamic state and shape of working memory.

An important distinction exists between an operator and its
abstract definition. The set of rules describing an operator
form the abstract definition, and an individual operator is the
application of this definition in a decision to specific mem-
ory elements. Because Soar rules use variables, an abstract
definition can be applied through an unbounded number of
operators corresponding with the possible applications of the
rule logic to states of the unbounded working memory graph.

We define the set of primitive memory operations within
Soar decisions as the PRimitive OPerator processing ele-
ments (PROPs) that correspond to the most primitive oper-
ators from which all Soar agent processing can be composed.
PROPs are defined through a fixed set of innate rules corre-
sponding to each type of PROP listed in[Table 2} which in turn
correspond to the basic conditions and actions usable in Soar
rules. While all Soar information processing can be com-
posed from operators of these 22 abstract types, the number
of possible PROPs is unbounded, since each corresponds to
specific memory elements. For example, in[Figure 4]there are
four copy action operators, and these would be implemented
through the same defining rules, but they remain distinct op-
erators because they use different memory elements.

PROPs can only be applied if given specific memory ref-
erences as arguments. The memory referencing PROP is
what allows true support for unbounded memory by tracing
a declaratively-known path through the memory graph and
supplying the located element as an argument to another op-
eratorp_-] The number of memory references required to define
each type of PROP is also shown in

PROPs correspond to PRIMs as the primitive elements of
decision making in Soar, but unlike PRIMs they are not in-
nate. Initially, memory references must be reconstructed to

I'This includes referencing any task-specific constants, and thus
there is no separate primitive for that operation.

Conditions Actions Preference Other
Actions

Equal (2) Copy (2) Acceptable(1) | Memory

Unequal (2) Remove (1) | Indifferent (1) | referencing

Exists (1) AddID (1) | Better (2)

Not Exists (1) Worse (2)

Type Equal (2) Best (1)

Greater (2) Worst (1)

Greater/Equal (2) Reject (1)

Less (2) Require (1)

Less/Equal (2) Prohibit (1)

Table 2: Table of PROP types. In parentheses after each PROP is the
number of memory element arguments required to apply the abstract
definition into an operator.

pp {PROP-instruction-example
(sl.retrieval.item2 <> sl.goal.end)
(sl.retrieval.item?2)

(sl.query.type := sl.consts.slotl)
(sl.query.iteml sl.retrieval.item?2)
(

(

sl.action.outl := sl.consts.slot?2)
sl.action.out2 sl.retrieval.item2)

Figure 4: PROPS instruction logic mirroring Because each
primitive is self-contained, the full path from S1 must be specified
for each working memory element.

redefine a PROP any time it is used. However, with practice,
procedural knowledge to use memory elements is learned (see
below), providing rules similar to the innate PRIMs of Ac-
transfer. Thus, primitive memory access skills are based upon
references actually used by the agent rather than the space of
all possible memory operations. PRIMs in Actransfer may
be considered a special case of the PROP model in which the
working memory graph elements are arranged to match Ac-
transfer slots and the agent is already trained in their use.

Procedural Learning

Soar’s procedural learning mechanism also creates rules by
combining the results of decision cycles, and can be used to
compose skill elements hierarchically as in How-
ever, Soar does not compose rules that subsume pairs of se-
quential decisions, but instead summarizes any number of de-
cisions and rules that are used to resolve a subgoal impasse.

An impasse is an event that arises when normal decision
making cannot proceed, such as when no operator is avail-
able for selection or no procedural knowledge carries out a
selected operator. When an impasse arises, a new substate is
automatically created in working memory. Operators are se-
lected in the substate to resolve the impasse. When the results
of this work allow processing in the original state to resume,
Soar automatically creates rules that summarize the rule fir-
ings and decision making that led to resolving the impasse.
This learning process is called chunking. In similar future sit-

uations, the learned rules (chunkﬂ) fire to avoid the impasse,
replacing the substate processing. Soar chunks do not take ef-
fect gradually with practice as do ACT-R rule compositions,
but fire whenever their conditions are met.

The PROP model is implemented through standard Soar
rules that can be loaded into any Soar agent. As with Ac-
transfer, declarative instructions describing the skills being
taught are initially loaded into the agent’s long-term memory,
and are rehearsed during agent operation whenever the agent
has no known operators to select. However, where Actrans-
fer employed an architectural modification to automatically
recall instructions when no decisions could be made, this be-
havior comes naturally in Soar through agent reactions to im-
passes. A Soar agent is also not restricted to only respond to
an impasse with instruction practice, but could choose from
available strategies according to the situation at hand. The
PROPs agent by default begins instruction practice by recall-
ing and following instructions within the new substate. Fur-
ther impasses during instruction evaluation allow the agent to
compile pairs of instructed procedures through chunking.

The amount of practice taken by a PROPs or Actrans-
fer agent before compiling procedures into higher skills can
affect whether those skills transfer across tasks (Anderson,
1982). Consider two rules, one composed of primitives A,
B, C and the other of B, C, D. Ideally, the skill (BC) is
learned that reduces training time for both rules, as opposed
to (AB) and (CD), which cannot be shared. Actransfer does
not replace element pairs with their combination until ex-
perience determines that they co-occur often across tasks.
Once a combination replaces the original components, use
of that rule prevents the architecture from further sampling
co-occurrence of the old component rules in that context.

For Soar to combine skills based on co-occurrence, a
declarative representation of experience is used to mediate the
chunking process. The skill hierarchy of which im-
plicitly reflects the ACT-R learning approach, is represented
literally in the PROPs agent’s long-term declarative mem-
ory, along with declarative measures of how often instruction
items are experienced together. When two elements in this hi-
erarchy co-occur beyond some threshold, 7', the agent chunks
them into a new skill element This co-occurrence reasoning
is not integral to the PROP model, and would be unnecessary
if Soar defined gradual confidence-based chunking.

Levels of Skill Composition

Through chunking, a PROPs agent learns three different types
of knowledge that vary in complexity and provide speedup in
different ways.

The first level of learning is of the use of memory through
practice in applying PROPs from their abstract definitions,
and is unique to this model. This processing is chunked into
procedural knowledge when PROPs are compiled into new
skill elements (the first level of composition in [Figure 2.

2Unrelated to ACT-R chunks.

3Different metrics can be easily substituted for linear co-
occurrence, but this simple measure works sufficiently well here.

The next type of learning is the normal hierarchical skill
compilation, which is also the core of learning in Actrans-
fer. Gradually improved performance comes from repeatedly
composing instructed decisions into fewer, more task-specific
rules through chunking, and from transferring such knowl-
edge from previous compositions.

The third, outer-most level of learning is that which
achieves independence from declarative instruction look-up.
As with Actransfer, once general conditions and actions in an
instruction set are merged as far as possible, a final learning
step summarizes the instruction set into a task-specific rule
that is executed when needed without fetching or evaluating
instructions (the final stage shown in [Figure 2)).

By comparing these stages with the corresponding mech-
anisms of Actransfer, we can predict that a PROPs agent
performing level-one learning should have a steeper initial
performance curve as it learns to use its memory refer-
ences. However, the main learning profiles of the architec-
tures should be similar, including the amounts of transfer they
provide, since they share the same core level-two learning
process. We can also predict that the more aggressive nature
of Soar chunking compared to gradual ACT-R rule compila-
tion should result in the PROPs agent displaying a slightly
more discrete and complete independence from instructions
upon completion of its third level of learning.

Evaluation

Testing these predictions, we gave a PROPs agent declara-
tive instructions to perform in a simulation of the Elio (1986)
study that measured human transfer. Instruction logic and
memory organization copied an Actransfer simulation by
Taatgen (2013c)), so that both model implementations learned
to compose equivalent sequences of memory processing.

We ran two experiments. First, we tasked the agent to learn
from scratch all three levels of knowledge described. Then,
we repeated the experiment, but bypassed level-one learning
by initially supplying the agent with all procedural knowl-
edge necessary for memory referencing, mirroring Actrans-
fer’s use of innate PRIMs. We varied the learning threshold
T, the number of times two skill elements must be seen to-
gether to be chunked into a new skill, and found values in the
range of 16 to 24 provide comparable behavior to human and
Actransfer results. 7 = 16 is used in data shown below.

Because the PROP model is implemented through rules
rather than architectural modifications, maintaining instruc-
tion co-occurrence knowledge requires agent decision cycles,
and this manifests as performance overhead during training.
For a better comparison of the models, this overhead is omit-
ted from this evaluation, as it is a reflection of implementa-
tion rather than part of the theory. All data are averaged over
8 samples, as in Taatgen’s originally reported results.

Actransfer performance was originally reported in simu-
lated time, but decision cycles are shown here to allow a more
meaningful comparison across architectures. E]

4Actransfer follows ACT-R in assuming 50 ms per decision by

Step Calculation Operation Type Human Latency PRIMs Latency
Particulate rating Solid x (lime4 — lime,) Component 1 & 1
Mineral rating greater of (algea/2)(solid/3) Component x
Index 1 Particulate + Mineral Integrative o | T Jaining 8 = Jaining
Marine hazard (tOXinmax + tOXinmin)/z COmpOnCnt —&— Transferred integrative —&— Transferred integrative
Index 2 Indexl/Marine Integrative —— Transferred component —— Transferred component
Overall quality Index2 — Mineral Integrative ®] .2 x\
(a) Example procedure. Component steps only reference inputs. In- 2. X\ o o ¥ N
tegrative steps require remembering results of previous calculations. £ \ A] x Yy
\ +\ 8 * A\é
< 4 X 2 Xy s
| SOLID | ALGAE | LIME | TOXIN 2 BT
6 2 3 4 ~ g -
5 8
1 7
9 2 ° °
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

(b) Participants look up hypothetical water sample data from among
ten values provided per trial. For lime or toxin values, procedure
instructions either specify the row index to look up or instruct to
find the max or min value.

Figure 5: The Elio task

The Elio task involved calculating hypothetical pollution
rates based on water samples. Subjects repeatedly performed
mental calculations using given input values. In the human
study, subjects were trained in an initial procedure until they
achieved perfect recall, and then tasked with performing it 50
times on various inputs (see [Figure 5). Following this, sub-
jects were assigned to 50 trials of one of three transfer con-
ditions: transferred integrative, transferred component, and a
control. The first two of these shared different types of cal-
culations with the training, but the control did not. A basic
ACT-like identical productions model would predict transfer
from the training procedure to procedures that shared calcula-
tions, but would not predict transfer to the control. Yet trans-
fer to the control was evident in the human results, as shown
in[Figure 6]through the faster initial performance of the trans-
fer tasks compared to the training. Elio’s transfer condition
data measure the mean performances from the first and last 25
trials per subject. Depicted human training data shows Elio’s
power-law fit to human performance. In the original study,
results for component and integrative calculations were re-
ported separately. Only performance on component steps is
shown here for brevity, as integrative results are comparable.

Control transfer is also reflected in the Actransfer agent.
The transferred component procedure shows much additional
transfer as well. This is because it shares component calcula-
tions with the training, allowing classic identical productions
transfer in addition to primitive skill composition transfer.

We first ran our PROPs agent on the Elio task perform-
ing full learning of knowledge levels one through three. We
then ran the agent with level-one procedural knowledge pre-
defined for all relevant memory referencing PROPs. Perfor-
mance for both experiments is shown in[Figure 7]

Four results stand out. First, as expected, the initial trans-

default, with additional time for operations such as long-term mem-
ory retrievals. We similarly assume 50 ms per Soar decision.

Problem Problem

Figure 6: Human and Actransfer performance for component steps.
Data for problems 1-50 show training performance. Data for prob-
lems 50-100 show performance for each of the three transfer condi-
tions. Actransfer data were generated using supplementary materials
from Taatgen (2013c).

PROPs Latency, Full Learning (T=16) PROPs Latency, Levels 2-3 (T=16)

[=3
S
g x
—— Training ° —— Training
—e— Control @ —e— Control
—&— Transferred integrative —&— Transferred integrative
3 4 —— Transferred component x |+ Transferred component
8- 8o |
S 28
o O
So 1
284 «x a 4
o oo X
D O <
a \ X a \ x
X x
° \ % x 8,
3 X o x [-Y-Y
\ LN ~ x LY
"x>< san X K \
x__+ \ TR T
XX+ttt R
o - o
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Trial Problem

Figure 7: PROPs agent performance of the Elio task, measured in
decision cycles. Hierarchy management overheads are not included.
Left: Learning all levels. Right: Learning with predefined PROPs.

PROPs Latency, Levels 2-3 (T=1) PROPs Latency, Levels 2-3 (T=2)

8 8

2% x 2911 .

58 2 58

c c

So So

.gN n -(-& .gN N

o) D +

oo 4 oo 4
- XXXXXXXXX $464444444 - XX XXXXXXX ?4440‘444
o o

0 20 40 60 80 100 0 20 40 60 80 100
Problem Problem

Figure 8: The progression from7T =1to T = 2.

fer condition performances in the PROP model indicate the
same rates of transfer as in the Actransfer agent. Second,
unlike Actransfer, in both experiments the PROPs agent per-
formance sharply converges to maximal performance, which
is just under ten decision cycles. This is due to the discrete
nature of Soar chunking, particularly with level-three learn-
ing, when independence from instructions is permanently
achieved in a single chunking step. Third, the PROPs agent
that only performs level-two and level-three learning roughly

shows the same power-law performance as Actransfer, as is
expected since they perform similar learning processes. Fi-
nally, one notes that if modeling simulated time using 50 ms
per decision cycle, the PROPs agent with full learning of
levels one through three performs at similar simulated time
scales to the human model, beginning at 10 s, with the excep-
tion of then converging to maximal performance as discussed,
ending at about 0.5 s.

Learning threshold T controls the sharpness of the learn-
ing curve, as well as the transferability of composed skill el-
ements. A threshold of 7 = 1 causes near-instant skill ac-
quisition, but makes blind combinations that might not be
transferable. Through an analysis of the number of chunks
transferred across procedures with varying 7' (not shown), we
found that even a threshold as low as T = 2 allowed sufficient
co-occurrence sampling for achieving near-optimal transfer
in this task. demonstrates the improved initial la-
tency of the transferred component case, which is not further
improved with the higher threshold of

In summary, our experimentation indicates that the PROP
model not only provides the same transfer as the PRIM
model, but that deeper learning with memory references to
suit dynamic memory also aligns with human performance.

Discussion

Primitive elements theory distinguishes among three types
of skills: innate, task-general, and task-specific (Taatgen,
2013c). Innate skills are single primitives, task-general skills
are combinations of primitives, and task-specific skills are the
combinations of general skills with specific constants. These
correspond to the three levels of learning in the PROP model.
We theorize that level-one memory management knowledge
would be learned (possibly developmentally) by human sub-
jects prior to participating in the Elio task. Actransfer by con-
trast assumes a fixed configuration in which memory slots and
their use are innate.

Actransfer’s fixed set of PRIMs is useful in that they must
in some respect be shared across any use of the architecture,
just as registers must be used in any normal processor logic.
In that model, the number of innate PRIMs expands combina-
torially with working memory capacity, though only a subset
might be used. In the PROP model, however, while transfer
likewise depends on using a common set of memory refer-
ences, PROPs only reflect skill elements used in practice.

ACT-R’s and Soar’s procedural learning mechanisms dif-
fer in many ways, yet provide similar models of learning with
practice. However, as Soar chunking does not currently de-
fine gradual skill acquisition under uncertainty. To support
such learning requires decision-making overheads that are not
part of the PROP model, suggesting that architectural support
for gradual confidence-based chunking provides a better fit to
this sort of learning, and might be worth pursuing in Soar.

We have shown that despite differences between ACT-R
and Soar models of working memory and learning, the prim-
itive elements theory can be implemented in both to achieve

similar results. In so doing, we introduced the PROP model
for information processing in unbounded memory spaces
through memory reference learning. The PROP model builds
upon Taatgen’s original PRIM model to provide a deeper and
more general theory for the acquisition of cognitive skills.

Acknowldgments

The work described here was supported by the Office of
Naval Research under grant number NO0O14-15-1-2058. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressly or implied, of the ONR
or the U.S. Government.

References

Anderson, J. R. (1982). Acquisition of cognitive skill. Psy-
chological Review, 89(4), 369 - 406.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? New York, NY: Oxford University
Press.

Chein, J. M., & Morrison, A. B. (2010). Expanding the
mind’s workspace: Training and transfer effects with a
complex working memory span task. Psychonomic Bul-
letin & Review, 17(2), 193—-199.

Elio, R. (1986). Representation of similar well-learned cog-
nitive procedures. Cognitive Science, 10(1), 41 - 73.

Laird, J. E. (2012). The soar cognitive architecture. Cam-
bridge, MA: MIT Press.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Singley, M. K., & Anderson, J. R. (1985). The transfer of
text-editing skill. International Journal of Man-Machine
Studies, 22(4), 403 - 423.

Singley, M. K., & Anderson, J. R. (1987). A keystroke
analysis of learning and transfer in text editing. Human-
Computer Interacttion, 3(3), 223-274.

Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Condi-
tional routing of information to the cortex: A model of the
basal ganglias role in cognitive coordination. Psychologi-
cal Review, 117(2), 541 - 574.

Taatgen, N. A. (2013a). Diminishing return in transfer: A
PRIM model of the Frensch (1991) arithmetic experiment.
In International conference on cognitive modeling.

Taatgen, N. A. (2013b). The gap between architecture and
model: Strategies for executive control (Tech. Rep. No. FS-
13-03). AAAL

Taatgen, N. A. (2013c). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439-471.

Taylor, M. E., Kuhlmann, G., & Stone, P. (2008). Trans-
fer learning and intelligence: An argument and approach.
In Proceedings of the first conference on artificial general
intelligence (AGI) (Vol. 171, pp. 326-337). 1OS Press.

Thorndike, E. L. (1922). The effect of changed data upon
reasoning. Journal of Experimental Psychology, 5(1), 33.

