
Storm: A Framework for Biologically-Inspired Cognitive Architecture Research

Douglas Pearson (douglas.pearson@threepenny.net)
ThreePenny Software, 4649 Eastern Ave. N.

Seattle, WA 98103 USA

Nicholas A. Gorski (ngorski@umich.edu)
Richard L. Lewis (rickl@umich.edu)

John E. Laird (laird@umich.edu)
University of Michigan

Ann Arbor, MI 48109 USA

Abstract
We have developed a software framework called Storm to aid
the development of cognitive architectures based on the
structure and function of the brain. The goals of the
framework are to make it both easy and fast to develop and
experiment with alternative architectures and components of
architectures. In addition, the framework supports explicitly
mapping its components to structures in the brain. We
demonstrate a working implementation of the framework,
where we have developed a simple model of skill learning
and memory management in a simple 2D grid world.

Introduction
In cognitive modeling, there is a divide between models that
attempt to capture the details of neural activity and those that
attempt to model complex overt behavior. Models of complex
behavior often use combinations of symbolic and non-symbolic
representations of knowledge in cognitive architectures.
Detailed models at the neural level posit direct mappings to
structures and processes of neural systems in the brain. The
achievements of neural models to date have been impressive
(Munakata & Johnson, 2006); but it is very difficult to create
models of the interactions of sufficient brain systems for
anything approaching a complex task (e.g., see Simen et al,
2004 for a recent attempt). Conversely, the cognitive
architecture approach has been successful at modeling a wide
variety of complex tasks (e.g., see the models reported in Gray,
2007) but the mapping of the components of those models to
structures and processes in the brain often remains unclear –
although Anderson’s recent work has demonstrated that it is
possible to map some structures in ACT-R to specific brain
regions (Anderson, 2007).

We propose an alternative between high-level cognitive
architectures and low-level neural models. Our approach is to
create architectures composed of models of brain structures and
their interconnections (at possibly multiple levels of abstraction)
– a brain-based architecture capable of cognitive behavior.

In order to pursue this approach, it behooves us to take a
step back and not jump immediately into the construction of a
specific architecture. Instead, the first step, and the subject of
this paper, is to develop a software framework in which such
models can be easily developed, tested, evaluated, and extended.
More specifically, we believe a useful framework will support:
(1) Rapid prototyping of architectures composed of a

heterogeneous collection of interacting components

operating in parallel, with their own possibly unique
time scales, processes and representations.

(2) Easy and efficient simulation of the dynamics of such
architectures.

(3) Explicit and flexible mappings of architecture-to-brain
structure, and easy exploration of the implications of
such mappings for predictions of brain activity. The
framework should also make it easy to exploit existing
detailed databases on brain structure and brain
connectivity (Alexander, Arbid & Weitzenfeld, 1999).

(4) Maximal flexibility in programming languages,
operating systems, and parallel computation.

Furthermore, our goal is not only to develop a tool to aid our
own research, but a tool that others will use for their own
explorations, thereby facilitating the sharing of components
between research groups.

In this paper, we describe the Storm framework, a software
infrastructure intended to realize the above goals. Using the
initial implementation of Storm, we developed a simple
architecture that includes action selection, reinforcement
learning, and simple long-term and short-term memories. This
architecture is not (yet) meant to be a faithful model of brain
structures, but is meant to demonstrate the capabilities of Storm.

Various features and motivations for Storm have precedent
in the cognitive modeling and neural network modeling
communities. The explicit goals of Storm are perhaps most
closely aligned with NSL (Neural Simulation Language;
Weitzenfeld, Arbib & Alexander, 2002). There are key
differences, however. NSL defines a new object-oriented
language that must be used for creating models. In contrast,
Storm allows users to develop architectural components in
standard computer languages (C++, Java), while providing
support for communication between modules and scheduling
model execution. In addition, Storm provides facilities for
explicitly mapping model components to brain structures. Storm
also differs from neural network toolkit approaches such as
Leabra (O’Reilly & Munakata, 2000) and Eliasmith and
Anderson (2002) because it has no a priori bias to specific
models of the brain or neurons. Finally, we note that the goal of
providing an appropriate abstraction layer for building event-
driven simulations is also adopted in the implementations of
some existing cognitive architectures, including ACT-R
(Bothell, 2004) and Epic (Kieras & Meyer, 1997), though
neither of these architectures embraces the general framework
goals described above.

The Storm Framework

Defining an architecture
The framework must have a way of representing architectural
components, how they interact and the computations they
perform. In the Storm framework, we decompose an
architecture into two types of components: function modules
and state variables. Function modules perform processing while
state variables hold persistent structures and provide
communication between function modules. This approach
naturally reflects a simple dynamical systems view of brain
architecture, in which the union of state variables represents the
current state of the system, and the function modules represent
the dynamic relationships among those state variables.

Function modules receive inputs from a set of state variables
and generate outputs to one or more state variables. Figure 1
shows a function connectivity graph for a simple architecture
with two function modules (the M1 & M2) and four state
variables (the circles). In this case, the state variables A, B, and
C are the inputs for functional module M1, which generates
outputs for A and D. Module M2 receives input from D and
generates output for C. The graph is not explicitly represented in
the framework as a separate data structure, but is implicitly
defined by the inputs and outputs of the modules.

Figure 1: Functional Connectivity Graph

An architecture’s decomposition into state variables and

function modules represents theoretical commitments about
brain architecture. It is possible to build both highly interactive
and highly encapsulated systems and subsystems using the
framework. The framework itself does not impose theoretical
constraint, and the use of the term module here should not be
taken to imply a commitment to, for example, Fodorian (1983)
modules. Rather, a framework module is the software
component that permits the specification of the dynamic
relationships among state variables. The extent to which a given
set of state variable and function modules realizes an
encapsulated module or a fully interactive subsystem depends
on the details of the connectivity between state variables. (And
as we see below, the architecture-to-brain mapping need not
even imply strict localization of function).

Simulating the dynamics of an architecture
All of the components are run asynchronously with the
architecture developer having complete control over when
components start executing and how long they execute. The
developer can specify independently for each module:

• When a module initiates execution. Examples include:
periodically (such as every 50 msec), whenever inputs
change, or even some delay after inputs change.

• The length of simulated time it takes for a module to
execute and for data to travel between modules. This
can be a fixed number, such as 10 msec or can be
dependent on input parameters, such as (1 msec *
number of changed inputs).

The Storm framework automatically coordinates the
execution of the components (function modules and state
variables), following the temporal constraints declared for each
of the components, freeing the developer from writing code that
schedules the execution of the modules. Thus, when an
architecture runs, the framework automatically schedules all of
the components, initiates their execution and provides a
complete trace of the temporal activity of every module and
state variable, including behavior in an external task
environment. All of the scheduling is based on simulated time,
which depending on the calculations performed in the modules
could be much slower, or possibly even faster than real time.

This layer of abstraction thus allows the modeler to focus on
the control structure of the brain architecture rather than the
control structure of the simulation. Importantly, the function
modules may be flexibly implemented via arbitrary code in the
underlying target language, but the modules do not interact by
calling each other directly, and the modeler need not worry
about how to manage their parallel execution. (This abstraction
away from simulation control structure is a common property of
simulation environments long used in other areas of science.)

Experimenting with an architecture
Storm’s design makes it easy to quickly add or replace modules
because all of the information about a module is local to that
module. (A critical aspect of this locality is the distributed nature
of the simulation control, above). This makes it possible for
research groups to share modules as well as to have multiple
implementations of a given module. For some experiments, it
might be desirable to have a coarse, but efficient imple-
mentation of a module, or replace a small network of modules
and variables with a single module that is extremely fast, but
only approximates a given computation. Moreover, during early
development a coarse model might be all that is available. In
others cases, a very accurate, but slow implementation of a
module can be used when detailed behavior is critical.

The individual function modules and state variables are
created by the architecture developer using a standard
programming language. The framework currently supports C++
and Java, but will soon support MATLAB and R. This makes
integrating existing code simpler and allows a module developer
to select a language that is particularly well suited to the
behavior they wish to model. The framework is agnostic as to
which language is used to specify modules and one could
imagine supporting the use of neural modeling systems.

In order to provide maximum flexibility and efficiency, the
framework is designed to run on multiple operating systems
(Windows, OSX, Linux) and has underlying support for parallel
execution, which supports multi-core computers and will
support clusters. This is transparent to users, determined at
runtime based on the available resources. The framework itself
is lightweight and requires minimal computational resources.

Mapping onto the Brain
In order to compare the processing in the architecture with what
is known about the brain, the framework must support the
explicit representation of processing and communication in the
brain. In Storm, the brain mapping graph formally declares
assumptions about the physical substrates of the state variable,
and by implication, the function modules. State variables are
mapped to different physical structures and regions within the
brain, which are then mapped to physical coordinates in a
normalized brain coordinate system. In the current design only
state variables are explicitly mapped to brain regions. Function
modules are thereby implicitly mapped to regions based on the
state variables they use (Figure 2).

Figure 2: Brain Mapping Graph

This mapping scheme is quite flexible because there are no
restrictions on what state variables might represent, and there
are no restrictions on the target vocabulary of brain structures.
For example, state variables might represent synaptic weights
that could be changing over both the short and long-term, and
such state variables might correspond to long-distance synapses
in the brain that connect distal cortical areas. Or, a state variable
might represent a quantity of some neurotransmitter that is fairly
localized in space, or a vector of activation values representing
patterns of firing activity in a particular part of the hippocampal
formation, or an abstract short-term control symbol thought to
be distributed over a broad area of prefrontal cortex.

Thus, this mapping scheme does not enforce a simple one-
to-one mapping of computational function onto local structure.
Rather, the mapping explicitly identifies the physical substrates
of the state variables, and these physical substrates may be at
any level of spatial resolution. The mapping of function to
structure is then implicit in the mappings that function modules
inherit from their state variables.

The functional connectivity graph together with the brain
mapping graph imply a brain connectivity graph. That is, the
connectivity of the state variables and function modules and
their mapping to brain regions implicitly make claims about
how the brain regions are connected, which can be tested
against known constraints on how brain regions are actually
connected. The predicted brain connectivity is derived from the
connectivity of the function modules and the mappings from the
architectural components to the brain as shown in Figure 3.

These structures, together with the simulation provide Storm
three important capabilities:
(1) Detecting inconsistencies between known brain

connectivity constraints and the architecture.
(2) Predicting the time-course of activity in brain regions.

This could support the automatic generation of simulated
fMRI, MEG, or EEG for the modeled brain regions.

(3) Changes made to the architecture for functional reasons
automatically change the biological predictions as the
brain connectivity is derived directly from the functional
elements of the architecture.

Figure 3: Brain Connectivity Graph

An Empirical Example in Using Storm

Example Task Requiring Learning and Memory
In order to demonstrate the Storm framework, we created a
simple task that requires learning control knowledge for both
internal and external actions. The example task is set in a 5x5
grid-world, shown in Figure 4. The domain contains three
special locations, or boxes, in fixed positions: boxes A and B are
reward boxes, while box M is an information box. The agent is
rewarded with a positive reward when it opens one of the boxes
and a negative reward when opening the other. The agent
perceives a symbol when it opens the information box; this
symbol is correlated with the location of the positive reward box
(but does not correlate to any perceived feature of the boxes).
An agent that cannot maintain the symbol in an internal memory
would be unable to receive the maximum reward in every
episode, making the task un-learnable.

The agent can move in the four cardinal directions, and if a
box is in its current location, the agent can open the box. The
agent perceives its location in the grid and any reward signal,
but cannot perceive the labels on the boxes (A or B). If the agent
is in the information box square and the box is open, the agent
also perceives a symbol. An episode concludes when the agent
opens the box containing the positive reward. The location of
the rewards is randomized between episodes.

Reward is structured such that a positive reward has
magnitude of +10, a negative reward is -10, and on every step
that the agent does not open a reward box, it receives -1 reward.

Figure 4: Information Box Task

An Example Architecture Developed using Storm
In order to help illuminate some of the framework’s capabilities,
we used Storm to develop a simple architecture capable of
supporting an agent that learns to perform in the example task.
This architecture combines a simple long-term memory with a
basic reinforcement learning mechanism that learns control
knowledge for both internal and external actions.

Our example architecture is shown in Figure 5. Function
modules in the figure are represented as rectangles, and state
variables as ovals. In this model, the environment is represented
as a function module (for convenience) which receives a motor
action as input and generates sensory information as output.
Sensory Input is used by both Long and Short Term memories,
which in turn is used by Action Selection to choose an internal
Long Term Memory retrieval as well as an external Motor
action. The Reinforcement Learning mechanism uses Working
Memory, the Internal Reward Signal, and selected actions to
adjust the control knowledge used by Action Selection.

Figure 5: Simple Architecture Implemented in Storm

The details of each function module are described below.
The Reward Extraction module reads the explicit reward
generated by the environment in Sensory Input and stores it as
an Internal Reward Signal. Long Term Storage stores any
perceived symbol (i.e. the contents of the information box) to
Long Term Memory. Long Term Retrieval retrieves a symbol

corresponding to the Internal Action from memory and stores it
in the buffer. Short Term Storage reads the agent’s location
from Sensory Input and the contents of the Long Term Retrieval
Buffer and puts the concatenation of both in Working Memory.

The agent decides how to act in the Action Selection
module, which uses Working Memory and the Value Function
to select its actions (using a decaying epsilon-greedy strategy).
The Value Function is a table that associates a pair of internal
and motor actions with the contents of working memory and the
estimated future reward of applying those actions. The Value
Function is adjusted by the Reinforcement Learner with Sarsa
(Sutton, 1996) based on input from Working Memory, Internal
Reward Signal, and Internal and Motor Actions.

In the example architecture, function modules initiate their
processing when their input state variables change, and all take a
fixed amount of time to process and create results. During
execution, many of the modules will execute in parallel, such as
those that depend on Sensory Input. Others execute in sequence
because of the dependencies of their input variables on other
function modules. This parallelism enables an agent to perform
internal and motor actions simultaneously.

An execution trace of the example architecture’s function
modules is shown in Figure 6, which is generated from the
execution logs by a Storm utility. There are four different types
of events logged by Storm for a function module.
• RequestWakeup: can occur on the time step when an input

variable’s value changes,
• Wakeup: occurs on the time step immediately following a

RequestWakeup event (unless explicitly delayed),
• Finished: occurs on the time step on which the module sets

its output variables and completes processing, and
• Processing: this is the time that a module is inferred to be

processing between Wakeup and Finished events.
Multiple events that occur on the same time step are plotted as
one event (e.g. all Environment events occur on the same step).

Figure 6: Sample execution trace of the example
architecture as generated by a Storm utility.

Processing begins in the Environment module which sets

the Sensory Input state variable (see Figure 5). When Sensory
Input is set, a RequestWakeup event triggers the Reward
Extraction, Long Term Storage, and Short Term Storage
modules. All three modules then process in parallel, after which
they set their respective output variables.

The Reinforcement Learner module next begins processing,
as it relies on the Internal Reward Signal set by the Reward
Extraction module. Similarly, the Action Selection module

relies on the output of the Reinforcement Learner, and the Long
Term Retrieval module on Action Selection, which explains the
serial behavior seen in Figure 6. This behavior arises from the
dependences of the input variables of each module, and is not
explicitly timed or engineered. However, the Environment
module is configured to process periodically, which explains
why it does not begin executing at the same time as the Long
Term Retrieval module even though inputs for both modules are
set by Action Selection.

Although the mapping of state variables to brain regions is
an important commitment made in Storm, this example
architecture is so simple that we do not hypothesize a mapping.
Rather, the purpose of this example is to illustrate the
framework’s specification and simulation capabilities.

Results
Example Architecture We developed two agents in the
architecture to perform the example task, one that automatically
retrieves the information symbol from long-term memory (when
available) and one that must learn to retrieve it. The perform-
ance of the two agents is shown in Figure 7. Asymptotically, the
behavior of both agents is the same: the agent moves directly to
the information box, opens it, and then simultaneously retrieves
the identifying symbol from long-term memory while navigat-
ing to the positive reward box, opening it upon reaching its loca-
tion. The results indicate that learning both control knowledge
for an internal action in addition to an external motor action is
not significantly more difficult than for an external action alone.

0
10
20
30
40
50
60
70
80
90

100
110
120

1 26 51 76 101 126

Episode

St
ep

s
Pe

r E
pi

so
de

Knows to Retrieve Learns to Retrieve

Figure 7: Learning curves for two agents performing on
the simple task, average of 225 trials.

Modified Task and Expanded Working Memory To study
the flexibility of an architecture using the Storm framework, we
modified the task so that the agent had to learn to manage long-
term memory retrievals:
• Instead of a single motor action to open a box, the agent

now has two available actions. When the correct one is
used to open the positive reward box, the standard reward
is still received. However if the reward box is opened with
the other action, a smaller positive reward (+1) is received.

• The information box contains an additional symbol
identifying the correct action to use when opening the
positive reward box. Both symbols are still automatically
stored to long-term memory.

After an agent using the example architecture opens the
information box, both symbols are then automatically stored to
long-term memory. However, the Long Term Retrieval Buffer

(and thus Working Memory) can still only store one retrieved
symbol at a time. The agent therefore must learn to recall the
two symbols at different times: the symbol identifying the
correct box during navigation and the action symbol on the step
before it will open the box.

We tested an agent using the example architecture as well as
an agent with an expanded working memory that can store the
two most recently retrieved symbols in working memory on the
modified task. The results for both agents are presented in
Figure 8. Although the agent using the architecture modified
with an expanded working memory learns more quickly than
the agent using the unmodified architecture, these results show
that an agent using the unmodified architecture with limited
working memory is still able to learn the modified task.

-60

-50

-40

-30

-20

-10

0

10

1 2001 4001 6001 8001

Episode

A
cc

um
ul

at
ed

 R
ew

ar
d

Pe
r E

pi
so

de
Expanded WM Unmodif ied Architecture

Figure 8: Learning curves for agents performing on the

modified task, 25 per. moving avg. of medians for 45 trials.

In order to modify the architecture with an expanded

working memory, only the Short Term Storage function module
and Working Memory state variable needed to be changed – the
rest of the architecture’s function modules and state variables
remained the same. This demonstrates an advantage to
experimenting within the Storm framework: the modularized
approach to development leads to architectures that can be
modified quickly and easily.

Architectural Delay In our example architecture, all function
modules took the same constant amount of time to process data
(5 units of time as seen in Figure 6). In order to experiment with
function modules processing at different time scales, we
introduced a delay to the Long Term Retrieval module: with a
delay, the module processes for 20 units of time rather than 5.
This change has two effects: first, retrieved memories are
available two environment steps after the Internal Action is
selected; second, retrieved symbols in the buffer persist for two
environment steps. Because of these changes, the agent can
improve its performance by learning to make a retrieval from
Long Term Memory two steps before it gets to the reward box.

The results of two agents, one modified with a delayed
retrieval and the other unmodified, in the modified task are
shown in Figure 9. While the agent using the unmodified
architecture initially learns more quickly, the behaviors are
indistinguishable after the 2000th episode.

In order to experiment with delaying Long Term Retrieval
in the architecture, our implementation in Storm required only a
single line of code to be changed. Storm’s mechanism for
scheduling the processing of function modules makes changing
timing constraints to be a straightforward exercise.

-60

-50

-40

-30

-20

-10

0

1 2001 4001 6001 8001

Episode

A
cc

um
ul

at
ed

 R
ew

ar
d

Pe
r E

pi
so

de

Unmodif ied Architecture Delayed LTM Retrieval

Figure 9: Learning curves for an architecture modified with
delayed Long Term Retrieval compared with an unmodified
architecture, 25 per. moving avg. of medians for 45 trials.

Summary of Experiments The Storm framework has allowed
us to experiment with the example architecture in several
dimensions, the results of which are not all shown in this paper:
(1) We experimented with two timing conventions: both

waking function modules when input variables have been
set as well as function modules processing periodically at
set intervals. The example architecture implements a hybrid
approach and uses both approaches in its modules.

(2) We experimented with the timing of individual modules,
delaying their output such that the processing time of
various modules overlaps.

(3) We explored reinforcement learning modules
implementing a variety of learning algorithms with various
parameter settings; switching algorithms is as simple as
changing the module used by the framework.

(4) We have simulated environments in C++ function modules
and interfaced to external Java environments.

When experimenting along all of these dimensions, the
necessary changes to function modules were minor and no
changes to the framework were necessary. In contrast,
experimenting with existing cognitive architectures to modify
the behavior of working memory, long-term memory, or timing
constraints can often be difficult and time consuming.

Discussion
By developing our example architecture using the Storm
framework, we have had valuable experiences which begin to
shed light on the advantages (and disadvantages) of using a
lightweight framework to model brain function.

The Storm framework has minimal overhead so as to not
impede the development of a diverse set of functional modules.
The framework does, however, strictly enforce that any data
shared between function modules must be contained within state
variables: designers must be explicit and consistent in the
organization of data into state variables.

Modeling the timing of function modules and state variables
is an important aspect of the framework and is straightforward
to use and experiment with. This allows a designer to focus on
implementing behaviors and not be concerned with the
implementation of timing constraints.

One possible disadvantage of using the framework is the
strict enforcement on the organization of data into state
variables. Experimental architectures may not want to make

strong commitments to the separation of data; algorithms
achieving high-performance may also require a high level of
abstraction as realized in function modules and state variables.

In the future we plan to begin testing Storm’s ability to scale
by building iteratively larger and more complex architectures, as
well as developing psychologically plausible models using state
variables that map to brain regions and model brain function.

Acknowledgments
The authors acknowledge the funding support of the DARPA
“Biologically Inspired Cognitive Architecture” program under
the Air Force Research Laboratory “Extending the Soar Cogni-
tive Architecture” project award number FA8650-05-C-7253.

References
Alexander, A., Arbid, M. & Weitzenfeld, A. (1999). Web

Simulation of Brain Models. Proc. of the 1999
International Conference on Web-Based Modeling and
Simulation, 29-33. The Society for Computer Simulation
International, San Diego, CA.

Anderson, J. R. (2007) How Can the Human Mind Occur in
the Physical Universe? Oxford University Press.

Bothell, D. (2004). ACT-R 6.0 implementation.
 http://act-r.psy.cmu.edu/actr6/

Eliasmith, C. Anderson, C. H. (2002). Neural Engineering:
Computation, Representation, and Dynamics in
Neurobiological Systems. MIT Press.

Fodor, J. A. (1983). Modularity of Mind: An Essay on
Faculty Psychology. Cambridge, Mass.: MIT Press

Gray, W. (2007). Integrated Models of Cognitive Systems,
Oxford University Press.

Kieras, D. & Meyer, D. E. (1997). An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction., 12, 391-438.

Munakata, Y., & Johnson, M. H. (Eds.) (2006). Processes of
Change in Brain and Cognitive Development: Attention
and Performance XXI., Oxford: Oxford University Press.

O'Reilly, R. and Munakata, Y. (2000) Computational
Explorations in Cognitive Neuroscience: Understanding
the Mind by Simulating the Brain, Cambridge, MIT Press

Simen, P., Polk, T. A., Lewis, R. L. & Freedman, E. (2004).
A computational account of latency impairments in
problem solving by Parkinson’s patients. Proceedings of
ICCM 2004, Pittsburgh.

Sutton, R. S. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse coding.
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds),
Advances in Neural Information Processing Systems:
Proc. of the 1995 Conference, 1038-1044. MIT Press.

Weitzenfeld, A., Arbib, M., and Alexander, A. (2002), The
Neural Simulation Language: A System for Brain
Modeling. MIT Press.

	Introduction
	The Storm Framework
	Defining an architecture
	Simulating the dynamics of an architecture
	Experimenting with an architecture
	Mapping onto the Brain

	An Empirical Example in Using Storm
	Example Task Requiring Learning and Memory
	An Example Architecture Developed using Storm
	Results
	Discussion

	Acknowledgments
	References

