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Abstract. Over long lifetimes, learning agents accumulate large 
stores of knowledge. To support human-level decision-making, 
their cognitive architectures must efficiently manage this 
experience and bring to bear pertinent data to act in the 
world.1Prior psychological and computational work suggests the 
need for multiple, dissociated memory systems, citing significant 
functional and computational tradeoffs that arise when 
implementing a single memory mechanism for different types of 
learning tasks. In this context, we develop a memory-centric 
analysis of Soar 9, a general cognitive architecture that 
incorporates multiple long-term memories. In this analysis, we 
explore the functional abilities, computational opportunities, and 
theoretical challenges entailed by integrating a diverse set of 
symbolic memory systems. 

1 INTRODUCTION 
A long-lived learning agent facing numerous, complex tasks will 
experience large amounts of knowledge [4][9]. To support 
human-level intelligence, an agent’s cognitive architecture must 
encode and store experiences in such a way so that it can retrieve 
relevant information to make decisions, while remaining reactive 
to a dynamic environment [12]. To meet these requirements, 
cognitive architectures employ one or more memory systems, 
mechanisms that efficiently implement a fixed policy to encode, 
store, and retrieve agent knowledge [8]. The term “fixed” is not 
intended to suggest non-adaptive, but instead refers to a set 
computational profile, wherein the architecture commits to 
restricted retrievals of agent experience in exchange for 
performance guarantees. 

From an evolutionary perspective, Sherry and Shacter [23] 
have argued for the necessity of multiple, distinct memory 
systems in animals (including humans). They argue that a 
memory system will solve some environmental problems, and 
the justification for different memory systems is that some 
environmental problems require memory systems that are 
functionally incompatible. As they state, “an efficient habit-
learning system will preserve those features of an experience that 
recur in different episodes and are thus crucial to the learning of 
a skill… it would appear the major function of the episodic-
representational system is to preserve the contextual details that 
uniquely mark individual experiences” [23]. Computational 
approaches to memory system implementation offer empirical 
evidence to support this claim. For instance, O’Reilly states that 
“there are two incompatible goals that such systems need to 
solve… one goal is to remember specific information… the other 
is to extract generalities… the neural solutions to these goals are 
incompatible” [20]. 
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In this context, we develop a memory-centric, functional 
analysis of Soar 9. We contextualize the architecture with 
respect to memory organization posited in cognitive science 
literature, and offer computational arguments for its diverse set 
of symbolic memory systems. Thus, our discussion focuses on 
potential incompatibilities of the underlying implementations of 
different memories and the difficulty of ensuring efficient 
performance if only a single memory system is used. We discuss 
one important challenge that arises within the context of multiple 
memory systems because of the need to support persistence of 
object identity. We conclude with a discussion of future work for 
architectural research integrating multiple memory systems. 

2 ARCHITECTURAL OVERVIEW 
Soar is a cognitive architecture that has been used extensively 
for developing AI applications and cognitive models. One of 
Soar’s main strengths has been its ability to efficiently represent 
and bring to bear large bodies of symbolic knowledge to solve 
diverse problems using a variety of methods [10]. 

The processes and memory systems of Soar 9 are shown in 
Figure 1. The declarative short-term memory (termed working 
memory) contains the agent’s representation of its current 
situation, including representations of environmental perception 
and actions. All long-term, procedural knowledge is encoded as 
production rules. Whenever a rule’s conditions match working 
memory structures, the rule is fired and its actions executed. 
Actions may involve adding or removing structures from 
working memory, as well as asserting preferences used to initiate 
and control deliberate action. Soar learns new procedural 
knowledge through its “chunking” mechanism [11], which 

Figure 1. Soar 9: memories (rounded) and processes (box) 



monitors problem solving and automatically creates new rules to 
summarize sub-task results. Procedural control knowledge is 
tuned via a reinforcement learning mechanism [16]. 

At regular intervals, the architecture automatically stores a 
snapshot of working memory in episodic memory [2]. The agent 
can retrieve a stored episode by creating a cue of working 
memory structures. The episodic memory retrieval mechanism 
searches the memory and selects the episode that best matches 
the cue (biased by recency), and then reconstructs the episode in 
working memory (in a special area so that the retrieved episode 
is not confused with current experience). 

Soar’s semantic memory supports storage and retrieval of 
concepts, facts, and relations, independent of the context in 
which they were originally experienced. An agent retrieves 
concept knowledge from semantic memory into working 
memory using a cue analogous to that of episodic memory. 

As for overall classification, Soar’s symbolic memories are 
distinguished as short-term, where transient structures 
representing an agent’s understanding of the current situation are 
stored in working memory, and long-term, where persistent 
structures are maintained that are potentially relevant to future 
situations. The long-term symbolic memories can be divided into 
systems of procedural and declarative knowledge, wherein 
declarative information is further sub-divided as either semantic 
or episodic [25]. Within the architecture, all three of these 
memories have a parallel structure, where each one is 
structurally accessed independently. Soar integrates long-term 
memory retrievals, procedural control knowledge, and a fixed 
decision cycle to form a reactive, dual-process model [24]. This 
organization contrasts strongly with frameworks like Tulving’s 
SPI, where there is an embedding or hierarchical organization 
between memory systems [30][31]. In Soar, there can be 
interactions between the modules, such as the retrieval from 
semantic can be used to cue the retrieval of knowledge from 
episodic, and in general, structures from any memory (and 
perception) can be stored and used to cue retrievals from other 
memories. In the next sections, we will characterize and 
functionally analyze each of these memory systems in detail. 

3 WORKING MEMORY 
The Soar cognitive architecture represents an agent’s current 
situation in a short-term, declarative, symbolic memory system. 
Unlike many psychological models of short-term memory [23], 
Soar’s working memory is not an activated portion of knowledge 
in long-term memories, but is a separate store. Furthermore, the 
contents of Soar’s working memory, despite its label as “short-
term,” are not forgotten as a result of inactivity or decay [19]. 

Soar’s working memory entails no active processing, but 
instead serves as a common representation substrate for 
procedural reasoning, initiating external action, and cueing 
retrievals for other long-term memories. It is composed of an 
arbitrarily large set of mental entities and associated symbolic 
augmentations [22], represented in a single connected graph. A 
mental entity can represent an object in the world (present, past, 
or hypothetical) or a mental concept, such as an “idea,” with no 
experienced physical parallel. Mental entities can be created 
from the external environment (either via perception or motor 
system feedback) or the internal memory systems (such as the 
firing of a production rule or an episodic/semantic retrieval) and 
the representation does not distinguish as to knowledge 

provenance. Augmentations, implemented as an arbitrarily large 
set of symbolic attribute-value pairs for each mental entity, 
provide a fully general, relational description language. With 
these theoretical commitments, working memory serves 
functionally to allow the agent to symbolically represent 
arbitrary and novel combinations and compositions of 
experienced and hypothetical mental entities during its decision-
making. 

4 PROCEDURAL MEMORY 
Soar’s procedural memory stores knowledge, in the form of 
production rules, about when and how to perform both internal 
and external actions [17]. Production rule representation is 
asymmetric: the antecedent, termed “conditions” or left-hand-
side (LHS), concisely specifies a pattern to be matched against 
working memory, represented as a conjunctive set of variablized 
working memory structures. When the antecedent successfully 
matches working memory, the consequent of the rule is 
executed. The consequent is also termed “actions” or right-hand-
side (RHS), represented as a conjunctive set of variablized 
working memory modifications. These representational 
semantics are in contrast to associative memory processing, in 
which retrievals supplement agent state by completing (with 
respect to a matching metric) a cue from prior experience [24].  

As is typical of production systems, procedural retrievals in 
Soar involves determining which productions successfully match 
working memory. The result of the procedural memory system 
retrieval, the match set, is the set of productions, each paired 
with the set of working memory structures that satisfies its 
conditions. However, whereas many architectures, such as ACT-
R [1], implement a conflict resolution mechanism with respect to 
the match set and fire a single rule each primitive cycle, Soar 
executes all rule instantiations in the match set in parallel. 
Consequently, procedural retrieval allows the agent to have an 
arbitrary, global control policy over its representational state, 
and can do this efficiently even for large bodies of knowledge. 
The reason is that Soar’s procedural memory is encoded as rules 
with local pattern matching, for which there exist efficient, 
scalable matching algorithms [3][5]. 

The procedural memory system learns knowledge via 
chunking and reinforcement learning (RL) mechanisms [11][16]. 
The former creates a new production when results are created in 
sub-tasks by compiling a trace of production firings. The 
conditions of the resulting rule is composed of structures that 
were necessary for producing the result, and the actions are the 
results. Functionally, chunking is a learning mechanism that 
converts deliberate search in subtasks into reactive rules that are 
accessed via match over procedural memory: it converts agent 
deliberation into reaction. 

While Soar’s chunking mechanism efficiently refines general 
procedural knowledge to apply to more specific situations, as 
they are experienced, it is write-only and does not change 
learned rules. Soar’s RL mechanism, however, incrementally 
tunes production actions to reflect an expectation of action 
performance, with respect to an environmental or intrinsic 
reward signal [27]. Functionally, the RL mechanism enables the 
agent to incrementally improve its decision-making by reflecting 
relevant past experience, without the need for a full model of the 
results of its actions in a potentially stochastic environment. 



5 SEMANTIC MEMORY 
The functional purpose of a semantic memory is to efficiently 
retrieve declarative facts about a mental entity that have been 
experienced by an agent, independent of the context in which 
they were originally learned [29]. The existence of this memory 
is based on the assumption that some aspects of experience are 
re-usable over time, independent of how situations may differ 
temporally, spatially, or with respect to other contextual 
distinctions relative to an agent’s state and goals. 

It is possible to represent generic facts about mental entities 
both in procedural and working memory, but both approaches 
would appear to incur significant performance costs. 
Representing content-addressable, generic facts in productions, 
termed data chunking [21], requires the number of rules to be 
combinatorial in the number of relevant features for each mental 
entity. For instance, if a mental entity, such as a mental 
representation of a person, was described by 20 symbolic 
features, such as age, weight, hair colour, etc., data chunking 
would require 220 (about 1 million) rules to provide access to the 
person based upon any combination of the features. Naively 
representing generic facts in working memory will require much 
less space, but match time proportional with the number of 
mental entities [28]. For instance, in Figure 3 we illustrate how 
match time per semantic retrieval increases as the number of 
mental entities increases (here, each mental entity has 20 
symbolic features). When using the procedural matching 
mechanism, retrieval time increases exponentially with the 
number of entities, versus logarithmic increase using a dedicated 
semantic matcher.  

The source of this efficiency rift has to do with the types of 
problems these memories are designed to address. The result of a 
successful semantic retrieval is a single mental entity, with its 
associated declarative facts. Thus, the data structures and 
algorithms optimized for semantic retrievals can unfold 
incrementally and locally, dynamically re-ordering constraints to 
find the first match. In contrast, Soar’s procedural matching 
seeks all sets of satisfactory working memory structures.  Thus, 
efficient production matchers [5] typically implement global 
caching techniques, spread over a static discrimination network, 
to efficiently index working memory structures that could apply 
to any condition. This analysis lends credence to the possibility 
that a semantic memory system may be functionally 
incompatible with a procedural memory system. 

Over a long lifetime, it is conceivable that a learning agent, 
engaging in multiple, complex tasks, will need to incrementally 
store and have efficient access to large amounts of semantic 
knowledge, such as in common-sense/ontological [13] and 
lexical databases [4][15]. Consequently, to achieve the 
aforementioned functionality, Soar implements a semantic 
memory system distinct from working and procedural systems. 
The knowledge in semantic memory is based on structures 
originally in working memory and the primitive representation is 
the same in semantic memory as in working memory. To 
maintain overall agent reactivity, retrievals from the semantic 
memory system, specified as feature cues in working memory, 
are restricted to bounded matching and thus any complex 
reasoning, such as inductive or deductive processing, is retained 
for deliberate action. Semantic learning is incremental and stored 
knowledge can change over time. 

6 EPISODIC MEMORY 
As first described by Tulving, episodic memory captures 
historical knowledge contextualized in agent experience [29]. 
Whereas semantic knowledge encodes what an agent “knows,” 
episodic knowledge captures an historical stream of what an 
agent “remembers.” Functionally, Tulving discusses the 
following requirements of an episodic memory system: 
 
R1. Architectural: episodic retrievals are available for all tasks 

and the process of storing memories does not compete 
with knowledge-based reasoning. 

R2. Automatic: episodic memories are stored without 
deliberation. Reasoning can only indirectly influence 
episodic storage, such as through deliberate rehearsal. 

R3. Autonoetic: retrieved episodic memories are distinguished 
from current sensing. 

R4. Autobiographical: retrieved episodes are represented in the 
context in which they were originally experienced. 

R5. Temporally indexed: retrieved episodes include meta-data 
providing temporal context with respect to other episodes. 

 
Nuxoll [18] postulates as to some of the functional roles episodic 
retrievals may serve, such as facilitating virtual sensing, action 
modeling, and retroactive learning. 

Some work [2] has been done to understand the 
computational challenges involved in meeting the functional 
requirements of an episodic memory system. The complex 
algorithms involved would seem to suggest that no combination 
of working, procedural, and semantic memory systems could 
achieve efficient episodic retrievals. However, we observe that a 
crucial paradigm for efficient retrievals, “only processing 
changes,” holds true not only of episodic memory, but also 
procedural. In fact, in the following analysis we develop a 
mapping on the basis of encoding, storage, and matching, 
demonstrating that in Soar, the matching required for procedural 
memory forms a proper subset of the matching required for 
episodic memory. 

When working memory adds structures, efficient 
implementations for both procedural and episodic memory 
systems must process and store the event. The two systems 
differ, however, at the removal of a structure. Production 
conditions apply only to current agent state, and thus procedural 
memory need not keep a persistent log of historical structures. Figure 3. Semantic matching time vs. number of entities 



Episodic memory, however, permanently stores the time at 
which the removal took place and indexes the event, ensuring the 
ability to faithfully and efficiently reconstruct the episode at any 
point in the future.  

When a new production rule is added to procedural memory, 
Soar’s implementation optimizes its caching structures and 
discrimination network to efficiently match against the new 
“cue” (encoded as the rule’s LHS). When a cue is supplied to 
episodic memory, a very similar process takes place (the 
cache/discrimination network is termed a Disjunctive Normal 
Form graph in [2]). However, whereas procedural memory 
considers only current working memory structures, episodic 
filters all pertinent historical working memory changes, until 
finding a match. When a match is found in these systems, Soar 
fires the production rule instantiation or reconstructs the episodic 
memory, respectively. 

Analogous to the semantic memory analysis, Soar’s 
implementation of episodic memory dictates that retrievals result 
in a single episode and, if possible, a single graph-match 
between cue and episode. If we relax these constraints, changing 
nothing else about the system specification, episodic retrieval is 
functionally equivalent to procedural matching over a log of 
pertinent historical working memory additions and removals. In 
fact, we have implemented a proof-of-concept episodic memory 
matcher using Soar’s working and production memory systems, 
where episodes, stored as an in-memory list of working memory 
changes, are compared to a cue, instantiated as conditions in a 
set of production rules.  

Production matching suffers from an exponential worst-case 
complexity, with respect to the size of working memory. By 
extension, an episodic retrieval is strictly harder, with the 
potential for a linear increase with respect to the number of 
experienced episodes, which, over long agent lifetimes, is likely 
to be much greater than the size of a single episode. Thus, as 
discussed in the conclusion of [2], a bounded, task-independent 
episodic memory system must likely adopt heuristic schemes 
that provide tighter bounds. This finding offers some compelling 
evidence for the dissociation between episodic and procedural 
memory systems. 

To afford agents the functional benefits of episodic memory 
over long lifetimes [9], Soar 9 implements the memory system 
described in [2]. The episodic learning mechanism automatically 
encodes a subset of working memory (R1, R2) at regular 
intervals (R2) and temporally indexes this knowledge within the 
episodic store (R5). The agent deliberately retrieves from 
episodic memory by constructing a cue (R1), partially specifying 
relevant contextual features within the episode. The retrieved 
episode is fully re-constructed (R4) in a special region of 
working memory (R3), such that the agent does not confuse 
current sensing and past experience. 

7 SUMMARY OF MEMORY SYSTEMS 
Thus far, we have analysed the functionality of the symbolic 
memory systems in the Soar 9 cognitive architecture. To 
summarize, working memory allows the agent to symbolically 
represent, reason with, and retrieve long-term knowledge about 
arbitrary and novel combinations and compositions of mental 

entities. The procedural memory represents knowledge about 
when and how to perform internal and external actions. 

Soar also contains two declarative long-term memories. 
Semantic memory provides context-independent, content-
addressability to persistent knowledge about mental entities. 
Episodic memory provides content-accessibility, but 
contextualized within autobiographical agent experiences. For 
both of these memory systems, we have shown some 
computational evidence that procedural memory, while general 
enough to represent their contents, is likely to be unable to do so 
in an efficient manner required for reactivity with a dynamic 
environment over long agent lifetimes. 

The memory mechanisms in Soar, while biologically and 
psychologically inspired, are not intended to model the details of 
human memory systems. Rather, these systems provide efficient 
access to classes of agent experience, supporting a broad range 
of cognitive capabilities and increasingly rational agent 
behaviour. However, they do not currently support many of the 
memory phenomena detailed in psychological literature. For 
instance, retrieval from semantic memory is not biased by 
additional structures in working memory, as in ACT-R [1], nor 
does episodic memory support spontaneous retrievals.  

8 INTER-MEMORY OBJECT IDENTITY 
By integrating multiple memory systems in Soar 9, we gain 
many functional benefits, but some new issues arise. In this 
section, we detail one such issue, persistent object identity: the 
problem of managing distinct, persistent objects over multiple 
memory systems.  

Historically [10], Soar contained only a working memory and 
a procedural memory, with only a single learning mechanism, 
chunking. In this context, mental entities were temporary, 
persisting only as long as their representation was maintained in 
working memory. Consequently, Soar implemented a weak 
commitment to object identity [7], wherein mental entities in 
working memory during procedural retrievals were 
distinguishable only through context, with respect to the agent’s 
state, and features. 

However, with the integration of the semantic memory 
system in Soar 9, mental entities have gained persistence and 
need to be distinguishable from each other over time to 
functionally support semantic relations. For instance, consider an 
agent reasoning about its car (“should I buy a new hybrid now, 
or run this one into the ground?”). To make an environmentally 
friendly, yet economical, decision, the agent must be able to 
store, retrieve, reason with, and update semantic knowledge 
about its car, vehicles in general, and other cars with which the 
agent has had personal experience (such as a prior car, or that of 
a friend/co-worker or advertisement). With a weak commitment 
to object identity, knowledge updating would introduce 
ambiguity between these mental entities over time, depending 
upon their features and context (such as if two past vehicles were 
both painted red). Furthermore, as knowledge in any/all of the 
multiple symbolic memories can reference the same mental 
entities, there is an analogue to the symbol grounding problem, 
motivating a strong commitment to object identity [22]. 



Soar 9 implements a theory of learned object identity. Mental 
entities are initially represented using a weak or transitory 
identity, but, once added to semantic memory, transition to a 
strong or persistent identity. This theory has important 
implications for memory system learning and retrievals. 

A system implementing weak object identity benefits from 
highly generalizable learned knowledge. For example, 
variablized production rules refer to any mental entity that 
satisfies contextual and feature constraints. A stronger 
commitment to object identity implies that learning mechanisms 
must identify, and thus learned knowledge must precisely 
express, the entities to which the learned knowledge extends. 
Theoretically, because Soar 9 implements a progressive strategy 
of object identity, it can start with general knowledge to guide 
action. As the agent gains knowledge of persistent objects, 
related knowledge in other memory systems will become more 
specific. Extending the legacy of chunking, Soar functionally 
benefits from knowledge becoming increasingly specific to 
particular circumstances. However, this places a strong burden 
on the agent and the architecture to implement an effective 
policy for learning mental entity persistence. 

From a performance perspective, memory retrievals in a 
reasoning system implementing weak object identity scale with 
the number of contextually identical objects (with respect to 
matching semantics). This is evidenced by the multi-valued 
attribute problem in production systems [28] and column/value 
indexing in relational databases. For instance, posing the query 
“find me all cars that have exactly 50MPG highway fuel 
efficiency” will depend on the number of cars asserted in the 
system. In a system implementing strong object identity, 
however, memory retrievals will scale with the number of 
persistent objects, which can be efficiently addressed via hashing 
(“find me the Prius!”). 

We have evaluated the performance implications of object 
identity in Soar’s episodic retrievals using a generalized 
counting domain. The task requires a sequence of retrievals, in 
which the agent relationally represents an incrementing counter 
in a particular numeric base. For instance, in Figure 4, the agent 
is representing the decimal number 3456 in base 2. Here, node 
D2 represents a zero (0), node D3 represents a one (1), and the 
numeric edges connecting node ID_1 to D2 and D3 indicate that 

when 14 positional “places” are used to represent 3456 in binary 
(“00110110000000”), the 7th, 8th, 10th, and 11th digits (zero-
based) will be one’s, and the rest zero’s. In our experimental 
setup, we can vary the number of episodes (the maximum 
number to which the agent counts), the number of positional 
digits used to represent the number, and the numeric base in 
which the value is relationally represented. Additionally, we can 
associate an arbitrary number of features with each digit object. 

In Figure 5 we plot total query time versus an increasing 
numeric base in the generalized-counting task. We hold constant 
the number of features-per-digit (0) and the total number of 
episodes (50,000). The cue is constructed, per numeric base, to 
represent the digit in the least significant digit of the greatest 
episode. For instance, the decimal number 49,999 in octal 
(141517) has the digit “7” in its 0th place. In each cue, the digit 
entity was either transitory or persistent. Because Soar’s episodic 
memory system searches episodes in order of decreasing recency 
[2], these cues match the first candidate episode. What we see is 
that while the time to retrieve a query in the persistent case 
remains nearly constant, the time to retrieve in the transitory case 
increases linearly with the numeric base. This is because the 
semantics of the transitory cue ask for any digit in the 0th place, 
and this ambiguity increases with the number of digits dictated 
by the numeric base. 

Figure 4. Generalized counting example 

Figure 5. Time (ms) retrieving the most recent episode vs. numeric base 



Similarly, if we perform the same experiment but hold 
constant the numeric base (16) and vary the features-per-digit (5-
10), as in Figure 6, we find that the cue features have no effect 
on query time for a persistent mental entity, but linearly increase 
retrieval time with the transitory entity because the system must 
match a linearly increasing number of constraints. 

Finally, in Figure 7, we repeat the first experiment, but force 
the matcher to consider all candidate episodes in the episodic 
store. In this case, a cue with a persistent entity improves the 
selectivity of the matcher, requiring consideration of (total 
episodes)/(numeric base) episodes and thus it speeds up with 
larger bases. For instance, the matcher had to consider about 3k 
episodes in hexadecimal, 5k in decimal, and 25k in binary. No 
such speed up is achieved with the transitory entity, where the 
matcher has to consider the full 50,000 episodes.  

9 CONCLUSIONS & FUTURE WORK 
This paper provided a memory-centric analysis of the Soar 9 
cognitive architecture. We functionally dissected the multiple 
symbolic memory systems in Soar 9, contextualizing the 
theoretical commitments within existing psychological research 
into memory and contributing computational credence to 
theories of dissociation and memory organization. 

Many important integration issues remain for future 
investigation. As indicated, learning when to commit to 
persistent object identity is crucial for an effective balance of 

efficient knowledge access and learned knowledge transfer. 
Right now the agent performs deliberate storage. One possible 
route is to incorporate working memory activation or appraisal 
[14] meta-data as measure of entity importance, and commit 
when some threshold is exceeded.  

Another issue is how regularities in perceptual data, such as 
audition or vision, can/should be captured in semantic memory 
[8]. This is the very challenging problem of knowing when to 
assign a persistent symbol to non-symbolic information. 

Of additional concern is how to represent and reason about 
inconsistent knowledge from differing memory systems. For 
instance, if the agent is hypothesizing about a persistent mental 
entity in working memory and invokes an episodic retrieval 
about that entity, how should Soar capture the varying source of 
data (if at all)? 

Also, while this paper has focussed on the symbolic memory 
systems in Soar, the architecture has memories that store short- 
and long-term visual knowledge [8] and future research may 
incorporate other modalities as well. Interesting questions arise 
as to how the architecture should manage, reason about, and 
simulate persistent mental entity commitments across facilities 
computing in multiple modalities. 

Finally, a cornerstone of Soar’s commitment to these 
dissociated memory systems is that controlled retrievals from 
multiple systems can bolster relevant knowledge coverage, and 
thus endow the agent with new cognitive capabilities and 
improved rationality. However, initial investigation [6] into an 
agent learning to use even a single memory system, in a very 
simple environment, suggests that significant work remains in 
developing proper representations and algorithms to support 
rational decision-making, using multiple memory systems in 
complex environments. 
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