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Abstract 

One challenge for cognitive architectures is to effectively 
use different forms of knowledge and learning. We present 
a case study of Soar agents that play a multiplayer dice 
game, in which probabilistic reasoning and heuristic 
symbolic knowledge appear to play a central role. We 
develop and evaluate a collection of agents that use 
different combinations of probabilistic decision making, 
heuristic symbolic reasoning, opponent modeling, and 
learning. We demonstrate agents that use Soar’s rule 
learning mechanism (chunking) to convert deliberate 
reasoning with probabilities into implicit reasoning, and 
then use reinforcement learning to further tune performance.   

Introduction   

To date, few if any of the applications developed within 
the Soar cognitive architecture (Laird 2008) have involved 
explicit reasoning about probabilities. Soar’s primary 
memory systems encode knowledge in symbolic 
representations. Soar uses non-symbolic processing to bias 
retrievals from semantic (Derbinsky and Laird 2011; 
Derbinsky, Laird, and Smith 2010) and episodic memory 
(Derbinsky and Laird 2009), represent spatial information 
(Wintermute 2010), and control the selection of operators 
in Soar. These uses of non-symbolic reasoning are similar 
to those found in other cognitive architectures such as 
ACT-R (Anderson et al. 2004) and ICARUS (Langley, 
Cummings, and Shapiro 2004), where non-symbolic 
processing supports the reasoning over symbolic 
structures. In all these systems, knowledge of the task is 
represented and processed symbolically. Probabilistic 
knowledge may play a role in controlling reasoning, but it 
is not the primary representation of task knowledge - 
instead it plays a supporting role.  
 To explore the role of probabilistic reasoning in a 
symbolic cognitive architecture, we developed agents in 
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Soar that play a multiplayer dice game in which the current 
situation is highly uncertain and probabilities appear to 
play a central role in decision making. This paper is a 
preliminary report on these agents. We begin with a 
description of the game, followed by an analysis in which 
we make observations about the types of knowledge and 
mechanisms that might be useful for an agent that plays the 
game. We describe the structure of our agent, and focus on 
decision making, where we describe how we developed 
agents that use the types of knowledge described earlier. 
We then provide empirical evidence of their usefulness in 
agents that play the dice game  
 One claim of this paper is that Soar’s decision-making 
mechanisms (preference-based operator selection and 
impasse-driven deliberation) provide the necessary 
architectural support for incorporating symbolic and 
probabilistic information for effective decision making. A 
second claim is that Soar’s procedural-learning 
mechanisms (chunking and reinforcement learning) 
provide the necessary architectural support for compiling 
and then tuning probabilistic decision making using in-
game experience. This unique combination of chunking 
and reinforcement learning leads to high initial 
performance that improves with experience, exceeding the 
performance of our best hand-coded agents.   

The Dice Game 

Our agents play a dice game that goes by many names, 
including Perudo, Dudo, and Liar’s Dice. The rules of our 
version are available from the Soar website, as is a 
playable version of the game, where humans can play 
against each other. The game begins with the players 
positioned in a random cyclic ordering (such as sitting 
around a table), with each player initially having five dice 
and a cup in which to roll and hide their dice. Play consists 
of multiple rounds, and at the beginning of each round, all 
players roll their dice, keeping them hidden under their 
cup. Players can view their own dice, but not the dice of 
others. The first player of a round is chosen at random, and 
following a player’s turn, play continues to the next player.   



During a player’s turn, an action must be taken, with the 
two most important types of action being bids and 
challenges. A bid is a claim that there is at least the 
specified number of dice of a specific face in play, such as 
six 4’s. Following the first bid, a player’s bid must increase 
the previous bid, either by increasing the dice face or by 
increasing the number of dice. If the dice face does not 
increase, the number of dice must increase, in which case 
the dice face can be the same or lower. Thus, legal bids 
following six 4’s include six 5’s, six 6’s, seven 2’s, seven 
3’s, and so on. Following a bid, it is the next player’s turn.  

A second type of action a player can take is to challenge 
the most recent bid. If a player challenges, all dice are 
revealed, and counted. If there are at least as many dice of 
the face that was bid, the challenge fails, and the challenger 
loses a die. Otherwise, the person who made the bid loses a 
die. A player who loses all dice is out of the game. The last 
remaining player is the winner.   

There are additional rules that enrich the game. A die 
with a face of 1 is wild, and it contributes to making any 
bid. Given the special status of 1’s, all 1 bids are higher 
than twice the number of other bids. For example, three 1’s 
is higher than six 6’s and the next bid after three 1’s is 
seven 2’s. When a player makes a bid, they can “push” out 
a subset of their dice (usually 1’s and those with the same 
face as the bid), exposing them to all players, and reroll the 
remaining dice. A push and reroll can be used to increase 
the likelihood of a bid being successful, and provide 
additional information to other players that might dissuade 
them from challenging a bid. In addition, a player can bid 
“exact” once per game. An exact bid succeeds if the 
number of dice claimed by the previous bid is accurate, 
otherwise it fails. If the exact bid succeeds, the player gets 
back a lost die, otherwise the player loses a die. Finally, a 
player with more than one die can “pass,” which is a claim 
that all of the player’s dice have the same face. A pass can 
be challenged, as can the bid before a pass. A player can 
pass only once with a given roll of dice.  

Dice Game Analysis 

In the dice game, the success of a player’s bid or challenge 
depends not only on the player’s dice, but also on the dice 
unknown to the player. Because of this uncertainty, it 
would appear that reasoning with probabilities would be 
useful if not necessary. For example, in making a 
challenge, it would appear to be useful to know what the 
probability is that the challenge will succeed. That 
probability could be compared to probabilities for other 
actions the agent can take, such as making a specific bid. 
However, through discussions with human players, we 
found that people do not compute the actual probabilities, 
but instead compute the expected number for a specific 
face. For non-one bids, they first sum the number of known 
1 dice and the known dice of the face in question (exposed 
and under their cup). They then add the number of 
unknown dice (under other players’ cups) divided by 3 
(dice that are 1’s and dice with the face being bid make up 

approximately 1/3 of the available dice). If they are 
considering a bid of 1’s, they divide the number of 
unknown dice by 6. They then use the difference between 
this expected number of dice and the bid under question as 
the basis for comparison to other bids. Thus, our first 
observation is that there are at least two basic ways to 
evaluate bids, and an interesting question is whether the 
probability calculation is significantly better than the 
expected number approach. 
 A second observation is that when a player makes a bid 
of a specific face, it is often because the player has a 
sufficient number of dice of that face to justify making that 
bid (via whatever reasoning mechanism the player is 
using). Of course the player could be bluffing, but in the 
dice game, you don’t lose a die if you don’t challenge and 
if no player challenges you. The best result is for another 
player to challenge a third player. Therefore, experienced 
players use bluffing sparingly and there is usually a 
correlation between a player’s bid and the dice under their 
cup, making it useful to analyze the bid of the previous 
player from their perspective – what dice would they have 
to have in order to make their bid? We refer to using this 
type of knowledge as using a model of an opponent.   
 A third observation is that there is additional structure to 
the game that is not easily captured in the pure 
probabilities or the expectations. For example, if a player 
has a valid pass, it is wise to save the pass until the player 
has no other safe or certain bids. Along similar lines, it is 
better not to push with a bid if that bid without a push is 
unlikely to be challenged by the next player. A push 
reveals information to the other players and decreases the 
agent’s options in the future. These are examples of 
heuristic knowledge that is easily encoded as symbolic 
rules that depend on qualitative evaluations of certainty of 
bids, but do not require reasoning about probabilities.   
 There is additional knowledge not included in the above 
discussions. For example, there is a the difference between 
making a bid of 6’s, which forces the next player to 
increase the count of dice bid, versus a bid of 2’s, which 
does not. There also are most likely regularities in the 
actions of other players that can be exploited. It is difficult 
to conceive of how these can be pre-encoded in an agent, 
and one alternative is that they must be learned.  
 The result of this analysis is that there are four classes of 
knowledge that could prove useful to an agent: 

1. Probability or expected-number calculations 

2. Opponent models 
3. Expert heuristics 
4. Knowledge learned by experience 

Our challenge is to design agents that incorporate these 
forms of knowledge. 

Dice-Game Agents: Overall Structure 

Figure 1 shows our dice game system. There is a game 
server that enforces the rules of the game, advances play to 
the next player, and provides information on the current 
state of the game. There are other players, human or Soar 



agents, that connect to the game server on the same 
computer. Usually there are between two and six total 
players, but there is no inherent upper bound, and Soar can 
be used for any number of players. In the figure, there are 
four players, with the Soar agent playing as player 4.   

When it is the agent’s turn, it receives a description of 
the current state of the game that is equivalent to the 
information available to human players. This includes the 
number of dice under each player’s cup, players’ exposed 
dice, the dice under the agent’s cup, and the history of bids.  

The basic structure of the agent is straightforward, with 
the following processing performed by Soar operators, 
implemented with 370 rules. First, the agent selects and 
applies an operator that computes the total number of dice 
of each face that it knows (those exposed from pushes plus 
those under its cup), and the number of unknown dice.  

The next operator determines a base bid to be used for 
computing the set of possible bids the agent will propose. 
An agent can make any bid that is higher than the previous 
bid; however, the higher bids risk being challenged, so 
usually a player will make a bid that is close to the 
previous bid. The one exception is that sometimes human 
players make very low initial bids (possibly in frustration 
after losing a die), and basing a following bid on such a 
low bid wastes the opportunity to make a bid that forces 
more risky bids by following players, while still being safe. 
In the agents, we define a safe bid to be one that is at least 
one less than the expected number for a face given the 
current number of dice in play. For example, if there are 
fifteen dice in play, and 1’s are wild, four 5’s is a safe bid. 
If there is no previous bid, or if the safe bid is higher than 
the previous bid, the safe bid is used as a base bid to 
compute possible bids; otherwise the agent uses the 
previous bid as the base bid.  
 Once the base bid is determined, the agent proposes 
operators for all bids that are higher than the base bid, up 
to and including one full number higher than the base bid. 
Thus, if the base bid is six 4’s, the agent proposes six 5’s, 

six 6’s, three 1’s, seven 2’s, seven 3’s, and seven 4’s. If 
there are relevant dice under its cup (dice with the same 
face as the bid or 1’s), the agent also proposes bids with 
pushes for those faces. The agent also proposes available 
challenge, pass, and exact actions. We refer to the 
operators described above as dice-game-action operators.  

The agent then selects a dice-game-action operator 
(based on deliberations described below), and submits the 
action to the game server. If the action is a challenge or 
exact, the game server determines whether the challenge or 
exact is successful, updates the number of dice for the 
players as appropriate, and provides feedback as to 
whether the action was successful. The game also provides 
feedback when the agent is challenged.  

Dice-Game Agents: Selecting an Action 

The complexity in the dice-game agents is in choosing 
between the competing dice-game-action operators. This is 
where different types of knowledge are used to control 
behavior. 

In Soar, preferences are used to select between 
competing operators. Preferences can be either symbolic or 
numeric. One class of symbolic preferences creates a 
partial ordering between two operators, stating that one 
operator is better than another. There are also symbolic 
preferences that state that two operators are equivalent (an 
indifferent preference), that an operator should be selected 
only if there are no other alternatives (a worst preference), 
or that an operator should be preferred to all other 
operators (a best preference). Numeric preferences specify 
the expected value of an operator.  

A decision procedure processes the preferences, using 
the symbolic preferences to filter the candidate operators. 
If all the remaining operators have numeric preferences, an 
operator is selected using a Boltzmann distribution based 
on the values of the preferences. If there are insufficient 
preferences to make a selection, an impasse arises. The 

Player 1 
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Player 3 

Game Server 

Player 4: Soar Agent 

Compute Dice Totals 

Compute Base Bid 

Dice-Game-Action 

Process Feedback 

Subgoal 

   Evaluations 
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Probability Calculator 

Figure 1. Dice game system. 



decision procedure and these preference types provide an 
architectural mechanism for integrating different types of 
knowledge. 

In the Dice agents, when the dice-game-action operators 
are proposed, there are no preferences to prefer one 
operator to another, so an impasse arises. In response to the 
impasse, Soar automatically generates a subgoal in which 
other operators can be selected and applied to resolve the 
impasse. Thus, a subgoal allows for deliberate reasoning 
about which operator in the superstate should be selected, 
and that reasoning can incorporate the different types of 
knowledge described earlier. As in the original dice game 
task, the reasoning in the subgoal consists of the selection 
and application of operators, but in the subgoal the 
operators can analyze, evaluate, and compare the dice-
game-action operators, with the goal being to generate 
sufficient preferences to resolve the impasse.  

Probability or Expected-Number Calculations 

In most previous Soar systems that reasoned in subgoals 
about which task operator to select, the reasoning involved 
internal searches using models of the tied task operators. 
However, given the uncertainty inherent to the dice game, 
that type of look-ahead search is not productive. The 
approach employed here is to select operators that evaluate 
the likelihood of success of the proposed dice-game-action 
operators, where success is defined as a successful 
challenge or exact, or a bid or pass that is not successfully 
challenged. We have implemented the two different 
methods for evaluating the likelihood of success of a bid 
described earlier: one based on probability calculations, 
and the second based on our anecdotal model of how 
humans evaluate their bids using deviations from the 
expected number of dice. During a game, the agent uses 
only one method. 

In our expected-number model, the agent evaluates each 
bid by computing the expected number of dice for the face 
of the die of that bid. This involves adding the number of 
the known dice of the bid face (as well as 1’s for non-1 
bids), with the expected number of that face given the 
number of unknown dice. For example, if the agent is 
computing the likelihood of six 4’s and there is one 1 and 
one 4 showing (or under the agent’s cup), and there are 
nine unknown dice, then the expected number is 2 + 9/3 = 
5. The divisor is 3 because both 1’s (which are wild) and 
4’s contribute to achieving the bid. The agent takes the 
difference between the bid and expected number, which in 
this case is -1, and classifies the bid, which in this case is 
“risky.” Conversely, if there are 15 unknown dice, the total 
expected number is 7, and the bid is classified as “safe.” If 
the agent knows for certain that there are six 4’s, because 
of what is exposed and under its cup, it is a “certain” bid. 
The agent similarly categorizes a challenge bid based on 
how much the previous bid deviated from the expected 
number. In this model, all calculations involve additions, 
subtractions, and divisions, and they appear to correspond 
to the calculations performed by human players.  

As mentioned above, when using the expected-number 
model, the agent uses a simple classification system for 
bids based on deviations from the expected number and 
known values. The agent uses symbolic preferences to 
create equivalence classes for similarly classified actions 
(such as all risky bids) via indifferent preferences. Better 
preferences are also used to create orderings between 
equivalence classes (safe bids are better than risky bids). A 
random decision is made from among the remaining 
actions in the top equivalence class. Randomness is 
important because it makes it more difficult for other 
players to induce exactly which dice the player has under 
its cup. Using this approach, the agent does not explicitly 
decide to bluff (make a risky bid when safer bids are 
available); however, the agent will make risky bids when it 
has no better alternatives. 

The probability-based model uses an external probability 
calculator (Figure 1), which the agent interfaces to through 
Soar’s input/output system. An agent uses the calculator by 
creating a query, such as: determine the probability that 
given thirteen dice, there are at least five of them with a 
given face. The queries are parameterized by the number of 
distinct possible values: either three for non-1 bids, or six 
for 1 bids. The computed probability is assigned to a 
numeric preference for the appropriate dice-game-action 
operator. The final selection is made based on a Boltzmann 
distribution, giving some randomness to the agent’s play. 

Opponent Model 

In playing against these agents, one apparent weakness is 
that they are quick to challenge whenever the expected 
number or probability of the previous bid is low. Thus, if a 
player has a high number of some dice face and bids 
accordingly, the Soar agent will often challenge (and lose a 
die). Although any one specific set of dice is unlikely, it is 
not unlikely that a player with five dice will have two to 
three of some dice face (especially when 1’s are included) 
which can form the basis of their bid.  

To remedy this problem (and experiment with additional 
forms of knowledge and reasoning), an abstract operator 
was added that embodies a model of the previous player’s 
bidding, and attempts to induce the dice under the previous 
player’s cup given the previous bid. This operator is 
proposed only if the prior player did not push and reroll, 
because following a reroll, there is nothing to be gained 
from the model. The agent always does an initial 
evaluation before using the model to determine if there are 
actions that are certain, independent of the information 
obtained from the model.    

To use the model, the agent recreates the situation that 
existed when the opponent had to make its bid, with the 
dice under the Soar agent’s cup being unknown to the other 
player. For example, if the opponent has four dice under its 
cup and has just bid four 2’s, and the Soar agent has one 2 
showing from a previous push, and has three additional 
dice under its cup, the Soar agent creates the situation 
where there is one 2 known, and seven dice unknown.  



The agent then incrementally hypothesizes different 
numbers of dice with the face that was bid for the opponent 
(in this case 2), evaluating the likelihood of the player 
having that many dice and determining whether that 
number of dice would support the given bid. In this case, it 
starts with assuming that the opponent has one 2. If the 
number of dice gets high enough so that the likelihood of 
actually getting that number of dice is very low (indicating 
that the player might be bluffing), or if the number of dice 
gets high enough to support the original bid, the modeling 
stops. In this case, having one 2 is not unlikely and 
together with the exposed 2 it does not make a four 2 bid 
likely to succeed. Thus, the agent considers what would 
happen if the opponent had two 2’s, and in this case, that 
number supports the opponent’s bid. The agent uses the 
result (in this case that the opponent has two 2’s and two 
additional dice that are neither 1’s nor 2’s) in recalculating 
probabilities (or the expected number) for its bids to select 
a dice-game-action operator. The rules to evaluate the 
likelihood of hypothetical opponent situations are distinct 
from dice-game-action task knowledge, and so the 
outcome of this process is independent of using the 
probability or expected-number calculations. 
 
Expert Heuristics 

Once the probability or expected numbers are computed, 
additional knowledge can be included that affects selection 
from among the dice-game-action operators in the top rated 
equivalence class. These heuristics test symbolic state 
information, such as relative action type (ex. bid versus bid 
and push; bid versus pass) or round history (ex. face of the 
previous bid, face of next player’s previous bid), and 
produce additional preference selection knowledge. For 
our agents, we developed five heuristics and all of them 
condition upon symbolic features of state and result in 
symbolic preference knowledge. For instance, one heuristic 
states that within an equivalence class, a bid without a push 
is preferred to that same bid with a push. The result of 
these heuristics is that the top-rated dice-game-action 
operators are pruned, such that final probabilistic selection 
is limited to only the best-of-the-best action(s). 
 
Results 

To evaluate the contribution of these different types of 
knowledge, we created agents with combinations of 
modeling (M) and expert heuristics (H) on top of the 
expectation-based (E) and the probability-based (P) 
decision making agents. We played four-player matches 
with pairs of agent types. To eliminate ordering effects, 
each match consisted of 1000 games for each of the four 
unique orderings of two distinct players (X and Y) in a 
four-player match (XXXY, YYYX, XXYY, XYXY). We 
summed the results of the four orderings, giving a possible 
win total of 4000.  
 Our metric of interest is number of times an agent (say 
X) wins and we calculate statistical significance using a 
two-sided binomial test. Our threshold for significance is 
2082 victories out of 4000 (p=0.01), which is 52.02%. The 

results are summarized in Figure 2, where we report these 
as a percentage of possible victories for the dominant agent 
which has greater than 50% wins, rounded to the nearest 
percent. In the figure, each node is an agent, and the letters 
define its composition. For example, the EMH agent 
includes the expected-number decision making (E), 
modeling (M), and expert heuristics (H). The lines between 
nodes point to the dominant agent. In this case, all lines 
point right or up, indicating that the agents to the right and 
at the top (the E agents) won more often. 
 All of the winning percentages are significant except for 
EM to EH, where there were 2080 victories, as opposed to 
the 2082 required for significance. In all but that case, all 
the dominant agents had higher win totals than all the 
losing agents in all orderings. For example, in every 
ordering of the P vs. PH, the individual PH agents always 
won more games than any individual P agents did.  
 The most important results are clear. The model and the 
heuristics knowledge improve performance for both the 
probability-based and expected-number agents. The 
combination of those two types of knowledge also 
dominates each one individually.  
 Somewhat surprisingly, the expected-number agents 
dominate the probability agents, for all orderings. This 
result suggests that the expected-number calculations and 
symbolic categorizations capture enough of the underlying 
probabilistic structure that is relevant in the game, as well 
as include some additional structure not present in the pure 
probability calculations. However, as we describe below, 
the probabilistic agent opens up the unique ability to tune 
action-selection knowledge using reinforcement learning.  
 Informally, the EMH agents are competitive with human 
players. The EMH agents do not make obvious gaffs and 
they regularly beat experienced human players. 

Learning 

The Soar agents use the knowledge sources described 
above to deliberately reason about alternative dice-game-
action operators in a subgoal. The results of those 
calculations are converted to preferences (by operators in 
the subgoal) for the dice-game-action operators. Soar’s 
chunking mechanism compiles the deliberate processing in 
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Figure 2. Pair-wise results of 4000 game competitions between 

agents with different types of knowledge. 



subgoals into rules that create those preferences, without 
deliberation in a subgoal. Chunking leads to faster decision 
making; however, in this task the Soar agents are much 
faster than humans are, and the additional speed has little 
functional value. However, the rules that are created by 
chunking over probability calculations have numeric 
preferences as actions. Essentially, these rules are 
assigning expected values to subsets of operators.  

Soar’s reinforcement learning (RL) mechanism uses Q-
learning to adjust the numeric preferences of such rules 
when there is a reward signal. We use a straightforward 
reward function: +1 for winning a challenge/exact bid and 
-1 for losing a challenge/exact bid. To align the 
probabilities with the reward function, the probabilities are 
linearly rescaled from (0, +1) to (-1, +1).  

By having subgoals, chunking, and reinforcement 
learning in the same architecture, the agents have the 
following capabilities:  
1. The agent initially uses a combination of probabilistic 

knowledge, symbolic heuristic knowledge and an 
opponent model to evaluate alternative actions.  

2. Chunking automatically combines those forms of 
knowledge into new rules that compute parts of the 
value function, which is a mapping from states and 
operators to expected values. In Soar, a learned rule 
maps states and operators that match the rule 
conditions to the expected value in the rule action. If 
the subgoal creates symbolic preferences, rules to 
generate those preferences are also created.  

3. With experience, chunking learns rules that 
incrementally fill out the value function, ultimately 
eliminating the need for deliberate reasoning.  

4. When the agent uses learned rules to select a dice-
game-action operator, reinforcement learning tunes 
those rules based on the reward received for 
performing the associated action. Over time, the rules 
approximate the actual expected reward as opposed to 
the original probability calculations.  

Figure 3 shows three RL rules learned by chunking 
whose actions have been tuned a few times. Dice Rule 1 
captures the probability calculation for an unlikely bid and 

is typical of many chunks which test the bid, the relevant 
known dice, and the number of unknown dice. The bid is 
five 2’s, with one 2 known and four dice unknown, which 
all must be 1’s or 2’s for the bid to succeed.  

Dice Rule 2 is also for the selection of an operator that 
bids five 2’s, but this operator includes pushing three dice 
and rerolling two and is proposed when the opponent has 
only one die, which is unknown. Thus, the agent knows 
there are at least three 2’s and must pick up two more out 
of the two dice it rerolls plus the one die under the 
opponent’s cup. This outcome is unlikely if only the 
probability is considered; however, in this case the rule’s 
value includes the result of modeling the opponent. Using 
the model leads the agent to conclude that in order to make 
the bid of two 1’s, the opponent likely had one 1 
(otherwise it would have challenged). Thus, the agent 
believes it needs to get only one 2 or one 1 out of the two 
dice it rerolls, giving a normalized value of 0.12.  

Dice Rule 3 evaluates a challenge bid and gives it a high 
probability of success. In this case, the previous player bid 
two 1’s and rerolled. There are two unknown dice and one 
1 is known. Because of the reroll, the agent model was not 
used. Notice that this rule only tests the number of known 
dice and that one 1 is known, and that 1 could have been 
pushed by another player or it could be under the agent’s 
cup. This situation probably arose when the current player 
had many hidden dice, and the previous player calculated 
that with the combination of a reroll and the current 
player’s hidden dice, it was likely that there was a 1. 

One characteristic of the chunks is that they are specific 
to the dice face being bid, and all are specific to the 
existence of 1’s. Given the special nature of 1’s as wild 
cards, they must be accounted for. In addition, the 2 bids 
cannot be generalized because they have different utility 
than bids of other dice faces. For example, in comparison 
to a 2 bid, a 6 bid forces the opponent to increase the 
number of dice bid, making such a bid less likely to be 
achieved. This could increase the chance that the 6 bid will 
be challenged (because other bids are less likely to 
succeed). However, a 6 bid makes it less likely that the 
player must bid again, as the higher bid may lead to a 

Dice Rule 1: 

If the operator is to bid five 2’s with no push and 

   there are zero 1’s and one 2 dice, and four unknown dice then 

create a numeric preference of -0.8754 for that operator 

 

Dice Rule 2: 

If the operator is to bid five 2’s pushing one 1 and two 2’s and 

   the previous bid was two 1’s and  

   there are five dice under my cup, with one 1 and two 2’s and 

   the other player has only a single die, which is unknown, then 

create a numeric preference of 0.12 for that operator 

 

Dice Rule 3: 

If the operator is to challenge and  

   the bid by the previous player is two 1’s and 

   the player pushed and rerolled and  

   there are two unknown dice and one 1 known, then 

create a numeric preference of 0.38 for that operator 

Figure 3. Example RL rules learned by chunking in the dice game.  

  



challenge among other players, which is the most desirable 
result as then the player is guaranteed to not lose a die.  

Beyond the specificity in testing the dice faces, the rules 
generalize over other aspects of the situation when they are 
learned. For example, rule 2 does not test which other two 
dice are under its cup, except that they are not 1’s or 2’s. 
Similarly, rule 1 does not test the previous bid, nor does it 
test what other non-1 or non-2 dice are known to the agent, 
as they are irrelevant to computing the bid’s probability.  

Because the determination of the conditions of the new 
rules in dependent on the knowledge used in the subgoal, 
we expect that the value functions learned from different 
initial knowledge to be different. If the model is used, the 
learned rules will test features of the previous bid, whereas 
if neither the model nor the heuristics are used, we expect 
the learned rules to test only the player’s dice, the number 
of dice under cups, and the exposed dice. When more 
features are tested, those rules will be more specific, and 
more rules will be learned. We expect both of these factors 
to influence the speed and quality of learning.  

To evaluate the performance of agents using learning, 
we used two-player games. Two-player games are easier 
and faster to evaluate, and require smaller value functions 
than four-player games – two-player games start with 10 
dice, whereas four-player games start with 20. The learning 
agents all played against the best hand-coded agent for 
two-player games, which is the PMH agent. One question 
is why the EMH agent is best for four-player games, but 
the PHM agent is best for two-player games. 

We evaluated two variants of the probability-based 
agents. In the first variant (labeled with -0), the probability 
calculation is disabled and the initial expected value of the 
RL rules is initialized to 0.0 to eliminate the contribution 
of the initial probability calculation. Differences in 
learning can be ascribed to differences in the value 
function defined by the learned rules, and to differences 
that arise from the inclusion of heuristics in the H and 
PMH agents. In the second variant (labeled with -#), the 
agents initialize the expected value of the RL rules using 
the scaled probabilities. In this variant, the agents’ initial 
performance is determined by the probability calculations, 
which are then tuned by RL. 

We include a baseline agent (B-0) that was created by 
generating RL rules using templates. These rules test the 
dice directly relevant to the bid being evaluated (such as 
the number of known 6’s and 1’s for a bid of five 6’s), and 
the number of unknown dice. In these rules, totaling 
153,132, the expected value is initialized to 0.0.  

In our evaluation, 1000 games of testing (chunking and 
reinforcement learning disabled) are alternated with 1000 
games of training (chunking and RL enabled), for a total of 
35 blocks of training and testing. All data are the average 
of five independent runs. Each game takes between 
between 5 and 13 rounds of play (players can win back a 
die with an exact).  

Figure 4 shows the testing trials of all the -0 agents. All 
agents significantly improve performance with experience, 
with three agents beating the baseline more than 60% of 

the time. The B-0 and P-0 agents have similar value 
functions and thus learn at about the same rate. The PH-0 
agent learns fastest early on, but appears to level off just 
above 60%. The PMH-0 agent learns slower than PH-0, 
but appears to be slowly improving even at 35,000 games. 
The PM-0 agent starts slower than PH-0 and PMH-0, but 
ultimately win 70% of its games, and appears to be 
improving even after 35,000 games.   

The two most important factors for the differences in 
learning behaviors are the value function of each agent, as 
defined by the RL rules it learns, and any heuristics (in H 
agents) that are incorporated in symbolic selection rules. 
Figure 5 shows the number of rules learned by the different 
classes of agents. The P and PH agents learn fewer rules, 
and learn them early. The PM and PMH agents learn an 
order of magnitude more rules and continue to learn new 
rules throughout the training, with no end in sight.  

Agents with more rules split the value function into 
finer-grain regions, giving them the potential of ultimately 
achieving better performance (which is why PM-0, PH-0, 
and PMH-0 perform better that B-0 or P-0). However, 
when there are more rules, each rule receives fewer 
training updates, leading to slower learning, as 
demonstrated by the PM-0 and PMH-0 agents. One 
hypothesis is that both PM-0 and PMH-0 will continue to 
improve with experience as they learn and tune new rules, 
while B-0, P-0, and PH-0 will not. One surprising result is 
that the PH-0 agent does so well with so few rules, 

Figure 4. Performance for agents with learned rules with 

expected value initialized to 0.   

  

Figure 5. Number of rules learned by different agents.  
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suggesting that the non-RL rules play an important role 
even though they are not tuned by RL.   
 Figure 6 shows the results when the learned rules are 
initialized with the calculated probabilities, and Figure 7 
shows the differences between the agents’ performances in 
Figures 5 and 6. As expected, initial performance is 
significantly better for all the agents, suggesting that 
deliberate reasoning can usefully initialize Q values for 
reinforcement learning. However, there are some striking 
results. The P-# and PH-# agents achieve high performance 
quickly suggesting that although the probabilities are 
useful, performance can be much better with a little tuning. 
We hypothesize that tuning of challenge bids may be 
responsible for these improvements, but more analysis of 
the learned rules is necessary to verify that hypothesis.  

Another notable result is that although the PM-# agent 
gets an initial boost, it then learns slower than the PM-0 
agent does. One distinguishing characteristic of the PM 
and PMH agents is that they learn new rules throughout the 
trials. If the initial values of these new rules need to be 
tuned for good performance (as suggested by the 
improvements in the P and PH agents), then we expect that 
the PM-# and PMH-# agents will require many more 
training trials to level off, not just because they have more 
rules, but because new rules disrupt the decision making. It 
is unclear why the PM-0 and PMH-0 agents learn faster, 
but it might be that once some tuning has occurred, the 

computed expected values are more disruptive than initial 
values of 0.0.  

Discussion 

We started this project with the goal of investigating how a 
task that appeared to require probabilistic knowledge could 
be attacked with a symbolic cognitive architecture. These 
agents demonstrate how Soar’s architectural components 
(preferences, impasses, subgoals, chunking, and 
reinforcement learning) provide the necessary structures 
for combining probabilistic and symbolic knowledge for 
decision making and learning in a task with high 
uncertainty. Our agents initially use deliberate reasoning to 
compute probabilities or expected values, which can 
combine heuristic knowledge, and a model of the opponent 
to make decisions. Through chunking, the agents can 
combine these types of knowledge and create new rules, 
and through reinforcement learning tune the rules to 
achieve significant improvements in performance. 

The dice game has turned out to be surprisingly rich. In 
four-player games, the expectation-based decision making 
dominated the probability-based decision making. 
However, our experiments with learning in two-player 
games based on the probability-based agents, demonstrated 
the power of learning, with some agents achieving 
performance, which if duplicated in the four-player games, 
should dominate the expectation-based agents. The 
learning results also emphasized some of the tradeoffs in 
having small vs. large state spaces for value functions. 
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Figure 6. Performance for agents with learned rules initialized by 

internal deliberation in subgoals. 
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Figure 7. Difference in performance between agents with and 

without initialized expected values for RL rules.  
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