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Abstract 
This paper documents a functionality-driven exploration of 
automatic working-memory management in Soar. We first 
derive and discuss desiderata that arise from the need to 
embed a mechanism for managing working memory within 
a general cognitive architecture that is used to develop real-
time agents. We provide details of our mechanism, 
including the decay model and architecture-independent 
data structures and algorithms that are computationally 
efficient. Finally, we present empirical results, which 
demonstrate both that our mechanism performs with little 
computational overhead and that it helps maintain the 
reactivity of a Soar agent contending with long-term, 
autonomous simulated robotic exploration as it reasons 
using large amounts of acquired information. 

Introduction   
Long-living, learning agents facing numerous, complex 
tasks will experience large amounts of information that 
may be useful to encode and store as internal knowledge. 
This information may include declarative facts about the 
world, such as lexical data (Douglass, Ball, and Rodgers 
2009), or may relate to the agent’s own autobiographical 
experience (Laird and Derbinsky 2009).  

In order to scale to human-level intelligence, cognitive 
architectures designed to support these types of agents 
must encode and store experience such that the agent can 
later retrieve relevant information to reason and make 
decisions, while remaining reactive to dynamic 
environments (Laird and Wray 2010). In part to satisfy 
these requirements, the Soar cognitive architecture (see 
Figure 1; Laird 2008) has been recently extended with 
multiple dissociated, symbolic memory systems 
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(Derbinsky and Laird 2010): working memory encodes 
structures that are directly accessible to agent reasoning, 
while long-term memory systems support flexible, yet 
indirect, access to skills, facts, and past experience.  

These memory systems have introduced both the 
computational necessity and the functional opportunity to 
investigate architectural methods for maintaining a small 
working memory. The necessity arises because large 
amounts of knowledge in Soar’s working memory can 
impede agent reactivity as a result of expensive rule 
matching and episodic reconstruction. However, the advent 
of semantic memory affords the agent the functionality to 
efficiently store large amounts of declarative knowledge in 
a long-term store, retrieving to working memory as 
necessary for reasoning. 

In this paper, we explore methods for automatically 
managing Soar’s working memory. After discussing 
related work, we derive and discuss desiderata that arise 
from the need to embed working-memory management 
within a general cognitive architecture that is used to 
develop real-time agents. We then provide details of our 
mechanism, including pertinent structures of Soar; our 
decay model, which incorporates the base-level activation 

Figure 1. The Soar cognitive architecture. 



model (Anderson et al. 2004); and novel system-
independent data structures and algorithms for working-
memory decay that are computationally efficient. We then 
present empirical results, which demonstrate both that our 
mechanism performs with very little computational 
overhead, and that it helps maintain the reactivity of a Soar 
agent contending with long-term, autonomous simulated 
robotic exploration, even as it reasons using large amounts 
of acquired information. 

Related Work 
Previous research in cognitive modeling has investigated 
models of working-memory decay for the purpose of 
accounting for human behavior and experimental data. As 
a prominent example, memory decay has long been a core 
commitment of the ACT-R theory (Anderson et al. 2004), 
as it has been shown to account for a class of memory 
retrieval errors (Anderson, Reder, and Lebiere 1996). 
Additionally, some modeling work has been done in Soar, 
specifically investigating particular task-performance 
effects of forgetting short-term (Chong 2003) and 
procedural (Chong 2004) knowledge. By contrast, the 
motivation for and outcome of this work is to investigate 
and evaluate a specific functional benefit of managing 
working-memory size. 

Prior research supports the potential for cognitive 
benefits of short-term memory decay, such as in task-
switching (Altmann and Gray 2002) and heuristic 
inference (Schooler and Hertwig 2005). In this paper, we 
focus on improved agent reactivity. 

We extend prior work on working-memory activation in 
Soar (Nuxoll, Laird, and James 2004). As efficiently 
implementing base-level decay is a challenging issue in 
cognitive architecture research (Douglass, Ball, and 
Rodgers 2009), we contribute algorithms that improve 
computational efficiency and a focused mechanism 
evaluation. We also perform the first computational 
investigation of how multiple memory systems combine 
within a cognitive architecture to balance sound agent 
reasoning with the need for a small working memory. 

Mechanism Desiderata 
These desiderata arise from the need to embed working-
memory management within a general cognitive 
architecture that is used to develop real-time agents. 
D1. Task Independence 

The mechanism must support agents across a variety 
of domains and problems. 

D2. Minimize Working-Memory Size 
The mechanism must maintain a small amount of 
knowledge directly available to agent reasoning. 

D3. Minimize Impact on Agent Reasoning 
Many cognitive architectures, including Soar, make a 
closed-world assumption with respect to reasoning 
over knowledge stored in memory. That is, the 
memory system is assumed to be a complete 
representation of the agent’s current beliefs, and thus 
if processing over a memory cannot find a knowledge 
structure, it is assumed not to exist. Consequently, an 
automatic mechanism for removing knowledge from 
working memory could have serious implications for 
the soundness of agent reasoning. It is important that 
removed knowledge is either unimportant for current 
processing (such as dated or unrelated information) or 
recoverable from another source. 

D4. Minimize Computational Overhead 
The mechanism must not incur substantial 
computational cost and must scale to large amounts of 
learned knowledge in dynamic environments. 

We claim that a mechanism that satisfies these 
desiderata serves as a necessary precondition for cognitive 
systems to engage in complex reasoning while scaling to 
large amounts of acquired data over long periods of time. 

Working-Memory Management in Soar 
Soar is a cognitive architecture that has been used for 
developing intelligent agents and modeling human 
cognition. Historically, one of Soar’s main strengths has 
been its ability to efficiently represent and bring to bear 
symbolic knowledge to solve diverse problems using a 
variety of methods (Laird 2008). We begin with a 
description of pertinent architectural structures and then 
convey the design and rationale of our automatic working-
memory management mechanism, as related to our 
mechanism desiderata. 

The Soar Cognitive Architecture 
Figure 1 shows the structure of Soar. At the center is a 
symbolic working memory that represents the agent’s 
current state. It is here that perception, goals, retrievals 
from long-term memory, external action directives, and 
structures from intermediate reasoning are jointly 
represented as a connected, directed graph. The primitive 
representational unit of knowledge in working memory is a 
symbolic triple (identifier, attribute, value), termed a 
working-memory element, or WME. The first symbol of a 
WME (identifier) must be an existing node in the graph, a 
constraint that maintains graph connectivity, whereas the 
second (attribute) and third (value) symbols may either be 
terminal constants or non-terminal graph nodes. Multiple 
WMEs that share the same identifier may be termed an 
“object,” and the individual WMEs sharing that identifier 
are termed “augmentations” of that object. 



Procedural memory stores the agent’s knowledge of 
when and how to perform actions, both internal, such as 
querying long-term declarative memories, and external, 
such as control of robotic actuators. Knowledge in this 
memory is represented as if-then rules. The conditions of 
rules test patterns in working memory and the actions of 
rules add and/or remove working-memory elements. Soar 
makes use of the Rete algorithm for efficient rule matching 
(Forgy 1982) and scales to large stores of procedural 
knowledge (Doorenbos 1995). However, the Rete 
algorithm is known to scale linearly with the number of 
elements in working memory, a computational issue that 
motivates maintaining a relatively small working memory. 

Soar incorporates two long-term declarative memories, 
semantic and episodic (Derbinsky and Laird 2010). 
Semantic memory stores working-memory objects, 
independent of overall working-memory connectivity 
(Derbinsky, Laird, and Smith 2010), and episodic memory 
incrementally encodes and temporally indexes snapshots of 
working memory, resulting in an autobiographical history 
of agent experience (Derbinsky and Laird 2009). Agents 
retrieve knowledge from one of these memory systems by 
constructing a symbolic cue in working memory; the 
intended memory system then interprets the cue, searches 
its store for the best matching memory, and reconstructs 
the associated knowledge in working memory. For 
episodic memory in particular, the time to reconstruct 
knowledge depends on the size of working memory at the 
time of encoding, another computational motivation for a 
concise agent state. 

Agent reasoning in Soar consists of a sequence of 
decisions, where the aim of each decision is to select and 
apply an operator in service of the agent’s goal(s). The 
primitive decision cycle consists of the following phases:  
encode perceptual input; fire rules to elaborate agent state, 
as well as propose and evaluate operators; select an 
operator; fire rules that apply the operator; and then 
process output directives and retrievals from long-term 
memory. The time to execute the decision cycle, which 
primarily depends on the speed with which the architecture 
can match rules and retrieve knowledge from episodic and 
semantic memories, determines agent reactivity. 

There are two levels of persistence for working-memory 
elements added/removed as the result of rule firing. Rules 
that fire to apply a selected operator create operator-
supported structures. These WMEs will persist in working 
memory until deliberately removed. In contrast, rules that 
do not condition upon a selected operator create 
instantiation-supported structures. These WMEs only 
persist as long as the rules that created them match. This 
distinction is relevant to managing working-memory. 

As evident in Figure 1, Soar has additional memories 
and processing modules; however, they are not pertinent to 
this paper and are not discussed further. 

Working-Memory Management 
To design and implement a mechanism that satisfied our 
desiderata, we built on a previous framework of working-
memory activation in Soar (Nuxoll, Laird, and James 
2004). The primary activation event for a working-memory 
element is the firing of a rule that tests or creates that 
WME. Additionally, when a rule first adds an element to 
working memory, the activation of the new WME is 
initialized to reflect the aggregate activation of the set of 
WMEs responsible for its creation. 

Based upon activation history, the activation level of a 
working-memory element is calculated using a variant of 
the base-level activation model (Anderson et al. 2004): 
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where n is the number of memory activations, tj is the time 
since the jth activation, and d is a free decay parameter. 
The motivation for base-level activation is to identify those 
elements that have not been used recently and/or 
frequently, which is an indication of their importance to 
reasoning (desideratum D3). For computational efficiency 
(D4), activation history size is bounded, such that each 
working-memory element maintains at most a history of 
the c most recent activations, and the activation calculation 
is supplemented by an approximation of the more distant 
past (Petrov 2006). Our model of activation sources, 
events, and decay is task-independent, thereby satisfying 
desideratum D1. 

At the end of each decision cycle, Soar removes from 
working memory each WME that satisfies all of the 
following requirements, with respect to τ, a static, 
architectural threshold parameter: 
R1. The WME was not encoded directly from perception. 
R2. The WME is operator-supported. 
R3. The activation level of the WME is less than τ. 
R4. The WME is part of an object stored in semantic 

memory. 
R5. The activation levels of all other WMEs that are part 

of the same object are less than τ. 

We adopted requirements R1-R3 from Nuxoll, Laird, 
and James (2004), whereas R4 and R5 are novel. 
Requirement R1 distinguishes between the decay of mental 
representations of perception, and any dynamics that may 
occur with actual sensors, such as refresh rate, fatigue, 
noise, or damage. Requirement R2 is a conceptual 
optimization: since operator-supported structures are 
persistent, of which instantiation-supported structures are 
entailments, if we properly manage the former, the latter 
are handled automatically. This means that if we properly 
remove operator-supported structures, any instantiation-
supported structures that depend upon them will also be 
removed, and thus our mechanism only manages operator-



supported structures. The concept of a fixed lower bound 
on activation, as defined by R3, was adopted from 
activation limits in ACT-R (Anderson, Reder, and Lebiere 
1996), and dictates that working-memory elements will 
decay in a task-independent fashion (D1) as their use for 
reasoning becomes less recent/frequent (D2). 

Requirement R4 dictates that our mechanism only 
removes knowledge from working memory that can be 
deliberately reconstructed from semantic memory. From 
the perspective of cognitive modeling, this constraint on 
decay begins to resemble a working memory that is in part 
an activated subset of long-term memory (Jonides et al. 
2008). From an agent functionality perspective, however, 
requirement R4 serves to balance the degree of working-
memory decay (D2) with support for sound reasoning 
(D3). Knowledge in Soar’s semantic memory is persistent, 
though may change over time. Depending upon the task 
and the agent’s knowledge management strategies, it is 
possible that any knowledge our mechanism removes may 
be recovered via deliberate reconstruction from semantic 
memory. Additionally, knowledge that is not in semantic 
memory can persist indefinitely to support agent reasoning. 

Requirement R5 supplements R4 by providing partial 
support for the closed-world assumption. R5 dictates that 
either all object augmentations are removed, or none. This 
policy leads to an object-oriented representation whereby 
agent knowledge can distinguish between objects that have 
been removed, and thus have no augmentations, and those 
that simply are not augmented with a particular feature or 
relation. R5 makes an explicit tradeoff between D2 and 
D3, weighting more heavily the ability of an agent to 
reason soundly, at the expense of the speed of working-
memory decay. This functionality-driven requirement leads 
to a decay policy similar to what is in the declarative 
module of ACT-R, where activation is associated with 
each chunk and not individual slot values. 

Efficient Implementation 
We now present and analyze the novel data structures and 
algorithms that we developed to efficiently support our 
mechanism. Note that the methods in this section are not 
specific to Soar, so we begin with a problem formulation. 
Problem Formulation. Let memory M be a set of 
elements, {m1, m2, …}. Let each element mi be defined as a 
set of pairs (a, k), where k refers to the number of times 
element mi was activated at time a. We assume |mi| ≤ c: the 
number of activation events for any element is bounded. 

We assume that activation of an element is computed 
according to the base-level model (Anderson et al. 2004), 
denoted as b(m, d, t), where m is an element, d is a decay 
rate parameter, and t is the current time. We define an 
element mi as decayed at time t with respect to decay rate 
parameter d and threshold parameter θ if b(mi, d, t) < θ. 

Given a static element mi, we define Li as the number of 
time steps required for mi to decay, relative to time step t: 

𝐿! ≔ inf{𝑡! ∈ ℕ: 𝑏 𝑚! ,𝑑, 𝑡 + 𝑡! < 𝜃} 
For example, element {(3, 1), (5, 2)} was activated once 

at time step three and twice at time step five. Assuming 
decay rate 0.5 and threshold -2, this element has activation 
about 0.649 at time step 7 and is not decayed (L=489). 

During a simulation time step t, the following actions 
can occur with respect to memory M: 

S1. A new element is added to M. 
S2. An existing element is removed from M. 
S3. An existing element is activated x times. 

If simulation action S3 occurs with respect to element mi, a 
new pair (t, x) is added to mi. To maintain boundedness, if 
|mi| > c, the pair with smallest a is removed from mi. 

Thus, given a memory M, the activation-based decay 
problem, after each time step in a simulation, is to identify 
and remove the subset of elements, D ⊆ M, that have 
decayed since the previous time step.  

Given this problem definition, a naïve approach is to 
determine the decay status of each element after every 
simulation time step. This test will require computation 
O(|M|), scaling linearly with the average memory size. 
Furthermore, the computation expended upon each 
element, mi, will be linear in the number of time steps 
where mi ∈ M, estimated as O(Li) for a static element mi. 
Our Approach. We draw inspiration from the work of 
Nuxoll, Laird, and James (2004): rather than checking 
memory elements for decay status, we “predict” the future 
time step when the element will decay. Thus, at the end of 
each simulation time step, we iterate across each element 
that either (S1) that wasn’t previously in the memory or 
(S3) was newly activated. For each element, we predict the 
time of future decay (discussed shortly) and add the 
element to an ordered decay map, where the map key is 
time step and the value is a set of elements predicted to 
decay at that time. If the element was already within the 
map (S3), we remove it from its old location before adding 
to its new location. All insertions/removals require time 
logarithmic in the number of distinct decay time steps, 
which is bounded by the total number of elements (|M|). 
During any time step, the set D is simply those elements in 
the list indexed by the current time step that are decayed. 

To predict element decay, we implement a novel two-
phase process. After a new activation (S3), we employ an 
approximation that is guaranteed to underestimate the true 
value of Li. If, at a future time step, we encounter the 
element in D and it has not decayed, we then determine the 
correct prediction using a binary parameter search. 

The key observation of our novel decay approximation 
is that there exists a closed-form solution to predict base-
level decay if we only consider a single time of activation 



(i.e. |mi|=1). Thus, we compute decay predictions for each 
pair of an element independently and sum them to form the 
approximate prediction. Below we derive the closed form 
solution: given a single element pair at time t, we solve for 
tp, the future time point of element decay given only a 
single activation… 
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For clarity, since k is the number of activations at the same 
time point, we can rewrite the summed terms as a product. 
Furthermore, we time shift the decay term by the 
difference between the current time step, t, and that of the 
element pair, a, thereby predicting L with respect to an 
element with only a single time of activation. 

The time required to compute the approximate 
prediction of a single pair is constant (and common values 
can be cached to reduce this effort). The overall 
approximation prediction is linear in the number of pairs, 
which, because element size is bounded by c, is O(1). The 
computation required for binary parameter search of 
element mi is O(log2Li). However, this computation is only 
necessary if the element has not decayed, or been removed 
from M, at the predicted time. 

Empirical Evaluation 
In the previous sections we discussed desiderata for an 
automatic working-memory management mechanism and 
described our mechanism in Soar. In this section we 
evaluate this mechanism according to those desiderata. We 
make two claims: our mechanism (C1) satisfies our 
desiderata and (C2) improves agent reactivity within a 
dynamic environment as compared to an agent without 
working-memory management. 

We begin with an evaluation of the mechanism on 
synthetic data, focusing on the quality and efficiency of our 
prediction approach, and then continue to a long-term task 
that requires an agent to amass and reason about large 
amounts of learned knowledge. 

Focused Mechanism Evaluation 
Our synthetic data consists of 50,000 memory elements, 
each with a randomly generated pair set.  The size of each 
element was randomly selected from between 1 and 10, the 
number of activations per pair (k) was randomly selected 
between 1 and 10, and the time of each pair (a) was 
randomly selected between 1 and 999. We verified that 
each element had a valid history with respect to time step 

1000, meaning that each element would not have decayed 
before time step 1000. Furthermore, each element 
contained a pair with at least one access at time point 999, 
which simulated a fresh activation (S3). For all synthetic 
experiments we used a decay rate, d, of 0.8 and a decay 
threshold, θ, of -1.6. Given these constraints, the greatest 
number of time steps for an element to decay is 3332. 

Our first experiment (see Figure 2) attests to the quality 
of our novel decay approximation. On the y-axis is the 
cumulative proportion of the synthetic elements and the x-
axis plots absolute temporal error of the approximation, 
where a value of 0 indicates that the approximation was 
correct, and non-zero indicates how many time steps the 
approximation under-predicted. We see that the 
approximation was correct for over 60% of the elements, 
but did underestimate over 500 time steps for 20% of the 
elements and over 1000 time steps for 1% of the elements. 
Under the constraints of this data set, it is possible for this 
approximation to underestimate up to 2084 time steps. 

The second experiment (see Figure 3) compares 
aggregate prediction time, in microseconds, between our 
approximation and exact calculation using binary 
parameter search. We see an order of magnitude 
improvement both in the maximum amount of computation 
time expended across the synthetic elements, as well as the 
average time, though both computations are fast in context 
of 50-msec. decisions. We did not compare these results 
with a naïve approach, as this experimentation would be 
dependent upon a model of memory size (|M|). 

Figure 3. Synthetic prediction approximation efficiency evaluation. 

Figure 2. Synthetic approximation quality evaluation. 



These experimental results attest to our progress towards 
satisfying desideratum D4 in isolation. It is important to 
note that our mechanism is efficient when applied to the 
activation-based decay problem, as previously formulated. 
A different set of data structures and algorithms are 
required to efficiently support the base-level activation 
model for other problems, such as memory retrieval bias 
(Derbinsky, Laird, and Smith 2010). 

Agent Evaluation 
For this evaluation, we extended an existing system where 
Soar controls a simulated mobile robot (Laird, Derbinsky, 
and Voigt 2011). Our evaluation uses a simulation instead 
of a real robot because of the practical difficulties in 
running numerous long experiments in large physical 
spaces. However, the simulation is quite accurate and the 
Soar rules (and architecture) used in the simulation are 
exactly the same as the rules used to control the real robot. 

The agent can issue output directives to move forward 
and backward and turn in place. It has a laser-range finder 
mounted in front that provides distances to 180 points 
throughout 180 degrees. The middleware between the 
simulator and Soar condenses those points to 5 regions that 
are sufficient for the agent to navigate and avoid obstacles. 
We supplement real sensors with virtual sensors, such that 
the robot can sense its own location, the room it is in, the 
location of doors and walls, and different types of objects. 
In sum, agent perception includes approximately 150 
sensory data elements, with approximately 20 changing 
each decision cycle. The changes peak at 260 per cycle 
when the robot moves into a room because all the data 
about the current rooms, walls, and doorways change at 
once. Based upon prior experience in applying Soar to 
numerous and varied domains, including action games, 
large-scale tactical simulation, and interactive mobile 
phone applications, we contend that this domain is 
sufficiently dynamic to evaluate claim C2. 

The agent’s task within this environment is to visit every 
room on the third floor of the Computer Science and 
Engineering (CSE) building at the University of Michigan. 
This task requires the agent to visit over 100 rooms and 
requires about 1 hour of real time. During its exploration it 
incrementally builds up an internal map, which when 
completed, requires over 10,000 working-memory 
elements to represent and store. We contend that this map 
constitutes a relatively large amount of learned knowledge 
(C2), as well as a baseline by which to evaluate claim C1, 
with respect to desideratum D2. In addition to storing 
topographic information, the agent must also reason about 
and plan using the map in order to find efficient paths for 
moving to distant rooms it has sensed but not visited. We 
contend that understanding how this reasoning scales 
computationally as the agent amasses more and more map 

information provides an indication as to relative agent 
reactivity, a core component of claim C2. 
Evaluation Metrics. In order to evaluate desideratum D2, 
we measure working-memory size over the course of the 
task. In order to evaluate desideratum D4 and claim C2, we 
measure the maximum process time required to complete a 
primitive Soar decision cycle, a direct measure of agent 
reactivity. We deliberately chose this metric instead of 
average or total time, both of which can mask computation 
“surges” during the task. We compare maximum process 
time to 50 msec., a response time we have found as 
sufficient for real-time reactivity in multiple domains.  

We aggregate these metrics for each 10 seconds of 
experimentation, all of which is performed on an Intel i7 
2.8GHz CPU with 8GB of memory, running Soar 9.3.1 on 
the Windows 7 operating system. Soar is open source and 
freely available to download on all major platforms at 
[http://sitemaker.umich.edu/soar]. We did not duplicate our 
experiments sufficiently to establish statistical significance 
and the results we present are from individual experimental 
runs. However, we found qualitative consistency across 
our runs, such that the variance between runs is small as 
compared to the trends we focus on below. 
Experimental Conditions. We make use of the same 
agent for all of our experiments (Laird, Derbinsky, Voigt 
2011). In order to evaluate our claims, however, we modify 
small amounts of task knowledge, represented in rules, and 
change architectural parameters, as described below. 

The first experimental condition compares alternative 
approaches to maintaining declarative map information. 
The baseline agent, which we term A0, maintains all 
declarative map information in both Soar’s working and 
semantic memories. A slight modification to this baseline, 
A1, includes hand-coded rules to prune away rooms in 
working memory that are not required for immediate 
reasoning or planning. A second modification of the 
baseline, A2, makes use of our working-memory 
management mechanism. Both agents A1 and A2 contain 
identical task knowledge to reconstruct from semantic 
memory any WMEs that are needed for immediate 
reasoning. Comparing the working-memory sizes of agents 
A1 and A2 allows us to evaluate D2, while comparing 
decision cycle time of A0 and A2 allows us to evaluate C2. 
We also experiment with different values of d, the base-
level activation decay rate parameter, to understand the 
tradeoffs involved in a more/less aggressive policy for 
task-independently pruning working memory, which better 
informs both claims C1 and C2. For all experiments, we 
use τ = -2 as the threshold and we do not use the base-level 
tail approximation (Petrov 2006), but instead compute 
activation using a bounded activation history of size c=10. 

The second experimental condition relates to how our 
mechanism affects agent reactivity (C2) with respect to 



episodic memory retrievals. Episodic memory is disabled 
for all experiments above, and so we make two changes for 
this series of experiments. First, we set an architectural 
parameter such that episodic memory automatically 
encodes episodes each time the agent issues an 
environmental directive, such as changing direction. 
Second, we add task knowledge to retrieve episodes related 
to, but not incorporated in, task reasoning. Specifically, 
whenever the agent reaches a new doorway, it recalls the 
last room it visited. While episodic memory is not actively 
used for the exploration task in this paper, the same agent 
we are utilizing contends with more complex tasks, 
including patrolling and building clearing, which do make 
use of episodic retrievals, so this analysis informs C2. We 
hypothesized that a more aggressive working-memory 
management policy would lead to faster episodic 
reconstructions and thus implemented a parallel 
experimental setup to those above: E0 has no working-
memory management; E1 uses task knowledge, in rules, to 
manage working memory; and E2, with a set of decay 
rates, uses our automatic mechanism. 
Results. The first set of results (see Figure 4) compares 
working-memory size between conditions A0, A1, and A2. 
We note first the major difference in working-memory size 
between A0 and A1 at the completion of the simulation, 
when the working memory of A1 contains more than 
11,000 fewer elements, more than 90% less than A0. We 
also notice that the greater the decay rate parameter for A2 
(indicated by “DR”), the smaller the working-memory size, 
where a value of 0.5 qualitatively tracks A1. This finding 
suggests that our mechanism, with an appropriate decay 
rate, keeps working-memory at a size comparable to that 
maintained by a hand-coded approach in this task (D2). 

While collecting these data, we also compared 
maximum decision cycle time between conditions A0, A1, 
and A2 as the simulation progressed. Without any form of 
working-memory management, processing time for A0 
increased linearly, as we would expect from an architecture 
using a Rete-based algorithm for rule matching, but was 

less than 8.6 msec. after one hour, far below the reactivity 
threshold of 50 msec. By comparison, A1, despite 
increased rule firing from hand-coded rules, maintained a 
fairly constant maximum decision time of less than 3.3 
msec. A2 results depended upon the decay rate, where 
lower values (less aggressive management) qualitatively 
tracked A0, and higher values (more aggressive 
management) tracked A1. For instance, applying a decay 
rate of 0.3 resulted in a linear trend, reaching 8.9 msec. 
after one hour, performing worse in absolute computation 
time as compared to A0, likely due to extra activation-
related processing. However, a decay rate of 0.5 exhibited 
a relatively constant maximum processing time of less than 
3.5 msec., also incurring some extra processing cost, as 
compared to A1, from activation-related computation. 
These results suggest that our mechanism, with an 
appropriate decay rate, has the potential to improve agent 
reactivity, as related to rule matching, compared to an 
agent without working-memory management (C2), while 
incurring relatively small computational overhead. 

The second set of results (see Figure 5) includes the cost 
of episodic retrievals and compares maximum decision 
cycle time, measured in msec., between conditions E0, E1, 
and E2 as the simulation progresses. As hypothesized, we 
see a growing difference in time between E0 and E2 as 
working memory is more aggressively managed (i.e. 
greater decay rate), demonstrating that episodic 
reconstruction, which scales with the size of working 
memory at the time of episodic encoding, benefits from 
working-memory management (C2). We also see that with 
a decay rate of 0.5, our automatic mechanism performs 
comparably to A1: since costs in these data are dominated 
by episodic retrievals, as compared to rule matching, extra 
activation-related processing is relatively inconsequential, 
and so the results are indistinguishable in the figure. We 
note that without sufficient working-memory management 
(E0; E2 with decay rate 0.3), episodic memory retrievals 
are not tenable for an agent that must reason with this 
amount of acquired information, as the maximum required 

Figure 5. Agent maximum decision time comparison with episodic 
memory retrievals. 

Figure 4. Agent working-memory size comparison. 



processing time exceeds the reactivity threshold of 50msec. 

Discussion 
In this paper, we demonstrated that an automatic 
mechanism to manage working-memory elements in Soar 
serves an important functional purpose: scaling reactivity 
for agents that must reason about large stores of acquired 
information. While it always has been possible to write 
rules to prune Soar’s working memory, this approach 
required task-specific knowledge that was difficult to 
encode, problematic for the agent to learn, and interrupted 
deliberate agent processing. In this work, we proposed and 
presented an evaluation of a novel approach that pushes 
this functionality into the architecture: our mechanism 
takes advantage of multiple memory systems in a manner 
that, empirically, comparably improves agent reactivity 
without incurring undue computational cost nor loss to 
reasoning soundness. This is the first work that 
architecturally exploits activation-based working-memory 
management, in conjunction with multiple memory 
systems, in order to support long-lived, learning agents. 

There are several limitations of this paper that should be 
addressed in future work. First, we have only investigated 
a single decay model, base-level activation. There is prior 
analytical and empirical work to support the efficacy of 
this model in context of cognitive modeling, but further 
evaluation should consider additional models, especially 
those that may more directly measure the usefulness of 
working-memory elements to current agent reasoning. 
Also, we evaluated a single task in a single domain, where 
base-level activation-based working-memory management 
was well suited to capture the regularities of spatial locality 
within a topographic map. Finally, this work should be 
extended to cognitive systems other than Soar, an 
exploration for which we have described efficient methods. 
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