

A Case Study in Integrating Probabilistic Decision Making and Learning

in a Symbolic Cognitive Architecture: Soar Plays Dice

John E. Laird, Nate Derbinsky, and Miller Tinkerhess

University of Michigan

2260 Hayward St.

Ann Arbor, MI 48109-2121
{laird, nlderbin, mmtinker}@umich.edu

Abstract

One challenge for cognitive architectures is to effectively
use different forms of knowledge and learning. We present
a case study of Soar agents that play a multiplayer dice
game, in which probabilistic reasoning and heuristic
symbolic knowledge appear to play a central role. We
develop and evaluate a collection of agents that use
different combinations of probabilistic decision making,
heuristic symbolic reasoning, opponent modeling, and
learning. We demonstrate agents that use Soar’s rule
learning mechanism (chunking) to convert deliberate
reasoning with probabilities into implicit reasoning, and
then use reinforcement learning to further tune performance.

Introduction

To date, few if any of the applications developed within
the Soar cognitive architecture (Laird 2008) have involved
explicit reasoning about probabilities. Soar’s primary
memory systems encode knowledge in symbolic
representations. Soar uses non-symbolic processing to bias
retrievals from semantic (Derbinsky and Laird 2011;
Derbinsky, Laird, and Smith 2010) and episodic memory
(Derbinsky and Laird 2009), represent spatial information
(Wintermute 2010), and control the selection of operators
in Soar. These uses of non-symbolic reasoning are similar
to those found in other cognitive architectures such as
ACT-R (Anderson et al. 2004) and ICARUS (Langley,
Cummings, and Shapiro 2004), where non-symbolic
processing supports the reasoning over symbolic
structures. In all these systems, knowledge of the task is
represented and processed symbolically. Probabilistic
knowledge may play a role in controlling reasoning, but it
is not the primary representation of task knowledge -
instead it plays a supporting role.
 To explore the role of probabilistic reasoning in a
symbolic cognitive architecture, we developed agents in

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Soar that play a multiplayer dice game in which the current
situation is highly uncertain and probabilities appear to
play a central role in decision making. This paper is a
preliminary report on these agents. We begin with a
description of the game, followed by an analysis in which
we make observations about the types of knowledge and
mechanisms that might be useful for an agent that plays the
game. We describe the structure of our agent, and focus on
decision making, where we describe how we developed
agents that use the types of knowledge described earlier.
We then provide empirical evidence of their usefulness in
agents that play the dice game
 One claim of this paper is that Soar’s decision-making
mechanisms (preference-based operator selection and
impasse-driven deliberation) provide the necessary
architectural support for incorporating symbolic and
probabilistic information for effective decision making. A
second claim is that Soar’s procedural-learning
mechanisms (chunking and reinforcement learning)
provide the necessary architectural support for compiling
and then tuning probabilistic decision making using in-
game experience. This unique combination of chunking
and reinforcement learning leads to high initial
performance that improves with experience, exceeding the
performance of our best hand-coded agents.

The Dice Game

Our agents play a dice game that goes by many names,
including Perudo, Dudo, and Liar’s Dice. The rules of our
version are available from the Soar website, as is a
playable version of the game, where humans can play
against each other. The game begins with the players
positioned in a random cyclic ordering (such as sitting
around a table), with each player initially having five dice
and a cup in which to roll and hide their dice. Play consists
of multiple rounds, and at the beginning of each round, all
players roll their dice, keeping them hidden under their
cup. Players can view their own dice, but not the dice of
others. The first player of a round is chosen at random, and
following a player’s turn, play continues to the next player.

During a player’s turn, an action must be taken, with the
two most important types of action being bids and
challenges. A bid is a claim that there is at least the
specified number of dice of a specific face in play, such as
six 4’s. Following the first bid, a player’s bid must increase
the previous bid, either by increasing the dice face or by
increasing the number of dice. If the dice face does not
increase, the number of dice must increase, in which case
the dice face can be the same or lower. Thus, legal bids
following six 4’s include six 5’s, six 6’s, seven 2’s, seven
3’s, and so on. Following a bid, it is the next player’s turn.

A second type of action a player can take is to challenge
the most recent bid. If a player challenges, all dice are
revealed, and counted. If there are at least as many dice of
the face that was bid, the challenge fails, and the challenger
loses a die. Otherwise, the person who made the bid loses a
die. A player who loses all dice is out of the game. The last
remaining player is the winner.

There are additional rules that enrich the game. A die
with a face of 1 is wild, and it contributes to making any
bid. Given the special status of 1’s, all 1 bids are higher
than twice the number of other bids. For example, three 1’s
is higher than six 6’s and the next bid after three 1’s is
seven 2’s. When a player makes a bid, they can “push” out
a subset of their dice (usually 1’s and those with the same
face as the bid), exposing them to all players, and reroll the
remaining dice. A push and reroll can be used to increase
the likelihood of a bid being successful, and provide
additional information to other players that might dissuade
them from challenging a bid. In addition, a player can bid
“exact” once per game. An exact bid succeeds if the
number of dice claimed by the previous bid is accurate,
otherwise it fails. If the exact bid succeeds, the player gets
back a lost die, otherwise the player loses a die. Finally, a
player with more than one die can “pass,” which is a claim
that all of the player’s dice have the same face. A pass can
be challenged, as can the bid before a pass. A player can
pass only once with a given roll of dice.

Dice Game Analysis

In the dice game, the success of a player’s bid or challenge
depends not only on the player’s dice, but also on the dice
unknown to the player. Because of this uncertainty, it
would appear that reasoning with probabilities would be
useful if not necessary. For example, in making a
challenge, it would appear to be useful to know what the
probability is that the challenge will succeed. That
probability could be compared to probabilities for other
actions the agent can take, such as making a specific bid.
However, through discussions with human players, we
found that people do not compute the actual probabilities,
but instead compute the expected number for a specific
face. For non-one bids, they first sum the number of known
1 dice and the known dice of the face in question (exposed
and under their cup). They then add the number of
unknown dice (under other players’ cups) divided by 3
(dice that are 1’s and dice with the face being bid make up

approximately 1/3 of the available dice). If they are
considering a bid of 1’s, they divide the number of
unknown dice by 6. They then use the difference between
this expected number of dice and the bid under question as
the basis for comparison to other bids. Thus, our first
observation is that there are at least two basic ways to
evaluate bids, and an interesting question is whether the
probability calculation is significantly better than the
expected number approach.
 A second observation is that when a player makes a bid
of a specific face, it is often because the player has a
sufficient number of dice of that face to justify making that
bid (via whatever reasoning mechanism the player is
using). Of course the player could be bluffing, but in the
dice game, you don’t lose a die if you don’t challenge and
if no player challenges you. The best result is for another
player to challenge a third player. Therefore, experienced
players use bluffing sparingly and there is usually a
correlation between a player’s bid and the dice under their
cup, making it useful to analyze the bid of the previous
player from their perspective – what dice would they have
to have in order to make their bid? We refer to using this
type of knowledge as using a model of an opponent.
 A third observation is that there is additional structure to
the game that is not easily captured in the pure
probabilities or the expectations. For example, if a player
has a valid pass, it is wise to save the pass until the player
has no other safe or certain bids. Along similar lines, it is
better not to push with a bid if that bid without a push is
unlikely to be challenged by the next player. A push
reveals information to the other players and decreases the
agent’s options in the future. These are examples of
heuristic knowledge that is easily encoded as symbolic
rules that depend on qualitative evaluations of certainty of
bids, but do not require reasoning about probabilities.
 There is additional knowledge not included in the above
discussions. For example, there is a the difference between
making a bid of 6’s, which forces the next player to
increase the count of dice bid, versus a bid of 2’s, which
does not. There also are most likely regularities in the
actions of other players that can be exploited. It is difficult
to conceive of how these can be pre-encoded in an agent,
and one alternative is that they must be learned.
 The result of this analysis is that there are four classes of
knowledge that could prove useful to an agent:

1. Probability or expected-number calculations

2. Opponent models
3. Expert heuristics
4. Knowledge learned by experience

Our challenge is to design agents that incorporate these
forms of knowledge.

Dice-Game Agents: Overall Structure

Figure 1 shows our dice game system. There is a game
server that enforces the rules of the game, advances play to
the next player, and provides information on the current
state of the game. There are other players, human or Soar

agents, that connect to the game server on the same
computer. Usually there are between two and six total
players, but there is no inherent upper bound, and Soar can
be used for any number of players. In the figure, there are
four players, with the Soar agent playing as player 4.

When it is the agent’s turn, it receives a description of
the current state of the game that is equivalent to the
information available to human players. This includes the
number of dice under each player’s cup, players’ exposed
dice, the dice under the agent’s cup, and the history of bids.

The basic structure of the agent is straightforward, with
the following processing performed by Soar operators,
implemented with 370 rules. First, the agent selects and
applies an operator that computes the total number of dice
of each face that it knows (those exposed from pushes plus
those under its cup), and the number of unknown dice.

The next operator determines a base bid to be used for
computing the set of possible bids the agent will propose.
An agent can make any bid that is higher than the previous
bid; however, the higher bids risk being challenged, so
usually a player will make a bid that is close to the
previous bid. The one exception is that sometimes human
players make very low initial bids (possibly in frustration
after losing a die), and basing a following bid on such a
low bid wastes the opportunity to make a bid that forces
more risky bids by following players, while still being safe.
In the agents, we define a safe bid to be one that is at least
one less than the expected number for a face given the
current number of dice in play. For example, if there are
fifteen dice in play, and 1’s are wild, four 5’s is a safe bid.
If there is no previous bid, or if the safe bid is higher than
the previous bid, the safe bid is used as a base bid to
compute possible bids; otherwise the agent uses the
previous bid as the base bid.
 Once the base bid is determined, the agent proposes
operators for all bids that are higher than the base bid, up
to and including one full number higher than the base bid.
Thus, if the base bid is six 4’s, the agent proposes six 5’s,

six 6’s, three 1’s, seven 2’s, seven 3’s, and seven 4’s. If
there are relevant dice under its cup (dice with the same
face as the bid or 1’s), the agent also proposes bids with
pushes for those faces. The agent also proposes available
challenge, pass, and exact actions. We refer to the
operators described above as dice-game-action operators.

The agent then selects a dice-game-action operator
(based on deliberations described below), and submits the
action to the game server. If the action is a challenge or
exact, the game server determines whether the challenge or
exact is successful, updates the number of dice for the
players as appropriate, and provides feedback as to
whether the action was successful. The game also provides
feedback when the agent is challenged.

Dice-Game Agents: Selecting an Action

The complexity in the dice-game agents is in choosing
between the competing dice-game-action operators. This is
where different types of knowledge are used to control
behavior.

In Soar, preferences are used to select between
competing operators. Preferences can be either symbolic or
numeric. One class of symbolic preferences creates a
partial ordering between two operators, stating that one
operator is better than another. There are also symbolic
preferences that state that two operators are equivalent (an
indifferent preference), that an operator should be selected
only if there are no other alternatives (a worst preference),
or that an operator should be preferred to all other
operators (a best preference). Numeric preferences specify
the expected value of an operator.

A decision procedure processes the preferences, using
the symbolic preferences to filter the candidate operators.
If all the remaining operators have numeric preferences, an
operator is selected using a Boltzmann distribution based
on the values of the preferences. If there are insufficient
preferences to make a selection, an impasse arises. The

Player 1

Player 2

Player 3

Game Server

Player 4: Soar Agent

Compute Dice Totals

Compute Base Bid

Dice-Game-Action

Process Feedback

Subgoal

 Evaluations
tie

Probability Calculator

Figure 1. Dice game system.

decision procedure and these preference types provide an
architectural mechanism for integrating different types of
knowledge.

In the Dice agents, when the dice-game-action operators
are proposed, there are no preferences to prefer one
operator to another, so an impasse arises. In response to the
impasse, Soar automatically generates a subgoal in which
other operators can be selected and applied to resolve the
impasse. Thus, a subgoal allows for deliberate reasoning
about which operator in the superstate should be selected,
and that reasoning can incorporate the different types of
knowledge described earlier. As in the original dice game
task, the reasoning in the subgoal consists of the selection
and application of operators, but in the subgoal the
operators can analyze, evaluate, and compare the dice-
game-action operators, with the goal being to generate
sufficient preferences to resolve the impasse.

Probability or Expected-Number Calculations

In most previous Soar systems that reasoned in subgoals
about which task operator to select, the reasoning involved
internal searches using models of the tied task operators.
However, given the uncertainty inherent to the dice game,
that type of look-ahead search is not productive. The
approach employed here is to select operators that evaluate
the likelihood of success of the proposed dice-game-action
operators, where success is defined as a successful
challenge or exact, or a bid or pass that is not successfully
challenged. We have implemented the two different
methods for evaluating the likelihood of success of a bid
described earlier: one based on probability calculations,
and the second based on our anecdotal model of how
humans evaluate their bids using deviations from the
expected number of dice. During a game, the agent uses
only one method.

In our expected-number model, the agent evaluates each
bid by computing the expected number of dice for the face
of the die of that bid. This involves adding the number of
the known dice of the bid face (as well as 1’s for non-1
bids), with the expected number of that face given the
number of unknown dice. For example, if the agent is
computing the likelihood of six 4’s and there is one 1 and
one 4 showing (or under the agent’s cup), and there are
nine unknown dice, then the expected number is 2 + 9/3 =
5. The divisor is 3 because both 1’s (which are wild) and
4’s contribute to achieving the bid. The agent takes the
difference between the bid and expected number, which in
this case is -1, and classifies the bid, which in this case is
“risky.” Conversely, if there are 15 unknown dice, the total
expected number is 7, and the bid is classified as “safe.” If
the agent knows for certain that there are six 4’s, because
of what is exposed and under its cup, it is a “certain” bid.
The agent similarly categorizes a challenge bid based on
how much the previous bid deviated from the expected
number. In this model, all calculations involve additions,
subtractions, and divisions, and they appear to correspond
to the calculations performed by human players.

As mentioned above, when using the expected-number
model, the agent uses a simple classification system for
bids based on deviations from the expected number and
known values. The agent uses symbolic preferences to
create equivalence classes for similarly classified actions
(such as all risky bids) via indifferent preferences. Better
preferences are also used to create orderings between
equivalence classes (safe bids are better than risky bids). A
random decision is made from among the remaining
actions in the top equivalence class. Randomness is
important because it makes it more difficult for other
players to induce exactly which dice the player has under
its cup. Using this approach, the agent does not explicitly
decide to bluff (make a risky bid when safer bids are
available); however, the agent will make risky bids when it
has no better alternatives.

The probability-based model uses an external probability
calculator (Figure 1), which the agent interfaces to through
Soar’s input/output system. An agent uses the calculator by
creating a query, such as: determine the probability that
given thirteen dice, there are at least five of them with a
given face. The queries are parameterized by the number of
distinct possible values: either three for non-1 bids, or six
for 1 bids. The computed probability is assigned to a
numeric preference for the appropriate dice-game-action
operator. The final selection is made based on a Boltzmann
distribution, giving some randomness to the agent’s play.

Opponent Model

In playing against these agents, one apparent weakness is
that they are quick to challenge whenever the expected
number or probability of the previous bid is low. Thus, if a
player has a high number of some dice face and bids
accordingly, the Soar agent will often challenge (and lose a
die). Although any one specific set of dice is unlikely, it is
not unlikely that a player with five dice will have two to
three of some dice face (especially when 1’s are included)
which can form the basis of their bid.

To remedy this problem (and experiment with additional
forms of knowledge and reasoning), an abstract operator
was added that embodies a model of the previous player’s
bidding, and attempts to induce the dice under the previous
player’s cup given the previous bid. This operator is
proposed only if the prior player did not push and reroll,
because following a reroll, there is nothing to be gained
from the model. The agent always does an initial
evaluation before using the model to determine if there are
actions that are certain, independent of the information
obtained from the model.

To use the model, the agent recreates the situation that
existed when the opponent had to make its bid, with the
dice under the Soar agent’s cup being unknown to the other
player. For example, if the opponent has four dice under its
cup and has just bid four 2’s, and the Soar agent has one 2
showing from a previous push, and has three additional
dice under its cup, the Soar agent creates the situation
where there is one 2 known, and seven dice unknown.

The agent then incrementally hypothesizes different
numbers of dice with the face that was bid for the opponent
(in this case 2), evaluating the likelihood of the player
having that many dice and determining whether that
number of dice would support the given bid. In this case, it
starts with assuming that the opponent has one 2. If the
number of dice gets high enough so that the likelihood of
actually getting that number of dice is very low (indicating
that the player might be bluffing), or if the number of dice
gets high enough to support the original bid, the modeling
stops. In this case, having one 2 is not unlikely and
together with the exposed 2 it does not make a four 2 bid
likely to succeed. Thus, the agent considers what would
happen if the opponent had two 2’s, and in this case, that
number supports the opponent’s bid. The agent uses the
result (in this case that the opponent has two 2’s and two
additional dice that are neither 1’s nor 2’s) in recalculating
probabilities (or the expected number) for its bids to select
a dice-game-action operator. The rules to evaluate the
likelihood of hypothetical opponent situations are distinct
from dice-game-action task knowledge, and so the
outcome of this process is independent of using the
probability or expected-number calculations.

Expert Heuristics

Once the probability or expected numbers are computed,
additional knowledge can be included that affects selection
from among the dice-game-action operators in the top rated
equivalence class. These heuristics test symbolic state
information, such as relative action type (ex. bid versus bid
and push; bid versus pass) or round history (ex. face of the
previous bid, face of next player’s previous bid), and
produce additional preference selection knowledge. For
our agents, we developed five heuristics and all of them
condition upon symbolic features of state and result in
symbolic preference knowledge. For instance, one heuristic
states that within an equivalence class, a bid without a push
is preferred to that same bid with a push. The result of
these heuristics is that the top-rated dice-game-action
operators are pruned, such that final probabilistic selection
is limited to only the best-of-the-best action(s).

Results

To evaluate the contribution of these different types of
knowledge, we created agents with combinations of
modeling (M) and expert heuristics (H) on top of the
expectation-based (E) and the probability-based (P)
decision making agents. We played four-player matches
with pairs of agent types. To eliminate ordering effects,
each match consisted of 1000 games for each of the four
unique orderings of two distinct players (X and Y) in a
four-player match (XXXY, YYYX, XXYY, XYXY). We
summed the results of the four orderings, giving a possible
win total of 4000.
 Our metric of interest is number of times an agent (say
X) wins and we calculate statistical significance using a
two-sided binomial test. Our threshold for significance is
2082 victories out of 4000 (p=0.01), which is 52.02%. The

results are summarized in Figure 2, where we report these
as a percentage of possible victories for the dominant agent
which has greater than 50% wins, rounded to the nearest
percent. In the figure, each node is an agent, and the letters
define its composition. For example, the EMH agent
includes the expected-number decision making (E),
modeling (M), and expert heuristics (H). The lines between
nodes point to the dominant agent. In this case, all lines
point right or up, indicating that the agents to the right and
at the top (the E agents) won more often.
 All of the winning percentages are significant except for
EM to EH, where there were 2080 victories, as opposed to
the 2082 required for significance. In all but that case, all
the dominant agents had higher win totals than all the
losing agents in all orderings. For example, in every
ordering of the P vs. PH, the individual PH agents always
won more games than any individual P agents did.
 The most important results are clear. The model and the
heuristics knowledge improve performance for both the
probability-based and expected-number agents. The
combination of those two types of knowledge also
dominates each one individually.
 Somewhat surprisingly, the expected-number agents
dominate the probability agents, for all orderings. This
result suggests that the expected-number calculations and
symbolic categorizations capture enough of the underlying
probabilistic structure that is relevant in the game, as well
as include some additional structure not present in the pure
probability calculations. However, as we describe below,
the probabilistic agent opens up the unique ability to tune
action-selection knowledge using reinforcement learning.
 Informally, the EMH agents are competitive with human
players. The EMH agents do not make obvious gaffs and
they regularly beat experienced human players.

Learning

The Soar agents use the knowledge sources described
above to deliberately reason about alternative dice-game-
action operators in a subgoal. The results of those
calculations are converted to preferences (by operators in
the subgoal) for the dice-game-action operators. Soar’s
chunking mechanism compiles the deliberate processing in

P

PM

PMH

PH

55%

63%

63%

75% 56%
62%

E

EM

EMH

EH

55%

58%

59%

66% 52%
58%

69%

67% 63%

58%

Figure 2. Pair-wise results of 4000 game competitions between

agents with different types of knowledge.

subgoals into rules that create those preferences, without
deliberation in a subgoal. Chunking leads to faster decision
making; however, in this task the Soar agents are much
faster than humans are, and the additional speed has little
functional value. However, the rules that are created by
chunking over probability calculations have numeric
preferences as actions. Essentially, these rules are
assigning expected values to subsets of operators.

Soar’s reinforcement learning (RL) mechanism uses Q-
learning to adjust the numeric preferences of such rules
when there is a reward signal. We use a straightforward
reward function: +1 for winning a challenge/exact bid and
-1 for losing a challenge/exact bid. To align the
probabilities with the reward function, the probabilities are
linearly rescaled from (0, +1) to (-1, +1).

By having subgoals, chunking, and reinforcement
learning in the same architecture, the agents have the
following capabilities:
1. The agent initially uses a combination of probabilistic

knowledge, symbolic heuristic knowledge and an
opponent model to evaluate alternative actions.

2. Chunking automatically combines those forms of
knowledge into new rules that compute parts of the
value function, which is a mapping from states and
operators to expected values. In Soar, a learned rule
maps states and operators that match the rule
conditions to the expected value in the rule action. If
the subgoal creates symbolic preferences, rules to
generate those preferences are also created.

3. With experience, chunking learns rules that
incrementally fill out the value function, ultimately
eliminating the need for deliberate reasoning.

4. When the agent uses learned rules to select a dice-
game-action operator, reinforcement learning tunes
those rules based on the reward received for
performing the associated action. Over time, the rules
approximate the actual expected reward as opposed to
the original probability calculations.

Figure 3 shows three RL rules learned by chunking
whose actions have been tuned a few times. Dice Rule 1
captures the probability calculation for an unlikely bid and

is typical of many chunks which test the bid, the relevant
known dice, and the number of unknown dice. The bid is
five 2’s, with one 2 known and four dice unknown, which
all must be 1’s or 2’s for the bid to succeed.

Dice Rule 2 is also for the selection of an operator that
bids five 2’s, but this operator includes pushing three dice
and rerolling two and is proposed when the opponent has
only one die, which is unknown. Thus, the agent knows
there are at least three 2’s and must pick up two more out
of the two dice it rerolls plus the one die under the
opponent’s cup. This outcome is unlikely if only the
probability is considered; however, in this case the rule’s
value includes the result of modeling the opponent. Using
the model leads the agent to conclude that in order to make
the bid of two 1’s, the opponent likely had one 1
(otherwise it would have challenged). Thus, the agent
believes it needs to get only one 2 or one 1 out of the two
dice it rerolls, giving a normalized value of 0.12.

Dice Rule 3 evaluates a challenge bid and gives it a high
probability of success. In this case, the previous player bid
two 1’s and rerolled. There are two unknown dice and one
1 is known. Because of the reroll, the agent model was not
used. Notice that this rule only tests the number of known
dice and that one 1 is known, and that 1 could have been
pushed by another player or it could be under the agent’s
cup. This situation probably arose when the current player
had many hidden dice, and the previous player calculated
that with the combination of a reroll and the current
player’s hidden dice, it was likely that there was a 1.

One characteristic of the chunks is that they are specific
to the dice face being bid, and all are specific to the
existence of 1’s. Given the special nature of 1’s as wild
cards, they must be accounted for. In addition, the 2 bids
cannot be generalized because they have different utility
than bids of other dice faces. For example, in comparison
to a 2 bid, a 6 bid forces the opponent to increase the
number of dice bid, making such a bid less likely to be
achieved. This could increase the chance that the 6 bid will
be challenged (because other bids are less likely to
succeed). However, a 6 bid makes it less likely that the
player must bid again, as the higher bid may lead to a

Dice Rule 1:

If the operator is to bid five 2’s with no push and

 there are zero 1’s and one 2 dice, and four unknown dice then

create a numeric preference of -0.8754 for that operator

Dice Rule 2:

If the operator is to bid five 2’s pushing one 1 and two 2’s and

 the previous bid was two 1’s and

 there are five dice under my cup, with one 1 and two 2’s and

 the other player has only a single die, which is unknown, then

create a numeric preference of 0.12 for that operator

Dice Rule 3:

If the operator is to challenge and

 the bid by the previous player is two 1’s and

 the player pushed and rerolled and

 there are two unknown dice and one 1 known, then

create a numeric preference of 0.38 for that operator

Figure 3. Example RL rules learned by chunking in the dice game.

challenge among other players, which is the most desirable
result as then the player is guaranteed to not lose a die.

Beyond the specificity in testing the dice faces, the rules
generalize over other aspects of the situation when they are
learned. For example, rule 2 does not test which other two
dice are under its cup, except that they are not 1’s or 2’s.
Similarly, rule 1 does not test the previous bid, nor does it
test what other non-1 or non-2 dice are known to the agent,
as they are irrelevant to computing the bid’s probability.

Because the determination of the conditions of the new
rules in dependent on the knowledge used in the subgoal,
we expect that the value functions learned from different
initial knowledge to be different. If the model is used, the
learned rules will test features of the previous bid, whereas
if neither the model nor the heuristics are used, we expect
the learned rules to test only the player’s dice, the number
of dice under cups, and the exposed dice. When more
features are tested, those rules will be more specific, and
more rules will be learned. We expect both of these factors
to influence the speed and quality of learning.

To evaluate the performance of agents using learning,
we used two-player games. Two-player games are easier
and faster to evaluate, and require smaller value functions
than four-player games – two-player games start with 10
dice, whereas four-player games start with 20. The learning
agents all played against the best hand-coded agent for
two-player games, which is the PMH agent. One question
is why the EMH agent is best for four-player games, but
the PHM agent is best for two-player games.

We evaluated two variants of the probability-based
agents. In the first variant (labeled with -0), the probability
calculation is disabled and the initial expected value of the
RL rules is initialized to 0.0 to eliminate the contribution
of the initial probability calculation. Differences in
learning can be ascribed to differences in the value
function defined by the learned rules, and to differences
that arise from the inclusion of heuristics in the H and
PMH agents. In the second variant (labeled with -#), the
agents initialize the expected value of the RL rules using
the scaled probabilities. In this variant, the agents’ initial
performance is determined by the probability calculations,
which are then tuned by RL.

We include a baseline agent (B-0) that was created by
generating RL rules using templates. These rules test the
dice directly relevant to the bid being evaluated (such as
the number of known 6’s and 1’s for a bid of five 6’s), and
the number of unknown dice. In these rules, totaling
153,132, the expected value is initialized to 0.0.

In our evaluation, 1000 games of testing (chunking and
reinforcement learning disabled) are alternated with 1000
games of training (chunking and RL enabled), for a total of
35 blocks of training and testing. All data are the average
of five independent runs. Each game takes between
between 5 and 13 rounds of play (players can win back a
die with an exact).

Figure 4 shows the testing trials of all the -0 agents. All
agents significantly improve performance with experience,
with three agents beating the baseline more than 60% of

the time. The B-0 and P-0 agents have similar value
functions and thus learn at about the same rate. The PH-0
agent learns fastest early on, but appears to level off just
above 60%. The PMH-0 agent learns slower than PH-0,
but appears to be slowly improving even at 35,000 games.
The PM-0 agent starts slower than PH-0 and PMH-0, but
ultimately win 70% of its games, and appears to be
improving even after 35,000 games.

The two most important factors for the differences in
learning behaviors are the value function of each agent, as
defined by the RL rules it learns, and any heuristics (in H
agents) that are incorporated in symbolic selection rules.
Figure 5 shows the number of rules learned by the different
classes of agents. The P and PH agents learn fewer rules,
and learn them early. The PM and PMH agents learn an
order of magnitude more rules and continue to learn new
rules throughout the training, with no end in sight.

Agents with more rules split the value function into
finer-grain regions, giving them the potential of ultimately
achieving better performance (which is why PM-0, PH-0,
and PMH-0 perform better that B-0 or P-0). However,
when there are more rules, each rule receives fewer
training updates, leading to slower learning, as
demonstrated by the PM-0 and PMH-0 agents. One
hypothesis is that both PM-0 and PMH-0 will continue to
improve with experience as they learn and tune new rules,
while B-0, P-0, and PH-0 will not. One surprising result is
that the PH-0 agent does so well with so few rules,

Figure 4. Performance for agents with learned rules with

expected value initialized to 0.

Figure 5. Number of rules learned by different agents.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

W
in

s
o
u

t
o
f

1
0

0
0

Blocks of Training (1000 Games/Block)

PMH-0
PH-0
PM-0
P-0
B-0

0

100

200

300

400

500

0 5 10 15 20 25 30 35

N
u

m
b

er
 o

f
L

ea
rn

ed
 R

u
le

s

(1
0

0
0

's
)

Blocks of Training (1000 Games/Block)

PMH
PH
PM
P
B

suggesting that the non-RL rules play an important role
even though they are not tuned by RL.
 Figure 6 shows the results when the learned rules are
initialized with the calculated probabilities, and Figure 7
shows the differences between the agents’ performances in
Figures 5 and 6. As expected, initial performance is
significantly better for all the agents, suggesting that
deliberate reasoning can usefully initialize Q values for
reinforcement learning. However, there are some striking
results. The P-# and PH-# agents achieve high performance
quickly suggesting that although the probabilities are
useful, performance can be much better with a little tuning.
We hypothesize that tuning of challenge bids may be
responsible for these improvements, but more analysis of
the learned rules is necessary to verify that hypothesis.

Another notable result is that although the PM-# agent
gets an initial boost, it then learns slower than the PM-0
agent does. One distinguishing characteristic of the PM
and PMH agents is that they learn new rules throughout the
trials. If the initial values of these new rules need to be
tuned for good performance (as suggested by the
improvements in the P and PH agents), then we expect that
the PM-# and PMH-# agents will require many more
training trials to level off, not just because they have more
rules, but because new rules disrupt the decision making. It
is unclear why the PM-0 and PMH-0 agents learn faster,
but it might be that once some tuning has occurred, the

computed expected values are more disruptive than initial
values of 0.0.

Discussion

We started this project with the goal of investigating how a
task that appeared to require probabilistic knowledge could
be attacked with a symbolic cognitive architecture. These
agents demonstrate how Soar’s architectural components
(preferences, impasses, subgoals, chunking, and
reinforcement learning) provide the necessary structures
for combining probabilistic and symbolic knowledge for
decision making and learning in a task with high
uncertainty. Our agents initially use deliberate reasoning to
compute probabilities or expected values, which can
combine heuristic knowledge, and a model of the opponent
to make decisions. Through chunking, the agents can
combine these types of knowledge and create new rules,
and through reinforcement learning tune the rules to
achieve significant improvements in performance.

The dice game has turned out to be surprisingly rich. In
four-player games, the expectation-based decision making
dominated the probability-based decision making.
However, our experiments with learning in two-player
games based on the probability-based agents, demonstrated
the power of learning, with some agents achieving
performance, which if duplicated in the four-player games,
should dominate the expectation-based agents. The
learning results also emphasized some of the tradeoffs in
having small vs. large state spaces for value functions.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere,
C., Qin, Y. 2004. An Integrated Theory of the Mind.
Psychological Review 111 (4): 1036-1060.

Derbinsky, N., Laird, J. E. 2009. Efficiently Implementing
Episodic Memory. Proc. of the Eighth International Conference
on Case-Based Reasoning. 403-417, Seattle, WA.

Derbinsky, N., Laird, J. E. 2011. A Functional Analysis of
Historical Memory Retrieval Bias in the Word Sense
Disambiguation Task. Proc. of the 25th AAAI Conference on
Artificial Intelligence. 663-668, San Francisco, CA.

Derbinsky, N., Laird, J. E., Smith, B. 2010. Towards Efficiently
Supporting Large Symbolic Declarative Memories. Proc. of the
Tenth International Conference on Cognitive Modeling. 49-54,
Phil, PA.

Laird, J. E. 2008. Extending the Soar Cognitive Architecture.
Proc. of the First Conference on Artificial General Intelligence,
224-235. Amsterdam, NL.: IOS Press.

Langley, P., Cummings, K., Shapiro, D. 2004. Hierarchical Skills
and Cognitive Architectures. Proc. of the 26th Annual Conference
of the Cognitive Science Society, 779-784. Chicago, IL.

Wintermute, S. 2010. Abstraction, Imagery, and Control in
Cognitive Architecture. PhD diss. Computer Science and
Engineering Dept., University of Michigan, Ann Arbor, MI.

Figure 6. Performance for agents with learned rules initialized by

internal deliberation in subgoals.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

W
in

s
o
u

t
o
f

1
0

0
0

Blocks of Training (1000 Games/Block)

PMH-#

PH-#

PM-#

P-#

Figure 7. Difference in performance between agents with and

without initialized expected values for RL rules.

-300

-200

-100

0

100

200

300

400

500

0 5 10 15 20 25 30 35

D
if

fe
re

n
ce

s
in

 G
a
m

es
 W

o
n

Blocks of Training (1000 Games/Block)

PMH-Delta

PH-Delta

PM-Delta

P-Delta

