
 
A Multi-Domain Evaluation of Scaling in a General Episodic Memory 

Nate Derbinsky and Justin Li and John E. Laird 
University of Michigan 

2260 Hayward St. 
Ann Arbor, MI 48109-2121 

{nlderbin, justinnh, laird}@umich.edu 
 
 
 

Abstract 
Episodic memory endows agents with numerous general 
cognitive capabilities, such as action modeling and virtual 
sensing. However, for long-lived agents, there are numerous 
unexplored computational challenges in supporting useful 
episodic-memory functions while maintaining real-time 
reactivity. In this paper, we review the implementation of 
episodic memory in Soar and present an expansive 
evaluation of that system. We demonstrate useful 
applications of episodic memory across a variety of 
domains, including games, mobile robotics, planning, and 
linguistics. In these domains, we characterize properties of 
environments, tasks, and episodic cues that affect 
performance, and evaluate the ability of Soar’s episodic 
memory to support hours to days of real-time operation. 

 Introduction   
Prior work has shown that agents with episodic memory, a 
task-independent autobiographical store of experience 
(Tulving 1983), are more capable in problem solving, both 
individually (e.g. Nuxoll and Laird 2012) and 
collaboratively (e.g. Deutsch et al. 2008; Macedo and 
Cardoso 2004); are better able to account for human 
psychological phenomena, such as memory blending 
(Brom, Burkert, and Kadlec 2010) and emotional appraisal 
(Gomes, Martinho, and Paiva 2011); and are more 
believable as virtual characters (Gomes, Martinho, and 
Paiva 2011) and long-term companions (Lim et al. 2011). 

 However, relatively little research has examined the 
computational challenges associated with maintaining 
effective and efficient access to episodic experience as 
autonomous agents persist for long periods of time. Most 
approaches to storing and retrieving episodic knowledge 
are task-specific (e.g. Macedo and Cardoso 2004) and/or 
apply to temporally limited problems (e.g. Kuppuswamy, 
Cho, and Kim 2006). However, for autonomous agents that 
persist for long periods of time, we need to understand how 
episodic memory scales across a variety of tasks. 
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Research into the task-independent episodic memory 
that is part of Soar (Laird 2012) has focused on issues 
related to its architectural integration (Nuxoll and Laird 
2012); demonstrations of the functional benefits for agents 
(Nuxoll and Laird 2012; Xu and Laird 2010); as well as 
real-time performance analysis, as evaluated for hours of 
operation in an action game (Derbinsky and Laird 2009) 
and simulated mobile robotics (Laird, Derbinsky, and 
Voigt 2011). This paper builds upon and extends this body 
of work with a focus on scaling. We subsume and expand 
prior evaluations along all pertinent dimensions: (i) we 
increase the number and diversity of problem domains, 
spanning video games, simulated mobile robotics, 
generalized planning, and linguistics; (ii) we extend agent 
runtime duration to days; and (iii) we exemplify new 
cognitive capabilities that agents can apply across domains 
by virtue of having an episode memory. Our results show 
that this mechanism supports useful memory operation 
across a variety of domains, while maintaining real-time 
behavior for agents that persist for days, accruing millions 
of episodes. We also analyze how general properties of 
environments, tasks, and retrieval cues affect mechanism 
efficiency, including cases when it does not scale. 

Related Work 
There have been limited evaluations of scaling of other 
episodic memories. For instance, Ubibot (Kuppuswamy, 
Cho, and Kim 2006) was tasked in a single 2D simulation 
that lasted 7 min. with fewer than 50 episodic memories.  

Tecuci and Porter (2007; 2009) applied EM, the generic 
memory module for events, to planning, plan recognition, 
classification, and goal-schema recognition tasks in several 
domains. They presented evidence that in practice, their 
retrieval mechanism inspects far fewer events than are 
stored. However, their memory API is intended solely for 
events and must be specialized for each new domain. Also, 
they have not published retrieval-timing data, and thus it is 
unclear whether EM is applicable to real-time agents. 

The case-based reasoning (CBR; Kolodner 1993) 
community studies issues closely related to episodic-



memory research, including the use of past experience with 
present reasoning and learning, as well as scaling to large 
case libraries (Smyth and Cunningham 1996). However, 
most CBR systems optimize performance for a specific 
task, and specialize case format, storage, retrieval, and 
adaptation. By contrast, this paper focuses on a task-
independent mechanism applied in a variety of domains. 

Episodic Memory in Soar 
Soar is a cognitive architecture that has been used for 
developing intelligent agents and modeling human 
cognition (Laird 2012). We first describe pertinent 
architectural mechanisms and processes, and then convey 
how episodic memory is efficiently integrated. 

The Soar Cognitive Architecture 
In Soar, the agent’s current state is represented in a 
symbolic, short-term working memory. It is here that 
perception, goals, retrievals from long-term memory 
(including episodic), external action directives, and 
structures from intermediate reasoning are jointly 
represented as a connected, directed graph – an encoding 
that is sufficiently expressive for a wide variety of tasks. 
Procedural long-term memory holds the agent’s 
knowledge of when and how to perform actions, both 
internal, such as querying long-term memories, and 
external, such as initiating robotic actuators or virtual game 
character actions. Procedural knowledge is represented as 
if-then rules: the conditions test patterns in working 
memory and the actions add and/or remove working-
memory structures. Agents retrieve knowledge from either 
of the declarative long-term memories (semantic and 
episodic) by constructing a cue in working memory; the 
intended long-term memory interprets the cue, searches its 
store for the “best” match, and reconstructs the associated 
knowledge in working memory. Soar has other memories 
and processing mechanisms; however, they are not 
pertinent to this paper and are not discussed further. 

Agent reasoning in Soar consists of a sequence of 
decision cycles to select operators, which perform actions 
in service of the agent’s goal(s). The time to execute the 
decision cycle, which, in practice, primarily depends on the 
speed with which the architecture can retrieve knowledge 
from long-term memory, determines agent reactivity. Thus, 
the degree to which long-term memory operations can 
scale to large amounts of knowledge over long lifetimes 
directly affects the ability of the agent to act in real time. 

Episodic Memory 
This section summarizes the functional commitments 
(Nuxoll and Laird 2012) of Soar’s episodic memory, as 
well as its implementation (Derbinsky and Laird 2009). 

Functional Integration 
Episodic memory comprises three phases: (1) encoding 
agent state; (2) storing this information as episodic 
knowledge; and (3) supporting retrieval at a later time. 

During each decision cycle, Soar’s episodic memory 
automatically encodes the contents of working memory as 
a connected di-graph. This information, as well as the time 
of encoding, is stored in episodic memory, where it 
remains without modification for the lifetime of the agent.  

To retrieve an episode, rules fire to construct an episodic 
cue: a directed, connected, acyclic graph that specifies 
task-relevant relations and features. The cue-matching 
process identifies the “best” matching episode, defined as 
the most recent episode that has the greatest number of 
structures in common with cue leaf nodes. Episodic 
memory then reconstructs this episode in working memory. 

This formulation of cue matching commits to two 
algorithmic properties that affect scaling. The process 
returns an episode if one exists that contains at least one 
feature in common with a cue leaf node. The mechanism 
also returns the “best” episode with respect to cue 
structure, leaf nodes, and temporal recency. Given these 
commitments, in the worst case, the encoding, storage, and 
retrieval operations scale at least linearly with the number 
of state changes. The implementation takes advantage of 
regularities in state representations and dynamics to reduce 
the frequency of this worst case. 
Efficient Implementation 
Soar’s episodic memory exploits two assumptions about 
agent state, both of which relate to those that have been 
successfully applied in the rule-matching literature. The 
first is temporal contiguity: the world changes slowly, and 
thus changes to agent state, from episode-to-episode, will 
be few relative to the overall size of state. The second is 
structural regularity: for agent knowledge to generalize, it 
must reuse representational structure, and thus, over time, 
the number of distinct structures will be much smaller than 
the total number of experienced structures. 

Episodic encoding and storage draw directly from these 
assumptions. Soar represents episodic knowledge in two 
data structures: (1) a global structure index, termed the 
Working Memory Graph (WMG), which captures all 
distinct graph structures that have been encoded, and (2) a 
set of temporal intervals that capture when each edge of the 
WMG was added to/removed from working memory. 
These data structures comprise a dynamic-graph index. 

Cue matching is a constrained form of sub-graph 
isomorphism: to score an episode, the mechanism must 
compare two rooted, directed, connected graphs (where the 
cue is acyclic). To avoid this potentially combinatorial 
comparison, Soar’s implementation utilizes a two-phase 
matching process (Forbus, Gentner, and Law 1995): a 
relatively cheap surface match identifies, in reverse 



temporal order, each episode that contains all cue leaf 
nodes independently and submits it to a more expensive 
structure match. Structural unification is implemented as 
graph matching with standard heuristics (e.g. MCV). The 
surface matcher, however, attempts to exploit the 
aforementioned assumptions and indexing. 

First, the WMG indexes to only those temporal intervals 
that refer to cue features. The endpoints of these intervals 
are then walked in order of decreasing recency to identify 
and evaluate only those episodes during which pertinent 
features changed: temporal contiguity predicts that existing 
structures will tend to persist, and thus examining structure 
changes should require much less effort than examining 
individual episodes. This process scales with the temporal 
selectivity of the cue: in the worst case it must examine all 
episodes sharing features with the cue, which may be all 
episodes in the store, but it may be a much smaller 
proportion. This endpoint-walking process terminates 
when an episode unifies structurally. 

Surface match, with respect to a cue, can be formulated 
as computing satisfaction of a disjunctive-normal-form 
(DNF) Boolean statement, where variables map to cue 
nodes, clauses map to root-to-leaf paths, and literals map to 
feature existence within episodes. In order to efficiently 
evaluate DNF satisfaction between discrete graph changes, 
a discrimination network, termed the DNF Graph, is used 
to maintain state between episode evaluations, and 
selectively propagate changes in the cue, similar to a Rete 
network (Forgy 1982). Given a DNF Graph and a feature 
change, evaluating an episode scales with the structural 
selectivity of the feature: in the worst case it must examine 
all structures in the episode that could map to the feature in 
the cue, which may be the size of the episode, or any 
fraction thereof. 

Once the cue-matching process selects an episode to 
retrieve, the system uses a relational interval tree (Kriegel, 
Pötke, and Seidl 2000) to efficiently extract all features and 
relations of the episode from the dynamic-graph index. 

Empirical Evaluation 
Our goal is to understand the degree to which Soar’s 
episodic memory supports useful operation across a variety 
of domains while scaling to long agent lifetimes. 

Evaluation Metrics 
In order to evaluate episodic-memory scaling, we measure 
two classes of computational-resource usage during agent 
runs: execution time and storage requirements.  

The time it takes for Soar to complete a decision cycle 
dictates the rate at which it can respond to environmental 
change, and is thus a direct measure of agent reactivity. We 
instrumented Soar to directly measure time required for 
encoding/storing episodes, as well as performing cue 

matching (i.e. the time for retrieval, without reconstructing 
episodes in Soar’s working memory). We report maximum 
time: whereas average time can mask momentary 
computation “surges,” the maximum captures the agent’s 
ability to respond under algorithmically stressful 
circumstances. We compare this metric to a reactivity 
threshold of 50 msec., a response time that is sufficient for 
real-time control in games, robotics, and HCI tasks. 

Since memory becomes an important factor for long 
runs of agents, we measure the amount of memory used by 
episodic memory. We also relate this measure to the 
average size of and changes to working memory. 

To reliably measure cue-matching timing data, we 
instrumented Soar v9.3.1 [http://sitemaker.umich.edu/soar] 
to perform this operation 100 times for each cue at regular 
intervals across the lifetime of the agent. Storage timing 
data, however, only captures a single operation, and is thus 
noisier and we can only extract qualitative trends. All 
experiments were performed on a Xeon L5520 2.26GHz 
CPU with 48GB RAM running 64-bit Ubuntu v10.10. 

Evaluated Capabilities 
For each evaluation domain, we developed a specialized 
set of cues that implemented a set of cognitive capabilities, 
or high-level functionalities supported by episodic memory 
(Nuxoll and Laird 2012). The following are the full set of 
capabilities that we include in this evaluation: 
Virtual Sensing. An agent retrieves past episodes that 
include sensory information beyond its current perceptual 
range that are relevant to the current task. 
Detecting Repetition. An agent retrieves past episodes 
that are identical (or close to identical), possibly indicating 
a lack of progress towards goal(s). 
Action Modeling. An agent retrieves an episode of 
performing an action and compares that episode to one or 
more episodes that followed to model action consequences. 
Environmental Modeling. An agent retrieves an episode 
and compares that episode to episodes that followed to 
model world dynamics, independent of its own actions. 
Explaining Behavior. An agent replays episodes of its 
behavior to explain its behavior to itself or others. 
Managing Long-Term Goals. An agent retrieves goals 
that were initiated in the past but are not currently active, 
to determine if they should be active in the current context. 
Predicting Success/Failure. An agent replays episodes to 
estimate the value of an action with respect to task goals. 

Empirical Results 
For each evaluation domain, we describe the properties of 
the task and agent, related work, the set of cues developed 
for the task, and empirical results. 



Word Sense Disambiguation 
An important problem for any agent that uses natural 
language is word sense disambiguation (WSD) – the task 
of determining the meaning of words in context. We 
extend prior work that explored the degree to which 
memory-retrieval bias was beneficial in WSD (Derbinsky 
and Laird 2011). In this formulation, the agent perceives a 
<lexical word, part-of-speech> pair, such as <“say”, verb>, 
and, after attempting to disambiguate the word, the agent 
receives all word meanings that were appropriate in that 
context. To measure the benefit of memory in this task, the 
agent perceives the corpus, in order, numerous times, and 
is evaluated on learning speed and accuracy. 

For this task, we implemented an agent that represents 
the last n lexical-word inputs as an n-gram. The agent then 
uses a sequence of episodic cognitive capabilities to form a 
disambiguation: first, it cues episodic memory to detect a 
repeated situation (e.g. “when did I last perceive the 3-
gram {Friday, say, group}?”); it then retrieves the next 
episode, forming an environmental model of feedback (e.g. 
“what happened when I replied ‘express a supposition’?”); 
and then disambiguates using this prior information, 
predicting future success based upon prior experience. 

We evaluated the agent using SemCor (Miller et al. 
1993), the largest and most widely used sense-tagged 
corpus. During its first exposure to the corpus, the agent 
can disambiguate 14.57% of words using a 2-gram 
representation, and 2.32% using 3-grams. In the next 
exposure, these performance levels improve to 92.82% and 
99.47%, respectively. These results show the benefit of 
flexible access to a high-fidelity store of experience. 

This domain is small, on average requiring 234 bytes of 
memory to store the working-memory changes in each 
episode. However, as with all natural-language texts, there 
are some words that appear more often than others in 
SemCor, and so this task exemplifies the effects of 
temporal selectivity and cue-feature co-occurrence. 

To evaluate scaling, we selected two 3-word phrases 
from the corpus and used a set of cues that represented all 
1-, 2-, and 3-gram contexts for these phrases (11 cues total, 
as one word was common; see Table 1). We ran the agent 

five times across SemCor (4.6M episodes). We measured 
the storage and retrieval performance every 50K episodes. 

All operations met our reactivity criteria (<50 msec.). 
Maximum storage time was essentially constant, with a 
maximum of 0.5 msec. The maximum query time, across 
all 11 cues, was 22.05 msec. We regressed a model that 
predicts cue-matching time in msec., as a linear factor of 
the number of interval endpoints walked (r2>0.999): 
0.0024x + 0.0647. This model predicts that retrieval time, 
in this task, is dependent almost exclusively on interval 
walking; we estimate scaling by computing the number of 
endpoints walked when the function value equals 50 msec. 
(20,806). If we assume one word per episode, Soar’s 
episodic memory can perform cue matching that examines 
11.23% of SemCor (total = 185,269 words). We now 
examine how this scaling limit compares to the space of 
possible cues, and the evaluation cues we used in this task. 

In SemCor, only two words occur more frequently than 
in 1% of inputs: “be” (4.53%) and “person” (3.61%). Thus, 
Soar’s episodic memory can reactively respond to any 
individual feature as a cue. However, as cue size increases, 
the number of potential endpoints to walk increases 
additively with each word, while co-occurrence frequency, 
the number of times the n-gram occurs within the corpus, 
can only stay constant or decrease. For instance, consider 
the following two phrases used for our cue evaluation: 
{Friday, say, group} and {well, be, say}. The endpoint and 
co-occurrence frequency data of all 1-, 2, and 3-grams of 
these phrases is in Table 1, where the final column is 
(endpoints/occurrence) divided by the size of SemCor, 
estimating the proportion likely to be examined for each 
cue (assuming uniform distribution of occurrence). For 1-
grams, Soar achieves constant-time cue matching, 
independent of this data, since it concludes cue matching 
after the first match. For those n-grams with a co-
occurrence of 1, cue-matching time exhibits saw-tooth 
patterns, where peaks are once-per-corpus exposure, since 
the number of endpoints to examine increases until the n-
gram is re-encountered. For non-zero co-occurrence, we 
see more frequent, non-uniform heights in the data, as the 
n-grams are encountered through the corpus. Soar’s 
episodic memory can perform this task reactively for 1-
grams, 2-grams, and 3-grams, as SemCor proportion for all 
cues of these lengths is below 11.23%. However, of the 
more than 184,000 distinct 4-grams in this corpus, there 
are 368 that examine more than 11.23% of SemCor, and 
thus a 4-gram is the scaling limit. 
Generalized Planning 
In WSD, temporal selectivity of cues was the primary 
factor affecting performance, whereas cue size and 
structure had little effect. To evaluate cue complexity, we 
extended prior work that used episodic memory as a source 
of action-modeling knowledge for planning (Xu and Laird 

Table 1. WSD: occurrence and cue endpoints for SemCor. 
n-Gram Occurrence Endpoints Proportion 
{group} 1,333 1,333 ~ 0% 

{say} 1,005 1,005 ~ 0% 
{Friday} 0,018 0,018 ~ 0% 
{well} 0,150 0,150 ~ 0% 
{be} 8,400 8,400 ~ 0% 

{say, group} 0,006 2,338 0.21% 
{Friday, say} 0,001 1,023 0.55% 

{Friday, say, group} 0,001 2,356 1.27% 
{be, say} 0,069 9,405 0.07% 
{well, be} 0,027 8,550 0.17% 

{well, be, say} 0,001 9,555 5.16% 



2010). In this evaluation, we used 12 planning domains, 
common in competitions (Logistics, Blocksworld, Eight-
puzzle, Grid, Gripper, Hanoi, Maze, Mine-Eater, Miconic, 
Mystery, Rockets and Taxi) and made 44 problem instances 
by varying domain parameters (e.g. number of blocks in 
Blocksworld). The agent’s state captures a set of objects 
and relations, and the agent has rules that encode the 
actions it can take. At each episode, the agent randomly 
selects an action, exploring the state space over time. 

Our first experiment explored whether episodic memory 
could detect repeated states. For each problem instance, 
we extracted a random problem state as our evaluation cue. 
We then ran the agent for 50K episodes, and measured 
performance every 1K episodes as it explored the state 
space. This experiment evaluates Soar’s episodic memory 
while stressing the dimension of structural selectivity: in 
these domains, the cue is relatively large and the agent 
state is structurally homogenous, and thus cues match 
multiple structures in most other episodes. 

Soar’s episodic memory reactively stored episodes in all 
problem instances (maximum < 12.04 msec.). Memory 
consumption in each domain was strongly correlated with 
the number of working-memory changes (r2=0.86): storage 
ranged from 562 bytes per episode to 5454, averaging 
1741. Using the full 48GB of RAM on our evaluation 
computer, we could thus store between 9 and 91 million 
episodes, with more than 29M on average. In summary, 
storage is not a scaling concern in this set of domains. 

Of the 44 problem instances, there were 12 in which cue 
matching remained reactive for the full 50K episodes, all 
of which were instances of the Miconic, Maze, Hanoi, and 
Gripper domains. These problem instances did not exhibit 
growth in their cue-matching time, while the remaining 
problem instances grew rapidly and became unreactive in 
fewer than 10k episodes. When we explored the data for 
explanatory factors, we found that retrieval time within 
each domain strongly correlated with the number of 
episodes searched and working-memory size (r2=0.85). 
The 12 problem instances that did scale have the smallest 
average working-memory sizes, as well as relatively small 
state search spaces (yielding small, bounded interval 
searches). The remaining instances were either too 
structurally unselective, too temporally unselective (due to 
a large state space), or both. These results characterize an 
upper bound in cue complexity for reactive retrievals. 

Our second experiment explored whether episodic 
memory could be used to detect analogous states. We used 
the same setup as in the previous experiment, but removed 
all grounded features in the evaluation cues. However, this 
had the effect of making the cues less structurally selective 
(i.e. each cue feature could match more structures when 
compared to an episode). As a result, Soar’s episodic 
memory could not scale on any problem instance, 
primarily due to frequent and expensive structural 

matching. These findings suggest that Soar’s episodic 
memory is not appropriate for direct analogical mapping. 

Our final experiment explored whether episodic memory 
could be used to detect analogous states if the agent had 
knowledge of important schemas at the time of encoding. 
This experiment relates to prior work showing that experts 
are able to encode memories that can be relationally 
retrieved (Gentner et al. 2009). We encoded the cues from 
our second experiment, those without grounded features, as 
rules that would place a flag in working memory whenever 
the pattern appeared, a feature episodic memory would 
automatically encode and could be queried for directly. 
Soar’s episodic memory could scale to 50K episodes in all 
problem instances given this task formulation (max. < 0.08 
msec.), suggesting agents can perform limited analogical 
reasoning over large stores of prior experience, while 
remaining reactive, by joining task-dependent recognition 
knowledge with a task-independent episodic memory. 
Video Games & Mobile Robotics 
The previous evaluations focused on specific aspects of 
episodic-retrieval cues: WSD stressed temporal selectivity, 
while the planning domains stressed structural complexity. 
We found that Soar’s episodic memory has scaling limits 
that depend on domain structure and dynamics, knowledge 
representation, and cues. Here we examine the degree to 
which these limitations apply to domains in which agent 
actions impact its future perceptions of the world. We 
describe the domains, and then present combined results. 
TankSoar. TankSoar is a video game that has been used in 
evaluating numerous aspects of Soar, including episodic 
memory (Derbinsky and Laird 2009; Nuxoll and Laird 
2012). In TankSoar, the agent controls a tank and moves in 
a discrete 15x15 maze. The agent has numerous sensors, 
including path blockage and radar feedback, and it can 
perform actions that include turning, moving, and 
controlling its radar. The agent we use, mapping-bot, 
explores the world and populates an internal map, stored in 
working memory, which averages 2734 structures. 

This task is interesting for episodic-memory evaluation 
due to a large working memory with relatively few 
changes (~23 per decision). However, most perceptual 
structures change frequently and many are highly selective, 
both temporally and structurally. 

We used 15 cues in TankSoar, many developed in prior 
work (Derbinsky and Laird 2009). These cues 
implemented virtual-sensing, detecting-repetition, and 
action-modeling capabilities. For example: 
1. “When did I last sense a missile pack on my radar?” 
2. “When was I last at this (x, y) position on my map?” 
3. “What happened last time I rotated left and turned on my 

radar while I was blocked in the forward direction?” 
Cues that referred to a map cell (e.g. #2) were structurally 
unselective, as they could refer to any of the 225 entries. 



The temporal selectivity of cues relating to perceptual 
structures was typically reduced as the cue size increased, 
due to non-overlap in feature co-occurrence (e.g. in #1 
there were episodes when the agent used the radar, but did 
not sense a missile pack). We ran mapping-bot for 3.5M 
episodes, which is >48-hours of simulated real-time (SRT: 
50 msec./episode), and measured performance every 50K. 
Eaters. Eaters has also been used in previous episodic-
memory evaluations. Eaters is a video game, similar to 
PAC-MAN, where the agent controls an “eater,” which 
moves through a 15x15 grid-world, eating different types 
of food. The agent senses a 2-cell radius, and can move in 
any of the four cardinal directions. The agent we use, 
advanced-move, prioritizes movement based on food types. 

This task is interesting as a contrast to TankSoar. The 
agent’s working-memory size is drastically smaller (230 
structures), but changes are comparable (~19 per decision). 
We used 7 cues that exemplified virtual sensing, detecting 
repetition, action modeling, and explaining behavior. For 
instance: “What happened the last time there was normal 
food to the east of me and bonus food to the west of me?” 
Examining the episode following this retrieval supports the 
agent explaining its own preferences regarding the relative 
desirability of these food types, informing predictions of its 
own future decisions. The agent state is sufficiently simple 
such that no evaluation cue was unselective, either 
structurally or temporally. We ran advanced-move for 
3.5M episodes (>48 hours, SRT) and measured every 50K. 
Infinite Mario. Infinite Mario is a video game used in the 
2009 Reinforcement-Learning (RL) Competition and is 
based on Super Mario. The allocentric visual scene 
comprises a two-dimensional matrix (16x22) of tiles and 
the agent can take actions that include moving, jumping, 
and increasing speed. We use an agent that applies an 
object-oriented representation and hierarchical RL to 
quickly improve performance in the task (Mohan and Laird 
2011) and collect data on game level 0. 

Several aspects of this game are interesting for 
evaluation. The working memory is large (~2000) and 
contains a variety of representational patterns, including 
flat features that are both symbolic (e.g. Mario is “small,” 
“big,” or “fiery”) and real-valued (e.g. distance to 
enemies); hyper-edges (e.g. rows in the visual scene); and 
relational structures (e.g. relating hierarchical state 
representations to perception). Also, due to side-scrolling, 

a relatively large percentage of the visual scene in changes 
between episodes (avg. 73), stressing temporal contiguity. 

We evaluated 14 virtual-sensing and action-modeling 
cues. For example, the following cue combines perceptual 
features with those derived from task knowledge: “What 
did I do when last I encountered a winged, downward-
flying ‘Goomba’ that was a threat?” Cues that virtually 
sensed visual-scene cells were structurally unselective. We 
ran the agent for 3.5M episodes (>48 hours, SRT) and 
measured performance every 50K. 
Mobile Robotics. For this evaluation, we used an existing 
mobile-robotics platform that has been applied to 
simulation and physical hardware (Laird, Derbinsky, and 
Voigt 2011). The agent perceives both physical perception 
data, including real-valued abstractions of laser range-
finder data, as well as symbolic representations of objects, 
rooms, and doorways. The task is to explore a building 
with 100 offices, and then execute a fixed-patrol pattern. 
While performing these tasks, the agent builds an internal 
map, which it uses for path planning and navigation. The 
average working-memory size is 1235, with 2 changes. 

We evaluated 6 cues for virtual sensing and goal 
management. Consider the following cue: “When was my 
desired destination doorway #5?” The agent could examine 
episodes that followed to recall progress made towards that 
goal. However, as the agent accumulated more distinct 
goals, this cue became less temporally selective. We did 
not evaluate any structurally unselective cues in this task. 
We ran the agent in simulation for 12 hours of real time, 
measuring performance every 300K episodes (~2 min.). 
Results. The left half of Table 2 presents storage results, 
grouped by domain. Soar stored episodes in less than 50 
msec. for all domains except Infinite Mario, where 
infrequent spikes in perceptual changes, caused by Mario 
dying and restarting the level, defied the temporal-
contiguity assumption. The storage cost across domains 
correlated with working-memory changes (r2>0.93). 

The right half of Table 2 presents cue-matching results, 
grouped by domain and cue selectivity (temporal or 
structural). Soar maintained reactivity across all domains. 
With one exception, retrieval time did not meaningfully 
increase with time. The growth rate for goal management 
in mobile robotics (see Figure 1) depended upon the 
properties of the robot’s mission: when behavior shifted 
from exploration to patrol (~10M episodes), new goal 

Table 2. Empirical results for video games and mobile robotics. 
 Storage  Cue Matching (Max. Time in msec.) 
 Max. Time (msec)  Avg. Bytes/Episode  High Selectivity  Low Selectivity 
TankSoar 18.66  1,035  4.77  18.31 
Eaters 01.39  0,813  0.71  - 
Infinite Mario 55.01  2,646  1.66  40.43 
Mobile Robotics 03.17  0,113  0.75  27.50 
 



locations were encoded less frequently, and temporal 
selectivity decreased at a smaller rate. At its original rate, 
cue-matching time would grow beyond 50 msec. after 34M 
episodes; afterwards it would last nearly 634M (>3 days). 

Discussion 
Our goal in this paper was to evaluate the degree to which 
Soar’s episodic memory supports useful operation across a 
variety of domains while scaling to long agent lifetimes. 
We presented evidence that in linguistics, planning, video 
games, and mobile robotics, it supports many useful 
capabilities while maintaining reactivity. However, we 
have also shown that the functional commitments of Soar’s 
episodic memory lead to a mechanism that is not immune 
to properties of domains and cues. For example, the WSD 
and mobile-robotics domains illustrate how the temporal 
selectivity and co-occurrence of cue features can lead to 
searches that scale linearly with time. Also, attempting to 
match temporally unselective cues in structurally 
homogenous domains, such as planning problems, can 
cause cue matching to scale with cue and/or state size. 
These findings will inform the development and evaluation 
of future episodic-memory implementations. 
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Figure 1. Mobile-robotics timing data for goal-management cue. 


