
Extending Soar with Dissociated Symbolic Memories
Nate Derbinsky1 and John E. Laird1

Abstract. Over long lifetimes, learning agents accumulate large
stores of knowledge. To support human-level decision-making,
their cognitive architectures must efficiently manage this
experience and bring to bear pertinent data to act in the
world.1Prior psychological and computational work suggests the
need for multiple, dissociated memory systems, citing significant
functional and computational tradeoffs that arise when
implementing a single memory mechanism for different types of
learning tasks. In this context, we develop a memory-centric
analysis of Soar 9, a general cognitive architecture that
incorporates multiple long-term memories. In this analysis, we
explore the functional abilities, computational opportunities, and
theoretical challenges entailed by integrating a diverse set of
symbolic memory systems.

1 INTRODUCTION
A long-lived learning agent facing numerous, complex tasks will
experience large amounts of knowledge [4][9]. To support
human-level intelligence, an agent’s cognitive architecture must
encode and store experiences in such a way so that it can retrieve
relevant information to make decisions, while remaining reactive
to a dynamic environment [12]. To meet these requirements,
cognitive architectures employ one or more memory systems,
mechanisms that efficiently implement a fixed policy to encode,
store, and retrieve agent knowledge [8]. The term “fixed” is not
intended to suggest non-adaptive, but instead refers to a set
computational profile, wherein the architecture commits to
restricted retrievals of agent experience in exchange for
performance guarantees.

From an evolutionary perspective, Sherry and Shacter [23]
have argued for the necessity of multiple, distinct memory
systems in animals (including humans). They argue that a
memory system will solve some environmental problems, and
the justification for different memory systems is that some
environmental problems require memory systems that are
functionally incompatible. As they state, “an efficient habit-
learning system will preserve those features of an experience that
recur in different episodes and are thus crucial to the learning of
a skill… it would appear the major function of the episodic-
representational system is to preserve the contextual details that
uniquely mark individual experiences” [23]. Computational
approaches to memory system implementation offer empirical
evidence to support this claim. For instance, O’Reilly states that
“there are two incompatible goals that such systems need to
solve… one goal is to remember specific information… the other
is to extract generalities… the neural solutions to these goals are
incompatible” [20].

1 Computing Science and Engineering Div., Elec. Engineering and
Computer Science Dept., Univ. of Michigan, 2260 Hayward St., Ann
Arbor, MI, 48109-2121. Email: {nlderbin, laird}@umich.edu.

In this context, we develop a memory-centric, functional
analysis of Soar 9. We contextualize the architecture with
respect to memory organization posited in cognitive science
literature, and offer computational arguments for its diverse set
of symbolic memory systems. Thus, our discussion focuses on
potential incompatibilities of the underlying implementations of
different memories and the difficulty of ensuring efficient
performance if only a single memory system is used. We discuss
one important challenge that arises within the context of multiple
memory systems because of the need to support persistence of
object identity. We conclude with a discussion of future work for
architectural research integrating multiple memory systems.

2 ARCHITECTURAL OVERVIEW
Soar is a cognitive architecture that has been used extensively
for developing AI applications and cognitive models. One of
Soar’s main strengths has been its ability to efficiently represent
and bring to bear large bodies of symbolic knowledge to solve
diverse problems using a variety of methods [10].

The processes and memory systems of Soar 9 are shown in
Figure 1. The declarative short-term memory (termed working
memory) contains the agent’s representation of its current
situation, including representations of environmental perception
and actions. All long-term, procedural knowledge is encoded as
production rules. Whenever a rule’s conditions match working
memory structures, the rule is fired and its actions executed.
Actions may involve adding or removing structures from
working memory, as well as asserting preferences used to initiate
and control deliberate action. Soar learns new procedural
knowledge through its “chunking” mechanism [11], which

Figure 1. Soar 9: memories (rounded) and processes (box)

monitors problem solving and automatically creates new rules to
summarize sub-task results. Procedural control knowledge is
tuned via a reinforcement learning mechanism [16].

At regular intervals, the architecture automatically stores a
snapshot of working memory in episodic memory [2]. The agent
can retrieve a stored episode by creating a cue of working
memory structures. The episodic memory retrieval mechanism
searches the memory and selects the episode that best matches
the cue (biased by recency), and then reconstructs the episode in
working memory (in a special area so that the retrieved episode
is not confused with current experience).

Soar’s semantic memory supports storage and retrieval of
concepts, facts, and relations, independent of the context in
which they were originally experienced. An agent retrieves
concept knowledge from semantic memory into working
memory using a cue analogous to that of episodic memory.

As for overall classification, Soar’s symbolic memories are
distinguished as short-term, where transient structures
representing an agent’s understanding of the current situation are
stored in working memory, and long-term, where persistent
structures are maintained that are potentially relevant to future
situations. The long-term symbolic memories can be divided into
systems of procedural and declarative knowledge, wherein
declarative information is further sub-divided as either semantic
or episodic [25]. Within the architecture, all three of these
memories have a parallel structure, where each one is
structurally accessed independently. Soar integrates long-term
memory retrievals, procedural control knowledge, and a fixed
decision cycle to form a reactive, dual-process model [24]. This
organization contrasts strongly with frameworks like Tulving’s
SPI, where there is an embedding or hierarchical organization
between memory systems [30][31]. In Soar, there can be
interactions between the modules, such as the retrieval from
semantic can be used to cue the retrieval of knowledge from
episodic, and in general, structures from any memory (and
perception) can be stored and used to cue retrievals from other
memories. In the next sections, we will characterize and
functionally analyze each of these memory systems in detail.

3 WORKING MEMORY
The Soar cognitive architecture represents an agent’s current
situation in a short-term, declarative, symbolic memory system.
Unlike many psychological models of short-term memory [23],
Soar’s working memory is not an activated portion of knowledge
in long-term memories, but is a separate store. Furthermore, the
contents of Soar’s working memory, despite its label as “short-
term,” are not forgotten as a result of inactivity or decay [19].

Soar’s working memory entails no active processing, but
instead serves as a common representation substrate for
procedural reasoning, initiating external action, and cueing
retrievals for other long-term memories. It is composed of an
arbitrarily large set of mental entities and associated symbolic
augmentations [22], represented in a single connected graph. A
mental entity can represent an object in the world (present, past,
or hypothetical) or a mental concept, such as an “idea,” with no
experienced physical parallel. Mental entities can be created
from the external environment (either via perception or motor
system feedback) or the internal memory systems (such as the
firing of a production rule or an episodic/semantic retrieval) and
the representation does not distinguish as to knowledge

provenance. Augmentations, implemented as an arbitrarily large
set of symbolic attribute-value pairs for each mental entity,
provide a fully general, relational description language. With
these theoretical commitments, working memory serves
functionally to allow the agent to symbolically represent
arbitrary and novel combinations and compositions of
experienced and hypothetical mental entities during its decision-
making.

4 PROCEDURAL MEMORY
Soar’s procedural memory stores knowledge, in the form of
production rules, about when and how to perform both internal
and external actions [17]. Production rule representation is
asymmetric: the antecedent, termed “conditions” or left-hand-
side (LHS), concisely specifies a pattern to be matched against
working memory, represented as a conjunctive set of variablized
working memory structures. When the antecedent successfully
matches working memory, the consequent of the rule is
executed. The consequent is also termed “actions” or right-hand-
side (RHS), represented as a conjunctive set of variablized
working memory modifications. These representational
semantics are in contrast to associative memory processing, in
which retrievals supplement agent state by completing (with
respect to a matching metric) a cue from prior experience [24].

As is typical of production systems, procedural retrievals in
Soar involves determining which productions successfully match
working memory. The result of the procedural memory system
retrieval, the match set, is the set of productions, each paired
with the set of working memory structures that satisfies its
conditions. However, whereas many architectures, such as ACT-
R [1], implement a conflict resolution mechanism with respect to
the match set and fire a single rule each primitive cycle, Soar
executes all rule instantiations in the match set in parallel.
Consequently, procedural retrieval allows the agent to have an
arbitrary, global control policy over its representational state,
and can do this efficiently even for large bodies of knowledge.
The reason is that Soar’s procedural memory is encoded as rules
with local pattern matching, for which there exist efficient,
scalable matching algorithms [3][5].

The procedural memory system learns knowledge via
chunking and reinforcement learning (RL) mechanisms [11][16].
The former creates a new production when results are created in
sub-tasks by compiling a trace of production firings. The
conditions of the resulting rule is composed of structures that
were necessary for producing the result, and the actions are the
results. Functionally, chunking is a learning mechanism that
converts deliberate search in subtasks into reactive rules that are
accessed via match over procedural memory: it converts agent
deliberation into reaction.

While Soar’s chunking mechanism efficiently refines general
procedural knowledge to apply to more specific situations, as
they are experienced, it is write-only and does not change
learned rules. Soar’s RL mechanism, however, incrementally
tunes production actions to reflect an expectation of action
performance, with respect to an environmental or intrinsic
reward signal [27]. Functionally, the RL mechanism enables the
agent to incrementally improve its decision-making by reflecting
relevant past experience, without the need for a full model of the
results of its actions in a potentially stochastic environment.

5 SEMANTIC MEMORY
The functional purpose of a semantic memory is to efficiently
retrieve declarative facts about a mental entity that have been
experienced by an agent, independent of the context in which
they were originally learned [29]. The existence of this memory
is based on the assumption that some aspects of experience are
re-usable over time, independent of how situations may differ
temporally, spatially, or with respect to other contextual
distinctions relative to an agent’s state and goals.

It is possible to represent generic facts about mental entities
both in procedural and working memory, but both approaches
would appear to incur significant performance costs.
Representing content-addressable, generic facts in productions,
termed data chunking [21], requires the number of rules to be
combinatorial in the number of relevant features for each mental
entity. For instance, if a mental entity, such as a mental
representation of a person, was described by 20 symbolic
features, such as age, weight, hair colour, etc., data chunking
would require 220 (about 1 million) rules to provide access to the
person based upon any combination of the features. Naively
representing generic facts in working memory will require much
less space, but match time proportional with the number of
mental entities [28]. For instance, in Figure 3 we illustrate how
match time per semantic retrieval increases as the number of
mental entities increases (here, each mental entity has 20
symbolic features). When using the procedural matching
mechanism, retrieval time increases exponentially with the
number of entities, versus logarithmic increase using a dedicated
semantic matcher.

The source of this efficiency rift has to do with the types of
problems these memories are designed to address. The result of a
successful semantic retrieval is a single mental entity, with its
associated declarative facts. Thus, the data structures and
algorithms optimized for semantic retrievals can unfold
incrementally and locally, dynamically re-ordering constraints to
find the first match. In contrast, Soar’s procedural matching
seeks all sets of satisfactory working memory structures. Thus,
efficient production matchers [5] typically implement global
caching techniques, spread over a static discrimination network,
to efficiently index working memory structures that could apply
to any condition. This analysis lends credence to the possibility
that a semantic memory system may be functionally
incompatible with a procedural memory system.

Over a long lifetime, it is conceivable that a learning agent,
engaging in multiple, complex tasks, will need to incrementally
store and have efficient access to large amounts of semantic
knowledge, such as in common-sense/ontological [13] and
lexical databases [4][15]. Consequently, to achieve the
aforementioned functionality, Soar implements a semantic
memory system distinct from working and procedural systems.
The knowledge in semantic memory is based on structures
originally in working memory and the primitive representation is
the same in semantic memory as in working memory. To
maintain overall agent reactivity, retrievals from the semantic
memory system, specified as feature cues in working memory,
are restricted to bounded matching and thus any complex
reasoning, such as inductive or deductive processing, is retained
for deliberate action. Semantic learning is incremental and stored
knowledge can change over time.

6 EPISODIC MEMORY
As first described by Tulving, episodic memory captures
historical knowledge contextualized in agent experience [29].
Whereas semantic knowledge encodes what an agent “knows,”
episodic knowledge captures an historical stream of what an
agent “remembers.” Functionally, Tulving discusses the
following requirements of an episodic memory system:

R1. Architectural: episodic retrievals are available for all tasks

and the process of storing memories does not compete
with knowledge-based reasoning.

R2. Automatic: episodic memories are stored without
deliberation. Reasoning can only indirectly influence
episodic storage, such as through deliberate rehearsal.

R3. Autonoetic: retrieved episodic memories are distinguished
from current sensing.

R4. Autobiographical: retrieved episodes are represented in the
context in which they were originally experienced.

R5. Temporally indexed: retrieved episodes include meta-data
providing temporal context with respect to other episodes.

Nuxoll [18] postulates as to some of the functional roles episodic
retrievals may serve, such as facilitating virtual sensing, action
modeling, and retroactive learning.

Some work [2] has been done to understand the
computational challenges involved in meeting the functional
requirements of an episodic memory system. The complex
algorithms involved would seem to suggest that no combination
of working, procedural, and semantic memory systems could
achieve efficient episodic retrievals. However, we observe that a
crucial paradigm for efficient retrievals, “only processing
changes,” holds true not only of episodic memory, but also
procedural. In fact, in the following analysis we develop a
mapping on the basis of encoding, storage, and matching,
demonstrating that in Soar, the matching required for procedural
memory forms a proper subset of the matching required for
episodic memory.

When working memory adds structures, efficient
implementations for both procedural and episodic memory
systems must process and store the event. The two systems
differ, however, at the removal of a structure. Production
conditions apply only to current agent state, and thus procedural
memory need not keep a persistent log of historical structures. Figure 3. Semantic matching time vs. number of entities

Episodic memory, however, permanently stores the time at
which the removal took place and indexes the event, ensuring the
ability to faithfully and efficiently reconstruct the episode at any
point in the future.

When a new production rule is added to procedural memory,
Soar’s implementation optimizes its caching structures and
discrimination network to efficiently match against the new
“cue” (encoded as the rule’s LHS). When a cue is supplied to
episodic memory, a very similar process takes place (the
cache/discrimination network is termed a Disjunctive Normal
Form graph in [2]). However, whereas procedural memory
considers only current working memory structures, episodic
filters all pertinent historical working memory changes, until
finding a match. When a match is found in these systems, Soar
fires the production rule instantiation or reconstructs the episodic
memory, respectively.

Analogous to the semantic memory analysis, Soar’s
implementation of episodic memory dictates that retrievals result
in a single episode and, if possible, a single graph-match
between cue and episode. If we relax these constraints, changing
nothing else about the system specification, episodic retrieval is
functionally equivalent to procedural matching over a log of
pertinent historical working memory additions and removals. In
fact, we have implemented a proof-of-concept episodic memory
matcher using Soar’s working and production memory systems,
where episodes, stored as an in-memory list of working memory
changes, are compared to a cue, instantiated as conditions in a
set of production rules.

Production matching suffers from an exponential worst-case
complexity, with respect to the size of working memory. By
extension, an episodic retrieval is strictly harder, with the
potential for a linear increase with respect to the number of
experienced episodes, which, over long agent lifetimes, is likely
to be much greater than the size of a single episode. Thus, as
discussed in the conclusion of [2], a bounded, task-independent
episodic memory system must likely adopt heuristic schemes
that provide tighter bounds. This finding offers some compelling
evidence for the dissociation between episodic and procedural
memory systems.

To afford agents the functional benefits of episodic memory
over long lifetimes [9], Soar 9 implements the memory system
described in [2]. The episodic learning mechanism automatically
encodes a subset of working memory (R1, R2) at regular
intervals (R2) and temporally indexes this knowledge within the
episodic store (R5). The agent deliberately retrieves from
episodic memory by constructing a cue (R1), partially specifying
relevant contextual features within the episode. The retrieved
episode is fully re-constructed (R4) in a special region of
working memory (R3), such that the agent does not confuse
current sensing and past experience.

7 SUMMARY OF MEMORY SYSTEMS
Thus far, we have analysed the functionality of the symbolic
memory systems in the Soar 9 cognitive architecture. To
summarize, working memory allows the agent to symbolically
represent, reason with, and retrieve long-term knowledge about
arbitrary and novel combinations and compositions of mental

entities. The procedural memory represents knowledge about
when and how to perform internal and external actions.

Soar also contains two declarative long-term memories.
Semantic memory provides context-independent, content-
addressability to persistent knowledge about mental entities.
Episodic memory provides content-accessibility, but
contextualized within autobiographical agent experiences. For
both of these memory systems, we have shown some
computational evidence that procedural memory, while general
enough to represent their contents, is likely to be unable to do so
in an efficient manner required for reactivity with a dynamic
environment over long agent lifetimes.

The memory mechanisms in Soar, while biologically and
psychologically inspired, are not intended to model the details of
human memory systems. Rather, these systems provide efficient
access to classes of agent experience, supporting a broad range
of cognitive capabilities and increasingly rational agent
behaviour. However, they do not currently support many of the
memory phenomena detailed in psychological literature. For
instance, retrieval from semantic memory is not biased by
additional structures in working memory, as in ACT-R [1], nor
does episodic memory support spontaneous retrievals.

8 INTER-MEMORY OBJECT IDENTITY
By integrating multiple memory systems in Soar 9, we gain
many functional benefits, but some new issues arise. In this
section, we detail one such issue, persistent object identity: the
problem of managing distinct, persistent objects over multiple
memory systems.

Historically [10], Soar contained only a working memory and
a procedural memory, with only a single learning mechanism,
chunking. In this context, mental entities were temporary,
persisting only as long as their representation was maintained in
working memory. Consequently, Soar implemented a weak
commitment to object identity [7], wherein mental entities in
working memory during procedural retrievals were
distinguishable only through context, with respect to the agent’s
state, and features.

However, with the integration of the semantic memory
system in Soar 9, mental entities have gained persistence and
need to be distinguishable from each other over time to
functionally support semantic relations. For instance, consider an
agent reasoning about its car (“should I buy a new hybrid now,
or run this one into the ground?”). To make an environmentally
friendly, yet economical, decision, the agent must be able to
store, retrieve, reason with, and update semantic knowledge
about its car, vehicles in general, and other cars with which the
agent has had personal experience (such as a prior car, or that of
a friend/co-worker or advertisement). With a weak commitment
to object identity, knowledge updating would introduce
ambiguity between these mental entities over time, depending
upon their features and context (such as if two past vehicles were
both painted red). Furthermore, as knowledge in any/all of the
multiple symbolic memories can reference the same mental
entities, there is an analogue to the symbol grounding problem,
motivating a strong commitment to object identity [22].

Soar 9 implements a theory of learned object identity. Mental
entities are initially represented using a weak or transitory
identity, but, once added to semantic memory, transition to a
strong or persistent identity. This theory has important
implications for memory system learning and retrievals.

A system implementing weak object identity benefits from
highly generalizable learned knowledge. For example,
variablized production rules refer to any mental entity that
satisfies contextual and feature constraints. A stronger
commitment to object identity implies that learning mechanisms
must identify, and thus learned knowledge must precisely
express, the entities to which the learned knowledge extends.
Theoretically, because Soar 9 implements a progressive strategy
of object identity, it can start with general knowledge to guide
action. As the agent gains knowledge of persistent objects,
related knowledge in other memory systems will become more
specific. Extending the legacy of chunking, Soar functionally
benefits from knowledge becoming increasingly specific to
particular circumstances. However, this places a strong burden
on the agent and the architecture to implement an effective
policy for learning mental entity persistence.

From a performance perspective, memory retrievals in a
reasoning system implementing weak object identity scale with
the number of contextually identical objects (with respect to
matching semantics). This is evidenced by the multi-valued
attribute problem in production systems [28] and column/value
indexing in relational databases. For instance, posing the query
“find me all cars that have exactly 50MPG highway fuel
efficiency” will depend on the number of cars asserted in the
system. In a system implementing strong object identity,
however, memory retrievals will scale with the number of
persistent objects, which can be efficiently addressed via hashing
(“find me the Prius!”).

We have evaluated the performance implications of object
identity in Soar’s episodic retrievals using a generalized
counting domain. The task requires a sequence of retrievals, in
which the agent relationally represents an incrementing counter
in a particular numeric base. For instance, in Figure 4, the agent
is representing the decimal number 3456 in base 2. Here, node
D2 represents a zero (0), node D3 represents a one (1), and the
numeric edges connecting node ID_1 to D2 and D3 indicate that

when 14 positional “places” are used to represent 3456 in binary
(“00110110000000”), the 7th, 8th, 10th, and 11th digits (zero-
based) will be one’s, and the rest zero’s. In our experimental
setup, we can vary the number of episodes (the maximum
number to which the agent counts), the number of positional
digits used to represent the number, and the numeric base in
which the value is relationally represented. Additionally, we can
associate an arbitrary number of features with each digit object.

In Figure 5 we plot total query time versus an increasing
numeric base in the generalized-counting task. We hold constant
the number of features-per-digit (0) and the total number of
episodes (50,000). The cue is constructed, per numeric base, to
represent the digit in the least significant digit of the greatest
episode. For instance, the decimal number 49,999 in octal
(141517) has the digit “7” in its 0th place. In each cue, the digit
entity was either transitory or persistent. Because Soar’s episodic
memory system searches episodes in order of decreasing recency
[2], these cues match the first candidate episode. What we see is
that while the time to retrieve a query in the persistent case
remains nearly constant, the time to retrieve in the transitory case
increases linearly with the numeric base. This is because the
semantics of the transitory cue ask for any digit in the 0th place,
and this ambiguity increases with the number of digits dictated
by the numeric base.

Figure 4. Generalized counting example

Figure 5. Time (ms) retrieving the most recent episode vs. numeric base

Similarly, if we perform the same experiment but hold
constant the numeric base (16) and vary the features-per-digit (5-
10), as in Figure 6, we find that the cue features have no effect
on query time for a persistent mental entity, but linearly increase
retrieval time with the transitory entity because the system must
match a linearly increasing number of constraints.

Finally, in Figure 7, we repeat the first experiment, but force
the matcher to consider all candidate episodes in the episodic
store. In this case, a cue with a persistent entity improves the
selectivity of the matcher, requiring consideration of (total
episodes)/(numeric base) episodes and thus it speeds up with
larger bases. For instance, the matcher had to consider about 3k
episodes in hexadecimal, 5k in decimal, and 25k in binary. No
such speed up is achieved with the transitory entity, where the
matcher has to consider the full 50,000 episodes.

9 CONCLUSIONS & FUTURE WORK
This paper provided a memory-centric analysis of the Soar 9
cognitive architecture. We functionally dissected the multiple
symbolic memory systems in Soar 9, contextualizing the
theoretical commitments within existing psychological research
into memory and contributing computational credence to
theories of dissociation and memory organization.

Many important integration issues remain for future
investigation. As indicated, learning when to commit to
persistent object identity is crucial for an effective balance of

efficient knowledge access and learned knowledge transfer.
Right now the agent performs deliberate storage. One possible
route is to incorporate working memory activation or appraisal
[14] meta-data as measure of entity importance, and commit
when some threshold is exceeded.

Another issue is how regularities in perceptual data, such as
audition or vision, can/should be captured in semantic memory
[8]. This is the very challenging problem of knowing when to
assign a persistent symbol to non-symbolic information.

Of additional concern is how to represent and reason about
inconsistent knowledge from differing memory systems. For
instance, if the agent is hypothesizing about a persistent mental
entity in working memory and invokes an episodic retrieval
about that entity, how should Soar capture the varying source of
data (if at all)?

Also, while this paper has focussed on the symbolic memory
systems in Soar, the architecture has memories that store short-
and long-term visual knowledge [8] and future research may
incorporate other modalities as well. Interesting questions arise
as to how the architecture should manage, reason about, and
simulate persistent mental entity commitments across facilities
computing in multiple modalities.

Finally, a cornerstone of Soar’s commitment to these
dissociated memory systems is that controlled retrievals from
multiple systems can bolster relevant knowledge coverage, and
thus endow the agent with new cognitive capabilities and
improved rationality. However, initial investigation [6] into an
agent learning to use even a single memory system, in a very
simple environment, suggests that significant work remains in
developing proper representations and algorithms to support
rational decision-making, using multiple memory systems in
complex environments.

REFERENCES
[1] Anderson, J.R., Bothell, D.B., Michael D., Douglass, S., Lebiere, C.,

Qin, Y.: An Integrated Theory of the Mind. In: Psychological
Review, Vol. 111 (4), pp. 1036-1060 (2004)

[2] Derbinsky, N., Laird, J.E.: Efficiently Implementing Episodic
Memory. In: Proceedings of the 8th International Conference on Case-
Based Reasoning (ICCBR), pp. 403-417 (2009)

[3] Doorenbos, R.B.: Production Matching for Large Learning Systems.
PhD Thesis, Carnegie Mellon (1995)

[4] Douglass, S., Ball, J.: Large Declarative Memories in ACT-R. In:
Proceedings of the 9th International Conference of Cognitive
Modeling (ICCM), (2009)

[5] Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. In: Artificial Intelligence, Vol. 1, pp.
17-37 (1982)

[6] Gorski, N.A., Laird, J.E.: Learning to Use Episodic Memory. In:
Proceedings of the 9th International Conference on Cognitive
Modeling (2009)

[7] Khoshafian, S.N., Copeland, G.P.: Object Identity. In: Proceedings of
the 1986 Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 406-416 (1986)

[8] Laird, J.E.: Extending the Soar Cognitive Architecture. In:
Proceedings of the 1st Conference on Artificial General Intelligence
(AGI), pp. 224-235 (2008)

[9] Laird, J.E., Derbinsky, N.: A Year of Episodic Memory. In:
Workshop on Grand Challenges for Reasoning from Experiences,
21st IJCAI (2009)

[10] Laird, J.E., Rosenbloom, P.: The Evolution of the Soar Cognitive
Architecture. Mind Matters: A Tribute to Allen Newell, pp. 1–50
(1996) Figure 7. Time (ms) to traverse all candidate episodes

Figure 6. Time (ms) retrieving the most recent episode vs. cue size

[11] Laird, J.E., Rosenbloom, P., Newell, A.: Chunking in Soar: The
Anatomy of a General Learning Mechanism. In: Machine Learning,
Vol. 1 (1), pp. 11-46 (1986)

[12] Laird, J.E., Wray III, R.E.: Cognitive Architecture Requirements for
Achieving AGI. In: Proceedings of the 3rd Conference on Artificial
General Intelligence (AGI), (2010)

[13] Lenat, D.B.: CYC: A Large-Scale Investment in Knowledge
Infrastructure. In: Communications of the ACM, Vol. 38 (11), pp. 33-
38 (1995).

[14] Marinier, R., Laird, J.E.: Emotion-Driven Reinforcement Learning.
In: Cognitive Science (2008)

[15] Miller, G.A.: WordNet: A Lexical Database for English. In:
Communications of the ACM, Vol. 38 (11), pp. 39-41 (1995).

[16] Nason, S., Laird, J.E.: Soar-RL: Integrating Reinforcement Learning
with Soar. In: Cognitive Systems Research, Vol. 6 (1), 51-59 (2005)

[17] Newell, A.: Unified Theories of Cognition (1994)
[18] Nuxoll, A.: Enhancing Intelligent Agents with Episodic Memory.

PhD Dissertation, University of Michigan (2007)
[19] Nuxoll, A., Laird, J.E., James, M.: Comprehensive Working

Memory Activation in Soar. International Conference on Cognitive
Modeling (ICCM), Poster (2004)

[20] O’Reilly, R.C.: Modeling Integration and Dissociation in Brain and
Cognitive Development. In: Processes of Change in Brain and
Cognitive Development: Attention and Performance, Munakata, Y. &
Johnson, M.H. (Eds.), Vol. 21, pp. 375–402 (2006)

[21] Rosenbloom, P.S.: A Cognitive Odyssey: From the Power Law of
Practice to a General Learning Mechanism and Beyond. In: Tutorials
in Quantitative Methods for Psychology, Vol. 2 (2), pp. 38-42 (2006)

[22] Santore, J.F., Shapiro, S.C.: A Cognitive Robotics Approach to
Identifying Perceptually Indistinguishable Objects. In: Anchoring
Symbols to Sensor Data, Papers from the AAAI Workshop,
Technical Report WS-04-03, Coradeschi, S. & Saffiotti, A. (Eds), pp.
1-9 (2004)

[23] Sherry, D.F., Shacter, D.L.: The Evolution of Multiple Memory
Systems. In: Psychological Review, Vol. 94 (4), pp. 439-454 (1987)

[24] Smith, E.R., DeCoster, J.: Dual-Process Models in Social and
Cognitive Psychology: Conceptual Integration and Links to
Underlying Memory Systems. In: Personality and Social Psychology
Review, Vol. 4 (2), pp. 108-131 (2000)

[25] Squire, L.R., Knowlton, B., Musen, G.: The Structure and
Organization of Memory. In: Annual Review of Psychology, Vol. 44,
pp. 453-495 (1993)

[26] Strosnider, J.K., Paul, C.J.: A Structured View of Real-Time
Problem Solving. In: AI Magazine, Vol. 15 (2), pp. 45-66 (2004)

[27] Sutton, R.S., Barton, A.J.: Reinforcement Learning: An Introduction
(1998)

[28] Tambe, M., Kalp, D., Rosenbloom, P.S.: An Efficient Algorithm for
Production Systems with Linear-Time Match. In: Tools with
Artificial Intelligence (TAI), pp. 36-43 (1992)

[29] Tulving, E.: Elements of Episodic Memory (1983)
[30] Tulving, E.: Multiple Memory Systems and Consciousness. In:

Human Neurobiology, Vol. 6 (2), pp. 67-80 (1987)
[31] Tulving, E.: Organization of Memory: Quo Vadis? In: The

Cognitive Neurosciences, Gazzaniga, M.S. (Ed), pp. 839-853 (1995)

