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Abstract 
We have developed a software framework called Storm to aid 
the development of cognitive architectures based on the 
structure and function of the brain. The goals of the 
framework are to make it both easy and fast to develop and 
experiment with alternative architectures and components of 
architectures. In addition, the framework supports explicitly 
mapping its components to structures in the brain. We 
demonstrate a working implementation of the framework, 
where we have developed a simple model of skill learning 
and memory management in a simple 2D grid world. 

Introduction 
In cognitive modeling, there is a divide between models that 
attempt to capture the details of neural activity and those that 
attempt to model complex overt behavior. Models of complex 
behavior often use combinations of symbolic and non-symbolic 
representations of knowledge in cognitive architectures. 
Detailed models at the neural level posit direct mappings to 
structures and processes of neural systems in the brain. The 
achievements of neural models to date have been impressive 
(Munakata & Johnson, 2006); but it is very difficult to create 
models of the interactions of sufficient brain systems for 
anything approaching a complex task (e.g., see Simen et al, 
2004 for a recent attempt). Conversely, the cognitive 
architecture approach has been successful at modeling a wide 
variety of complex tasks (e.g., see the models reported in Gray, 
2007) but the mapping of the components of those models to 
structures and processes in the brain often remains unclear – 
although Anderson’s recent work has demonstrated that it is 
possible to map some structures in ACT-R to specific brain 
regions (Anderson, 2007).  

We propose an alternative between high-level cognitive 
architectures and low-level neural models. Our approach is to 
create architectures composed of models of brain structures and 
their interconnections (at possibly multiple levels of abstraction) 
– a brain-based architecture capable of cognitive behavior. 

In order to pursue this approach, it behooves us to take a 
step back and not jump immediately into the construction of a 
specific architecture. Instead, the first step, and the subject of 
this paper, is to develop a software framework in which such 
models can be easily developed, tested, evaluated, and extended. 
More specifically, we believe a useful framework will support:  
(1) Rapid prototyping of architectures composed of a 

heterogeneous collection of interacting components 

operating in parallel, with their own possibly unique 
time scales, processes and representations.  

(2) Easy and efficient simulation of the dynamics of such 
architectures.  

(3) Explicit and flexible mappings of architecture-to-brain 
structure, and easy exploration of the implications of 
such mappings for predictions of brain activity. The 
framework should also make it easy to exploit existing 
detailed databases on brain structure and brain 
connectivity (Alexander, Arbid & Weitzenfeld, 1999).  

(4) Maximal flexibility in programming languages, 
operating systems, and parallel computation. 

Furthermore, our goal is not only to develop a tool to aid our 
own research, but a tool that others will use for their own 
explorations, thereby facilitating the sharing of components 
between research groups.  

In this paper, we describe the Storm framework, a software 
infrastructure intended to realize the above goals. Using the 
initial implementation of Storm, we developed a simple 
architecture that includes action selection, reinforcement 
learning, and simple long-term and short-term memories. This 
architecture is not (yet) meant to be a faithful model of brain 
structures, but is meant to demonstrate the capabilities of Storm.  

Various features and motivations for Storm have precedent 
in the cognitive modeling and neural network modeling 
communities. The explicit goals of Storm are perhaps most 
closely aligned with NSL (Neural Simulation Language; 
Weitzenfeld, Arbib & Alexander, 2002). There are key 
differences, however. NSL defines a new object-oriented 
language that must be used for creating models. In contrast, 
Storm allows users to develop architectural components in 
standard computer languages (C++, Java), while providing 
support for communication between modules and scheduling 
model execution. In addition, Storm provides facilities for 
explicitly mapping model components to brain structures. Storm 
also differs from neural network toolkit approaches such as 
Leabra (O’Reilly & Munakata, 2000) and Eliasmith and 
Anderson (2002) because it has no a priori bias to specific 
models of the brain or neurons. Finally, we note that the goal of 
providing an appropriate abstraction layer for building event-
driven simulations is also adopted in the implementations of 
some existing cognitive architectures, including ACT-R 
(Bothell, 2004) and Epic (Kieras & Meyer, 1997), though 
neither of these architectures embraces the general framework 
goals described above. 



The Storm Framework  

Defining an architecture 
The framework must have a way of representing architectural 
components, how they interact and the computations they 
perform. In the Storm framework, we decompose an 
architecture into two types of components: function modules 
and state variables. Function modules perform processing while 
state variables hold persistent structures and provide 
communication between function modules. This approach 
naturally reflects a simple dynamical systems view of brain 
architecture, in which the union of state variables represents the 
current state of the system, and the function modules represent 
the dynamic relationships among those state variables. 

Function modules receive inputs from a set of state variables 
and generate outputs to one or more state variables. Figure 1 
shows a function connectivity graph for a simple architecture 
with two function modules (the M1 & M2) and four state 
variables (the circles). In this case, the state variables A, B, and 
C are the inputs for functional module M1, which generates 
outputs for A and D. Module M2 receives input from D and 
generates output for C. The graph is not explicitly represented in 
the framework as a separate data structure, but is implicitly 
defined by the inputs and outputs of the modules. 
 

 
 

Figure 1: Functional Connectivity Graph 
 
An architecture’s decomposition into state variables and 

function modules represents theoretical commitments about 
brain architecture. It is possible to build both highly interactive 
and highly encapsulated systems and subsystems using the 
framework. The framework itself does not impose theoretical 
constraint, and the use of the term module here should not be 
taken to imply a commitment to, for example, Fodorian (1983) 
modules. Rather, a framework module is the software 
component that permits the specification of the dynamic 
relationships among state variables. The extent to which a given 
set of state variable and function modules realizes an 
encapsulated module or a fully interactive subsystem depends 
on the details of the connectivity between state variables. (And 
as we see below, the architecture-to-brain mapping need not 
even imply strict localization of function). 

Simulating the dynamics of an architecture 
All of the components are run asynchronously with the 
architecture developer having complete control over when 
components start executing and how long they execute. The 
developer can specify independently for each module: 

• When a module initiates execution. Examples include: 
periodically (such as every 50 msec), whenever inputs 
change, or even some delay after inputs change. 

• The length of simulated time it takes for a module to 
execute and for data to travel between modules. This 
can be a fixed number, such as 10 msec or can be 
dependent on input parameters, such as (1 msec * 
number of changed inputs).  

The Storm framework automatically coordinates the 
execution of the components (function modules and state 
variables), following the temporal constraints declared for each 
of the components, freeing the developer from writing code that 
schedules the execution of the modules. Thus, when an 
architecture runs, the framework automatically schedules all of 
the components, initiates their execution and provides a 
complete trace of the temporal activity of every module and 
state variable, including behavior in an external task 
environment. All of the scheduling is based on simulated time, 
which depending on the calculations performed in the modules 
could be much slower, or possibly even faster than real time. 

This layer of abstraction thus allows the modeler to focus on 
the control structure of the brain architecture rather than the 
control structure of the simulation. Importantly, the function 
modules may be flexibly implemented via arbitrary code in the 
underlying target language, but the modules do not interact by 
calling each other directly, and the modeler need not worry 
about how to manage their parallel execution. (This abstraction 
away from simulation control structure is a common property of 
simulation environments long used in other areas of science.) 

Experimenting with an architecture 
Storm’s design makes it easy to quickly add or replace modules 
because all of the information about a module is local to that 
module. (A critical aspect of this locality is the distributed nature 
of the simulation control, above). This makes it possible for 
research groups to share modules as well as to have multiple 
implementations of a given module. For some experiments, it 
might be desirable to have a coarse, but efficient imple-
mentation of a module, or replace a small network of modules 
and variables with a single module that is extremely fast, but 
only approximates a given computation. Moreover, during early 
development a coarse model might be all that is available. In 
others cases, a very accurate, but slow implementation of a 
module can be used when detailed behavior is critical. 

The individual function modules and state variables are 
created by the architecture developer using a standard 
programming language. The framework currently supports C++ 
and Java, but will soon support MATLAB and R. This makes 
integrating existing code simpler and allows a module developer 
to select a language that is particularly well suited to the 
behavior they wish to model. The framework is agnostic as to 
which language is used to specify modules and one could 
imagine supporting the use of neural modeling systems.  

In order to provide maximum flexibility and efficiency, the 
framework is designed to run on multiple operating systems 
(Windows, OSX, Linux) and has underlying support for parallel 
execution, which supports multi-core computers and will 
support clusters. This is transparent to users, determined at 
runtime based on the available resources. The framework itself 
is lightweight and requires minimal computational resources.  



Mapping onto the Brain 
In order to compare the processing in the architecture with what 
is known about the brain, the framework must support the 
explicit representation of processing and communication in the 
brain. In Storm, the brain mapping graph formally declares 
assumptions about the physical substrates of the state variable, 
and by implication, the function modules. State variables are 
mapped to different physical structures and regions within the 
brain, which are then mapped to physical coordinates in a 
normalized brain coordinate system. In the current design only 
state variables are explicitly mapped to brain regions. Function 
modules are thereby implicitly mapped to regions based on the 
state variables they use (Figure 2).  
 

 
 

Figure 2: Brain Mapping Graph 
 

This mapping scheme is quite flexible because there are no 
restrictions on what state variables might represent, and there 
are no restrictions on the target vocabulary of brain structures. 
For example, state variables might represent synaptic weights 
that could be changing over both the short and long-term, and 
such state variables might correspond to long-distance synapses 
in the brain that connect distal cortical areas. Or, a state variable 
might represent a quantity of some neurotransmitter that is fairly 
localized in space, or a vector of activation values representing 
patterns of firing activity in a particular part of the hippocampal 
formation, or an abstract short-term control symbol thought to 
be distributed over a broad area of prefrontal cortex.  

Thus, this mapping scheme does not enforce a simple one-
to-one mapping of computational function onto local structure. 
Rather, the mapping explicitly identifies the physical substrates 
of the state variables, and these physical substrates may be at 
any level of spatial resolution. The mapping of function to 
structure is then implicit in the mappings that function modules 
inherit from their state variables.  

The functional connectivity graph together with the brain 
mapping graph imply a brain connectivity graph. That is, the 
connectivity of the state variables and function modules and 
their mapping to brain regions implicitly make claims about 
how the brain regions are connected, which can be tested 
against known constraints on how brain regions are actually 
connected. The predicted brain connectivity is derived from the 
connectivity of the function modules and the mappings from the 
architectural components to the brain as shown in Figure 3. 

These structures, together with the simulation provide Storm 
three important capabilities: 
(1) Detecting inconsistencies between known brain 

connectivity constraints and the architecture. 
(2) Predicting the time-course of activity in brain regions. 

This could support the automatic generation of simulated 
fMRI, MEG, or EEG for the modeled brain regions.  

(3) Changes made to the architecture for functional reasons 
automatically change the biological predictions as the 
brain connectivity is derived directly from the functional 
elements of the architecture. 

 

 
 

Figure 3: Brain Connectivity Graph 

An Empirical Example in Using Storm 

Example Task Requiring Learning and Memory 
In order to demonstrate the Storm framework, we created a 
simple task that requires learning control knowledge for both 
internal and external actions. The example task is set in a 5x5 
grid-world, shown in Figure 4. The domain contains three 
special locations, or boxes, in fixed positions: boxes A and B are 
reward boxes, while box M is an information box. The agent is 
rewarded with a positive reward when it opens one of the boxes 
and a negative reward when opening the other. The agent 
perceives a symbol when it opens the information box; this 
symbol is correlated with the location of the positive reward box 
(but does not correlate to any perceived feature of the boxes). 
An agent that cannot maintain the symbol in an internal memory 
would be unable to receive the maximum reward in every 
episode, making the task un-learnable. 

The agent can move in the four cardinal directions, and if a 
box is in its current location, the agent can open the box. The 
agent perceives its location in the grid and any reward signal, 
but cannot perceive the labels on the boxes (A or B). If the agent 
is in the information box square and the box is open, the agent 
also perceives a symbol. An episode concludes when the agent 
opens the box containing the positive reward. The location of 
the rewards is randomized between episodes. 

Reward is structured such that a positive reward has 
magnitude of +10, a negative reward is -10, and on every step 
that the agent does not open a reward box, it receives -1 reward. 



 
 

Figure 4: Information Box Task 

An Example Architecture Developed using Storm 
In order to help illuminate some of the framework’s capabilities, 
we used Storm to develop a simple architecture capable of 
supporting an agent that learns to perform in the example task. 
This architecture combines a simple long-term memory with a 
basic reinforcement learning mechanism that learns control 
knowledge for both internal and external actions. 

Our example architecture is shown in Figure 5. Function 
modules in the figure are represented as rectangles, and state 
variables as ovals. In this model, the environment is represented 
as a function module (for convenience) which receives a motor 
action as input and generates sensory information as output. 
Sensory Input is used by both Long and Short Term memories, 
which in turn is used by Action Selection to choose an internal 
Long Term Memory retrieval as well as an external Motor 
action. The Reinforcement Learning mechanism uses Working 
Memory, the Internal Reward Signal, and selected actions to 
adjust the control knowledge used by Action Selection.  

 

 
 

Figure 5: Simple Architecture Implemented in Storm 
 

The details of each function module are described below. 
The Reward Extraction module reads the explicit reward 
generated by the environment in Sensory Input and stores it as 
an Internal Reward Signal. Long Term Storage stores any 
perceived symbol (i.e. the contents of the information box) to 
Long Term Memory. Long Term Retrieval retrieves a symbol 

corresponding to the Internal Action from memory and stores it 
in the buffer. Short Term Storage reads the agent’s location 
from Sensory Input and the contents of the Long Term Retrieval 
Buffer and puts the concatenation of both in Working Memory.  

The agent decides how to act in the Action Selection 
module, which uses Working Memory and the Value Function 
to select its actions (using a decaying epsilon-greedy strategy). 
The Value Function is a table that associates a pair of internal 
and motor actions with the contents of working memory and the 
estimated future reward of applying those actions. The Value 
Function is adjusted by the Reinforcement Learner with Sarsa  
(Sutton, 1996) based on input from Working Memory, Internal 
Reward Signal, and Internal and Motor Actions.   

In the example architecture, function modules initiate their 
processing when their input state variables change, and all take a 
fixed amount of time to process and create results. During 
execution, many of the modules will execute in parallel, such as 
those that depend on Sensory Input. Others execute in sequence 
because of the dependencies of their input variables on other 
function modules. This parallelism enables an agent to perform 
internal and motor actions simultaneously. 

An execution trace of the example architecture’s function 
modules is shown in Figure 6, which is generated from the 
execution logs by a Storm utility. There are four different types 
of events logged by Storm for a function module. 
• RequestWakeup: can occur on the time step when an input 

variable’s value changes, 
• Wakeup: occurs on the time step immediately following a 

RequestWakeup event (unless explicitly delayed), 
• Finished: occurs on the time step on which the module sets 

its output variables and completes processing, and  
• Processing: this is the time that a module is inferred to be 

processing between Wakeup and Finished events. 
Multiple events that occur on the same time step are plotted as 
one event (e.g. all Environment events occur on the same step). 
 

 
 

Figure 6: Sample execution trace of the example 
architecture as generated by a Storm utility. 

 
Processing begins in the Environment module which sets 

the Sensory Input state variable (see Figure 5). When Sensory 
Input is set, a RequestWakeup event triggers the Reward 
Extraction, Long Term Storage, and Short Term Storage 
modules. All three modules then process in parallel, after which 
they set their respective output variables. 

The Reinforcement Learner module next begins processing, 
as it relies on the Internal Reward Signal set by the Reward 
Extraction module. Similarly, the Action Selection module 



relies on the output of the Reinforcement Learner, and the Long 
Term Retrieval module on Action Selection, which explains the 
serial behavior seen in Figure 6. This behavior arises from the 
dependences of the input variables of each module, and is not 
explicitly timed or engineered. However, the Environment 
module is configured to process periodically, which explains 
why it does not begin executing at the same time as the Long 
Term Retrieval module even though inputs for both modules are 
set by Action Selection. 

Although the mapping of state variables to brain regions is 
an important commitment made in Storm, this example 
architecture is so simple that we do not hypothesize a mapping. 
Rather, the purpose of this example is to illustrate the 
framework’s specification and simulation capabilities. 

Results 
Example Architecture  We developed two agents in the 
architecture to perform the example task, one that automatically 
retrieves the information symbol from long-term memory (when 
available) and one that must learn to retrieve it. The perform-
ance of the two agents is shown in Figure 7. Asymptotically, the 
behavior of both agents is the same: the agent moves directly to 
the information box, opens it, and then simultaneously retrieves 
the identifying symbol from long-term memory while navigat-
ing to the positive reward box, opening it upon reaching its loca-
tion. The results indicate that learning both control knowledge 
for an internal action in addition to an external motor action is 
not significantly more difficult than for an external action alone.  
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Figure 7: Learning curves for two agents performing on 
the simple task, average of 225 trials. 

 
Modified Task and Expanded Working Memory  To study 
the flexibility of an architecture using the Storm framework, we 
modified the task so that the agent had to learn to manage long-
term memory retrievals: 
• Instead of a single motor action to open a box, the agent 

now has two available actions. When the correct one is 
used to open the positive reward box, the standard reward 
is still received. However if the reward box is opened with 
the other action, a smaller positive reward (+1) is received.  

• The information box contains an additional symbol 
identifying the correct action to use when opening the 
positive reward box. Both symbols are still automatically 
stored to long-term memory. 

After an agent using the example architecture opens the 
information box, both symbols are then automatically stored to 
long-term memory. However, the Long Term Retrieval Buffer 

(and thus Working Memory) can still only store one retrieved 
symbol at a time. The agent therefore must learn to recall the 
two symbols at different times: the symbol identifying the 
correct box during navigation and the action symbol on the step 
before it will open the box. 

We tested an agent using the example architecture as well as 
an agent with an expanded working memory that can store the 
two most recently retrieved symbols in working memory on the 
modified task. The results for both agents are presented in 
Figure 8. Although the agent using the architecture modified 
with an expanded working memory learns more quickly than 
the agent using the unmodified architecture, these results show 
that an agent using the unmodified architecture with limited 
working memory is still able to learn the modified task. 
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Figure 8: Learning curves for agents performing on the 

modified task, 25 per. moving avg. of medians for 45 trials. 
 
In order to modify the architecture with an expanded 

working memory, only the Short Term Storage function module 
and Working Memory state variable needed to be changed – the 
rest of the architecture’s function modules and state variables 
remained the same. This demonstrates an advantage to 
experimenting within the Storm framework: the modularized 
approach to development leads to architectures that can be 
modified quickly and easily. 

Architectural Delay  In our example architecture, all function 
modules took the same constant amount of time to process data 
(5 units of time as seen in Figure 6). In order to experiment with 
function modules processing at different time scales, we 
introduced a delay to the Long Term Retrieval module: with a 
delay, the module processes for 20 units of time rather than 5. 
This change has two effects: first, retrieved memories are 
available two environment steps after the Internal Action is 
selected; second, retrieved symbols in the buffer persist for two 
environment steps. Because of these changes, the agent can 
improve its performance by learning to make a retrieval from 
Long Term Memory two steps before it gets to the reward box.   

The results of two agents, one modified with a delayed 
retrieval and the other unmodified, in the modified task are 
shown in Figure 9. While the agent using the unmodified 
architecture initially learns more quickly, the behaviors are 
indistinguishable after the 2000th episode. 

In order to experiment with delaying Long Term Retrieval 
in the architecture, our implementation in Storm required only a 
single line of code to be changed. Storm’s mechanism for 
scheduling the processing of function modules makes changing 
timing constraints to be a straightforward exercise. 
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Figure 9: Learning curves for an architecture modified with 
delayed Long Term Retrieval compared with an unmodified 
architecture, 25 per. moving avg. of medians for 45 trials. 

 
Summary of Experiments  The Storm framework has allowed 
us to experiment with the example architecture in several 
dimensions, the results of which are not all shown in this paper: 
(1) We experimented with two timing conventions: both 

waking function modules when input variables have been 
set as well as function modules processing periodically at 
set intervals. The example architecture implements a hybrid 
approach and uses both approaches in its modules. 

(2) We experimented with the timing of individual modules, 
delaying their output such that the processing time of 
various modules overlaps.  

(3) We explored reinforcement learning modules 
implementing a variety of learning algorithms with various 
parameter settings; switching algorithms is as simple as 
changing the module used by the framework. 

(4) We have simulated environments in C++ function modules 
and interfaced to external Java environments. 

When experimenting along all of these dimensions, the 
necessary changes to function modules were minor and no 
changes to the framework were necessary. In contrast, 
experimenting with existing cognitive architectures to modify 
the behavior of working memory, long-term memory, or timing 
constraints can often be difficult and time consuming. 

Discussion 
By developing our example architecture using the Storm 
framework, we have had valuable experiences which begin to 
shed light on the advantages (and disadvantages) of using a 
lightweight framework to model brain function. 

The Storm framework has minimal overhead so as to not 
impede the development of a diverse set of functional modules. 
The framework does, however, strictly enforce that any data 
shared between function modules must be contained within state 
variables: designers must be explicit and consistent in the 
organization of data into state variables.  

Modeling the timing of function modules and state variables 
is an important aspect of the framework and is straightforward 
to use and experiment with. This allows a designer to focus on 
implementing behaviors and not be concerned with the 
implementation of timing constraints. 

One possible disadvantage of using the framework is the 
strict enforcement on the organization of data into state 
variables. Experimental architectures may not want to make 

strong commitments to the separation of data; algorithms 
achieving high-performance may also require a high level of 
abstraction as realized in function modules and state variables. 

In the future we plan to begin testing Storm’s ability to scale 
by building iteratively larger and more complex architectures, as 
well as developing psychologically plausible models using state 
variables that map to brain regions and model brain function. 
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